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Abstract
Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase sys-
temic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to 
declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed 
to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic 
regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and 
conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because 
interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by 
potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced 
hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) 
and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies 
for cardiac oxygenation. Pharmacological blockade of β-adrenergic tone lowered the upper temperature where heart rate 
started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum  (CTmax) in 
perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with 
the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, 
increases acute thermal tolerance.
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Introduction

Upper thermal tolerance in fish (i.e., the temperature 
beyond which the fish cannot survive) is partly governed 
by the cardiovascular system´s capacity to maintain tis-
sue oxygen delivery during warming (see Eliason and 
Anttila 2017; Ekström et al. 2016a, 2019; Gollock et al. 
2006; Badr et al. 2016). Acute warming typically results in 
elevated heart rate and cardiac output, but at temperatures 
approaching the upper thermal tolerance limit (here defined 
by the critical thermal maximum,  CTmax, in turn defined 

as the temperature at which the animal loses equilibrium 
(Beitinger et al. 2000)), a plateau and subsequent reduction 
in heart rate and cardiac output is often observed (Ekström 
et al. 2014; Ekström et al. 2016a; Heath and Hughes 1973; 
Hughes and Roberts 1970; Gollock et al. 2006). This decline 
in heart rate has been interpreted as cardiac failure in fish 
approaching  CTmax, and likely has multiple underlying rea-
sons (see Eliason and Anttila 2017; Ekström et al. 2016a; 
Iftikar and Hickey 2013; Haverinen and Vornanen 2020; 
Vornanen 2020). First, the venous oxygen tension declines 
as temperature rises (i.e., venous hypoxemia), which results 
in a reduced partial pressure gradient for oxygen diffusion 
into the spongy myocardium. The heart is an aerobic tissue 
and maintaining a sufficient cardiac oxygen supply is crucial 
for maintaining cardiac contractility at high temperatures 
(see Driedzic and Gesser 1994; Ekström et al. 2016a). Thus, 
exacerbated venous hypoxemia is particularly detrimental in 
fish species that lack a coronary arterial circulation where 
the luminal venous oxygen supply represents the sole route 
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for myocardial oxygenation (Ekström et al. 2016a; Farrell 
and Smith 2017). Second, the increase in heart rate with ris-
ing temperatures may constrain luminal oxygenation further 
by reducing the time for oxygen diffusion as diastole short-
ens, along with increased myocardial diffusion distances as 
end-diastolic filling and distension decline (see Eliason and 
Anttila 2017). Finally, the specific tendency for heart rate to 
decline at high temperatures immediately prior to  CTmax has 
recently been attributed to compromised ventricular myo-
cardial excitability and action potential conduction capac-
ity causing a functional atrioventricular (AV) block; e.g., as 
observed in roach (Rutilus rutilus), rainbow trout (Onco-
rhynchus mykiss) and brown trout (Salmo trutta)(Haverinen 
and Vornanen 2020; Badr et al. 2016; Haverinen et al. 2016; 
Vornanen 2020). The cellular mechanism behind this is an 
ensuing imbalance of  Na+ and  K+ ionic transmembrane flux 
rate dynamics due to deteriorating ion channel functional-
ity (predominately  Na+ channels) as temperature increases 
(Vornanen 2016, 2017, 2020).

The autonomic nervous system regulates cardiac activity 
in teleost fishes via stimulatory β-adrenergic and inhibitory 
cholinergic (muscarinic) pathways (Sandblom and Axels-
son 2011; Nilsson 1983). Recently, adrenergic or cholinergic 
autonomic regulation of the heart was hypothesized to be 
important determinants of  CTmax and overall cardiac perfor-
mance during acute warming (Gilbert et al. 2019; Ekström 
et al. 2014, 2019). This stems from the idea that a controlled 
cholinergic slowing of heart rate at elevated temperatures 
could be beneficial by circumventing AV block by reducing 
the pacemaker rate to within the functional rate limits of 
the ventricle (Gilbert et al. 2019), lowering overall cardiac 
workload and oxygen demand, and/or improving myocardial 
oxygenation by extending the duration for luminal oxygen 
diffusion (Farrell 2007). Moreover, adrenergic stimulation 
via autonomic nerves or circulating catecholamines, the lat-
ter which increase with acute warming (Currie et al. 2013, 
2008), could promote myocardial excitability and possibly 
also prevent AV block (Gilbert et al. 2019). Catecholamines 
are also well known to promote ventricular contractility in 
fish exposed to acute warming and hypoxia stress (Aho and 
Vornanen 2001; Hanson et al. 2006; Farrell et al. 1996). Sev-
eral recent studies adressed these hypotheses experimentally, 
and tested whether pharmacological autonomic blockade 
alters  CTmax and cardiac performance during warming using 
rainbow trout as model species (Gilbert et al. 2019; Ekström 
et al. 2014, 2019). Interestingly, while Gilbert et al. (2019) 
found that both cholinergic and β-adrenergic blockade with 
atropine and sotalol, respectively, reduced  CTmax and the 
temperature at which heart rate started to decline in juvenile 
rainbow trout, we found no such effects when using a simi-
lar pharmacological protocol in adult trout (Ekström et al. 
2014). Given the influence of the coronary circulation on 
cardiac perfromance during warming (Ekström et al. 2017), 

and that adult trout may be more dependent on this source of 
cardiac oxygenation as the amount of compact myocardium 
perfused by the coronaries increases with age (Farrell et al. 
1988; Ekström et al. 2017; Brijs et al. 2016), we hypoth-
esized that an increased coronary flow may have buffered 
any negative effects of the pharmacological blockade, which 
should have primarily impaired luminal oxygen diffusion. 
However, a follow-up study on adult rainbow trout with sur-
gically ligated coronaries to exclude the potential influence 
of compensatory increases in coronary flow, similarly failed 
to replicate the earlier findings of Gilbert and co-workers, as 
thermal tolerance remained unaffected following subsequent 
pharmacological autonomic blockade (Ekström et al. 2019).

In the present study, we took a different approach to fur-
ther explore the hypothesis that cardiac autonomic regula-
tion enhances in vivo cardiac performance and  CTmax in 
acutely warmed fish by examining two species; European 
perch (Perca fluviatilis, Linneaus 1758) and roach (Rutilus 
rutilus, Linneaus 1758), which both lack a coronary circula-
tion and, thus, rely entirely on luminal venous oxygen supply 
for cardiac oxygenation. We specifically tested the prediction 
that pharmacological blockade of cholinergic or adrener-
gic cardiac control systems would reduce the temperature 
at which heart rate starts to decline during warming, and 
result in lowered  CTmax.

Materials and methods

Fish collection and holding

Perch were caught in the Baltic Sea close to Forsmark, 
Sweden (60°24′07.1"N 18°10′49.5"E) using hook and line 
during the late summer in 2018. They were transferred to 
a nearby laboratory facility (Sandblom et al. 2016a), and 
kept outdoors under natural light conditions in holding tanks 
(1200 L) receiving flow-through aerated brackish seawater 
(~ 5 ppt salinity) at ~ 17 °C. The fish were held for at least 
3 days prior to experimentation and were not fed in captivity.

Roach were caught in baited traps in lake Rådasjön near 
Gothenburg, Sweden (57°39′30.8"N 12°04′35.5"E) dur-
ing late autumn in 2016 and 2017. They were transferred 
to holding tanks (1200 L) receiving recirculating aerated 
freshwater in the animal facility at the University of Gothen-
burg, and were acclimated to 10 °C and a 12:12-h light:dark 
photoperiod for at least 4 weeks prior to the experiments. 
Roach were fed commercial fish pellets 3 times per week, 
but feeding was stopped one week before experimentation. 
The acclimation temperatures in the holding tanks for both 
species reflected the temperatures at the collections sites at 
the time of capture. All procedures were approved by ethi-
cal permit #165–2015 issued by the regional animal ethics 
committee.
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Anesthesia and surgery

Perch and roach were anesthetized in ~ 18 °C seawater (5 
ppt) and 10 °C freshwater, respectively, containing MS-222 
(Tricaine methanesulfonate; 100 mg  L−1 and 150 mg  L−1, 
respectively) buffered with  NaHCO3 (300 mg  L−1, roach 
only). Body mass and length were determined and the fish 
were placed ventral side up on wet foam on a surgery table. 
Surgical anesthesia was maintained by continuously irrigat-
ing the gills with 10 °C water containing a lower dose of 
MS-222 (50–75 mg  L−1) buffered with  NaHCO3 (150 mg 
 L−1, roach only). To record heart rate, two ECG electrodes 
(AS 631–2, Cooner wire, Chatsworth, CA) were inserted 
subcutaneously between the pectoral fins in a ventral medial 
position using a 23 gauge needle. The electrodes were 
inserted at a ~ 45° angle placing the electrode tips on either 
side of the heart. For administration of pharmacological sub-
stances, a PE-50 catheter was inserted into the abdominal 
cavity, 3–4 cm posterior to the pectoral fin (Ekström et al. 
2016b). The wire and catheter were secured to the skin using 
4–0 silk sutures. The fish were then placed in opaque experi-
mental chambers (width: 130 mm; length: 340 mm; height: 
170 mm), which received a continuous flow of aerated water 
identical to the respective holding tanks, and were allowed 
to recovered for at least 24 h before experiments started.

Experimental protocol

Resting heart rate was first recorded for at least 2 h in perch 
and roach at 18 or 10 °C, respectively. A bolus injection 
(1 ml  kg−1) of either saline (0.9% NaCl, Control), atropine 
sulfate (1.2 mg  kg−1), sotalol (2,7 mg  kg−1) or proprano-
lol (3 mg  kg−1, roach only) was then administered via the 
abdominal catheter in separate groups of fish. A 0.5 ml bolus 
of saline was injected to flush the catheter dead space. When 
stable post-injection heart rate values had been attained at 
the respective acclimation temperature (typically within 
30–60 min), fish were subjected to an acute thermal chal-
lenge. In the perch, the temperature was first raised from 
18 °C to 23 °C in 1 h (i.e., 5 °C  h−1), followed by a heating 
rate of 3 °C  h−1 until the fish lost equilibrium, i.e.,  CTmax. 
In roach, the temperature was raised from 10 °C to 20 °C in 
2 h (i.e., 5 °C  h−1), followed by 3 °C  h−1 until  CTmax. All 
pharmacological substances and chemicals were purchased 
from Sigma-Aldrich (St Louis, MO, USA).

Data acquisition and calculations

The ECG electrodes were connected to bioamplifiers 
(ML136, AD instruments, Castle Hill, Australia; Range: 
10 mV; Low-pass filter: 1 kHz; High-pass filter: 0.3 Hz; 
50 Hz notch filter). The water temperature was recorded 
continuously using a custom-built temperature logger (EW 

7221, Crn Tecnopart, Barcelona, Spain). Analog outputs 
from the recording equipment were relayed to a PowerLab 
system (AD Instruments, Sydney, Australia) connected to a 
computer running Labchart Pro software (v7.2.2, AD Instru-
ments, Castle Hill, Australia).

The raw ECG signals were filtered and optimized (Band-
pass digital filters in Labchart; High cut-off frequency 
range: 15–40 Hz; Low-pass range: 1–4 Hz) and heart rate 
was determined from the rate of ventricular depolarizations 
(i.e., R peaks) in the ECG. For each fish, we determined the 
highest heart rate during warming where heart rate peaked 
or plateaued (i.e., peak heart rate), which was typically fol-
lowed by a progressive decline due to cardiac arrhythmias 
and/or a prolonged inter-beat interval. We also determined 
the temperature at which peak heart rate occurred. Fish con-
dition factor was calculated as:

using body mass in grams and length in centimeters.

Statistics

Statistical analyses were performed using SPSS (v. 25, 
SPSS Inc., Chicago, IL, USA). Values are presented as 
means ± S.E.M unless otherwise stated. Normality and 
homogeneity of variances were determined using Sha-
piro–Wilk’s and Levene’s tests, respectively. One-way 
ANOVA´s or Kruskal–Wallis H-tests were performed to 
compare pre-treatment routine heart rate, peak heart rate, 
temperature for the peak heart rate,  CTmax, body mass, 
length and condition factor among treatment groups. Paired 
t-tests were used to compare pre-, and post-injection heart 
rate within groups. Linear mixed models were used to evalu-
ate the effects of temperature on heart rate (repeated meas-
ures) within treatment groups and for among-treatment com-
parisons across temperatures. Temperature, treatment and 
their interaction (i.e., temperature*treatment) were modeled. 
A first-order autoregressive covariance structure provided 
the best fit to the data, as indicated by the lowest Akaike´s 
information criterion (AIC). Only data points until the low-
est temperature at which peak heart rate occurred in an indi-
vidual fish across treatment groups (i.e., at 27 and 24 °C for 
perch and roach, respectively) were included in this analysis. 
Statistically significant main effects were further explored by 
pair-wise comparisons among experimental groups. Statisti-
cal significance was accepted at p ≤ 0.05.

Results

Body mass, length and condition factor did not differ among 
groups of perch (Table 1). However, sotalol-, and proprano-
lol-treated roach (caught 2017) had lower body mass (~ 43%, 

Condition factor = (100 × Body mass)∕Body length3
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F3 = 15.0, p < 0.001), length (~ 15%, F3 = 13.2, p < 0.001) 
and condition factor (~ 10%, F3 = 4.4, p = 0.019, sotalol only) 
compared to controls (caught in 2016).

Routine heart rate significantly increased in atropine-
treated perch at 18 °C and roach at 10 °C by 35 beats  min−1 
(41%) and 31 beats  min−1 (57%), respectively (Figs. 1a and 
2a). However, β-adrenergic blockade with sotalol did not sig-
nificantly alter routine heart rate in either species (Figs. 1a 
and 2a). Due to the lack of effect of sotalol, we also treated 
roach with another β-blocker, propranolol, which similarly 
did not affect routine heart rate at 10 °C (Fig. 2a).

Acute warming elevated heart rate across species and 
treatment groups, but the heart rate of atropine-treated fish 
always remained significantly elevated compared to the con-
trol groups in both species throughout the acute warming 
protocol (Figs. 1a and 2a). In perch, this meant that peak 
heart rate was higher in atropinized fish relative to controls 
(166 vs. 138 beats  min−1; F2 = 8.9, p = 0.001, Fig. 1b), but 
there was no difference in temperature for the peak heart 
rate (28.6 ± 0.3 vs. 28.9 ± 0.3 °C, Fig. 1c) or at the  CTmax 
(30.4 ± 0.2 vs. 30.8 ± 0.2 °C, Fig. 1d). While peak heart rate 
in perch after β-adrenergic blockade with sotalol was simi-
lar (137 beats  min−1) to the control group, the β-adrenergic 
blockade significantly reduced both the temperature for 
the peak heart rate (by 1.0 °C to 27.9 ± 0.2 °C; F2 = 8.9, 
p = 0.041) and  CTmax (by 1.1 °C to 29.7 ± 0.2 °C; F2 = 6.5, 
p = 0.003).

Similarly, in roach, peak heart rate was also higher after 
atropine relative to control fish (190 vs. 143 beats  min−1; 
F3 = 17.7, p < 0.001, Fig. 2b), but there were no differences 
in the temperature for the peak heart rate (25.7 ± 0.3 vs. 
26.3 ± 0.3 °C, Fig. 2c) or  CTmax (27.0 ± 0.3 vs. 27.3 ± 0.3 °C¸ 
Fig. 2d). Moreover, peak heart rate in roach was also unaf-
fected by both sotalol and propranolol (132 and 126 beats 
 min−1, respectively), relative to the control group. Yet, heart 
rate peaked at a lower temperature in roach treated with pro-
pranolol (24.8 ± 0.2 °C; F3 = 10.5, p < 0.001, Fig. 2c). There 
were no differences in the temperature for the peak heart rate 
between controls and sotalol-treated roach (26.3 ± 0.1 °C), 
and  CTmax was unaffected by both sotalol and propranolol 
treatment in roach (27.7 ± 0.2 and 26.5 ± 0.2 °C, respec-
tively, Fig. 2d). It is also worth noting that there was a close 
to significant trend towards a lower  CTmax in propranolol-, 

vs. sotatol-treated fish (by 1.2 °C, p = 0.051). Peak heart rate 
always occurred at lower temperatures than  CTmax in indi-
vidual fish across species and treatment groups (Figs. 1c, 
d; 2c, d).

In roughly 50–60% of individual experiments, the in vivo 
ECG traces at the highest temperatures were of sufficient 
quality to allow more detailed analyses (e.g., individual 
P waves and/or QRS complexes were clearly distinguish-
able). In both species, the decline in heart rate immediately 
prior to  CTmax (see Figs. 1a and 2a) was either associated 
with an arrhythmic heartbeat as indicated by irregular heart 
rhythm and/or occasional missing QRS complexes, or a 
gradual decline in ventricular depolarization rate without 
arrhythmias. Although the quality of the ECG signal pre-
vented us from assessing the presence of arrhythmias in 
all fish, a general pattern emerged where adrenergically 
blocked fish of both species appeared to display a higher 
prevalence of arrhythmias at high temperatures relative to 
controls (Figs. 1a and 2a, Table 2). In contrast, none of the 
atropine-treated perch and roach displayed any obvious signs 
of arrhythmias.

Discussion

In accordance with our hypothesis, adrenergic blockade 
impaired routine cardiac function at higher temperatures as 
indicated by the reduced temperature at which heart rate 
peaked in both species. This suggests that adrenergic stimu-
lation has a beneficial and potentially protective influence on 
in vivo heart function during acute warming, which was also 
shown by Gilbert and co-workers in rainbow trout (2019). 
Moreover, as suggested by these authors (2019), adrenergic 
stimulation may rectify the imbalances in ion  (Na+ and  K+) 
flux rate dynamics which underlie the failure of myocardial 
action potential conduction and cardiac excitability, thus pre-
venting AV block and/or arrhythmias which are associated 
with the declining heart rate at high temperatures (Aho and 
Vornanen 2001; Vornanen 2017; Haverinen and Vornanen 
2020). Indeed, the higher prevalence of arrhythmias after 
β-adrenergic blockade in both species observed here may 

Table 1  Morphological characteristics for the experimental groups of European perch (Perca fluviatilis) and roach (Rutilus rutilus)

Dissimilar letters denote statistically significant (p < 0.05) differences among groups

European perch Roach

Control Atropine Sotalol Control Atropine Sotalol Propranolol

Body mass (g) 123.9 ± 8.7 125.4 ± 9.1 127.9 ± 8.4 76.8 ± 4.8a 74.3 ± 5.9a 42.8 ± 2.5b 42.9 ± 5.9b

Body length (mm) 198.8 ± 5.0 200.6 ± 4.7 199.5 ± 3.7 167.2 ± 3.7a 165.5 ± 3.9a 140.7 ± 2.5b 142.2 ± 5.8b

Condition factor 1.55 ± 0.04 1.52 ± 0.03 1.58 ± 0.04 1.63 ± 0.05a 1.62 ± 0.06a 1.51 ± 0.03a 1.43 ± 0.04b
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reflect an accentuation of AV block at higher temperatures, 
which warrants further exploration.

In perch, the reduced temperature for the peak heart rate 
following β-adrenergic blockade was associated with a lower 
 CTmax. This may have reflected that the lack of adrenergic 
tone on the heart led to greater impairments of stroke vol-
ume and cardiac output during warming, compromising 

oxygen and nutrient delivery to essential tissues such as the 
brain. Indeed, β-adrenergic stimulation is known to have a 
protective impact on cardiac contractility during adverse 
extracellular conditions exaggerated by acute warming, e.g., 
hypoxia, acidosis or hyperkalemia (Hanson et al. 2006; Far-
rell et al. 1996; Roberts and Syme 2018). In contrast, how-
ever, none of the adrenergic antagonists affected  CTmax in 
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Fig. 1  Effects of acute warming on heart rate and the critical thermal 
maximum in European perch, Perca fluviatilis. Heart rate (a), peak 
heart rate (b), temperature for the peak heart rate (c) and the critical 
thermal maximum (d) in perch pharmacologically treated with saline 
(0.9% NaCl) as control (white), atropine (black) or sotalol (gray). The 
sample sizes (numbers above X-axis) during the thermal ramping 
in panel A changed from the start to the end of the heating protocol 
among groups, either as the ECG signal was lost or individual fish 
reached their critical thermal maximum. *Denotes statistically signifi-
cant (p ≤ 0.05) effects on heart rate within groups following the phar-

macological treatments. The inset table shows the statistical details 
from the mixed model analyzing the effects of autonomic blockade on 
heart rate between 18 and 27 °C, the latter being the lowest tempera-
ture at which heart rate started to decline in a single individual fish 
across treatment groups (indicated by shaded area). The color-coded 
vertical arrows indicate the average temperature at which peak heart 
rate occurred in each treatment group, and data points beyond peak 
heart rate are indicated by dashed connecting lines. Dissimilar letters 
denote statistically significant treatment effects among experimental 
groups (color figure online)



706 Journal of Comparative Physiology B (2021) 191:701–709

1 3

10
11
11
9

10
11
11
9

Temperature F6,190=297.1; P=0.000
Treatment F3,39=33.0;   P=0.000
Temperature * Treatment F18,190=2.8;     P=0.000

Controla Atropineb Sotalola Propranolola

23

25

27

29

31

a
a a

a

D

Temperature F6,190=297.1; P=0.000
Treatment F3,39=33.0;   P=0.000
Temperature * Treatment F18,190=2.8; P=0.000

Controla Atropineb Sotalola Propranolola

H
ea

rt
ra
te

(b
ea

ts
m
in

-1
)

23

25

27

29

31 C

a a a

b

100

140

180

220

260 B

a

a

b

a

10 10 15 20 21 22 23 24 25 26 27

A

*

Temperature (°C)

P
ea

k
he

ar
tr

at
e

(b
ea

ts
m

in
-1

)

Te
m

pe
ra

tu
re

at
 

pe
ak

he
ar

tr
at

e
(°

C
)

C
rit

ic
al

th
er

m
al

m
ax

im
um

(°
C

)

10
11
11
9

10
11
11
9

10
11
11
9

10
11
11
9

10
11
11
9

10
11
11
9

10
10
11
8

9
10
11
4

7
6

10
0

Control Atropine Sotalol Propranolol
(0,9% NaCl) (1.2 mg kg-1) (2.7 mg kg-1) (3.0 mg kg-1)

0

40

80

120

160

200

240

Fig. 2  Effects of acute warming on heart rate and the critical ther-
mal maximum in common roach, Rutilus rutilus. Heart rate (a), peak 
heart rate (b), temperature for the peak heart rate (c) and the criti-
cal thermal maximum (d) in roach pharmacologically treated with 
either saline (0.9% NaCl) (Control, white), atropine (black), sotalol 
(gray) or propranolol (light blue). The sample sizes (numbers above 
X-axis) during the thermal ramping in panel A changed from the start 
to the end of the heating protocol among groups, either as the ECG 
signal was lost or individual fish reached their critical thermal maxi-
mum. *Denotes statistically significant (p ≤ 0.05) on heart rate within 

groups following the pharmacological treatments. The inset table 
depicts the statistical details from the mixed model analyzing the 
effects of autonomic blockade on heart rate between 10 and 24  °C, 
the latter being the lowest temperature at which heart rate started to 
decline in a single individual fish across treatment groups (indicated 
by shaded area). The color-coded vertical arrows indicate the aver-
age temperature at which peak heart rate occurred in each treatment 
group, and data points beyond peak heart rate are indicated by dashed 
connecting lines. Dissimilar letters denote statistically significant 
treatment effects among experimental groups (color figure online)

Table 2  Prevalence of 
arrhythmia during acute 
warming in European perch 
(Perca fluviatilis) and roach 
(Rutilus rutilus)

European perch Roach

Control Atropine Sotalol Control Atropine Sotalol Propranolol

Sample size (n) 8 9 6 8 7 11 6
Arrhythmia prevalence (%) 50 0 100 63 0 73 83
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roach, although the β-adrenergic blockade with propranolol 
reduced the temperature at which heart rate peaked. It is 
possible that roach had a better capacity to maintain car-
diac output and tissue oxygen delivery through compensa-
tory increases in stroke volume at temperatures above the 
temperature at which heart rate peaked. Another possibility 
is that the central nervous system in roach is better able to 
withstand a brief period of insufficient blood perfusion such 
that overall thermal tolerance was unaffected. However, it is 
also important to emphasize that  CTmax is not only governed 
by cardiovascular oxygen delivery failure, but has also been 
linked to failing mitochondrial and/or neural functions in 
fish and other aquatic ectotherms at extreme high tempera-
tures (MacMillan 2019; O’Brien et al. 2018; Friedlander 
et al. 1976; Iftikar and Hickey 2013; Vornanen 2020). The 
fact that the two β-adrenergic antagonists affected tempera-
ture for the peak heart rate differently in roach is enigmatic, 
but may relate to differences in the antagonizing effects elic-
ited by these agents on cardiac function. For example, in 
cats, propranolol induced larger reductions in stroke volume 
and cardiac output relative to treatment with sotalol (Åberg 
et al. 1969). Further, we cannot exclude the possibility that 
the pharmacological β-adrenergic blockade induced off-tar-
get effects to different extents, which may have affected the 
responses observed here, e.g., by affecting vascular resist-
ance and blood pressure (Sandblom and Axelsson 2011), 
altering the oxygen carrying capacity of the blood (Perry 
and Bernier 1999; Nikinmaa 1992), and/or by blocking 
voltage gated cardiac and brain  Na+ channels as observed 
in vitro in human cells (Wang et al. 2010). Our findings 
highlight that a detailed assessment of potential differences 
in the inhibitory potency of these β-adrenergic antagonists 
on cardiac function in different fish species is warranted.

Contrasting with our hypothesis, atropine did not affect 
 CTmax or the temperature at which heart rate peaked in either 
species. This is consistent with our previous observation in 
adult rainbow trout (Ekström et al. 2014, 2019), but contrasts 
with observations in juvenile trout where atropine reduced 
 CTmax and the temperature at which heart rate peaked (Gil-
bert et al. 2019). Gilbert and colleagues (2019) speculated 
that cholinergic slowing of action potential generation in the 
cardiac pacemaker may serve to synchronize the pacemaker 
rate with the functional depolarisation rate of the ventri-
cle, thus avoiding the AV block that may occur at higher 
temperatures (Haverinen and Vornanen 2020). However, we 
found no indications (0% occurrence) of AV block following 
cholinergic blockade in either species. It is possible that the 
abolishment of the presumed positive effects of cholinergic 
slowing of heart rate was compensated for by an increased 
adrenergic tone on the heart of both perch and roach, which 
may have augmented ventricular excitability, contractility 
and overall cardiac function as discussed above.

In contrast to previous studies in perch (Sandblom et al. 
2016b; Sandblom and Axelsson 2011), as well as numer-
ous other teleosts (Ekström et al. 2014, 2019; Gilbert et al. 
2019; Vornanen 2017; Altimiras et al. 1997), β-adrenergic 
blockade did not affect routine heart rate in perch or roach 
in the present study. This could reflect a low adrenergic tone 
in these species during the resting conditions and at the tem-
peratures evaluated here. Indeed, perch from this area have 
previously been shown to maintain a relatively low (~ 10%) 
adrenergic tone on the heart at rest at similar acclimation 
temperatures (Sandblom et al. 2016a, b). We are, however, 
unaware of previous measurements of adrenergic tone in 
roach. The unaltered heart rate following the sotalol and 
propranolol treatments could also reflect a compensatory 
release of cholinergic tone after the β-adrenergic blockade, 
which kept heart rate unchanged. Consistent with the pre-
vious observations in various teleosts (see Axelsson et al. 
2000; Ekström et al. 2019; Ekström et al. 2014; Gilbert 
et al. 2019; Sandblom et al. 2016b; see Vornanen 2017), 
both perch and roach exhibited relatively high resting cho-
linergic tones at their respective acclimation temperatures, 
as well as during acute warming. This was manifested by 
considerable elevations in heart rate across temperatures 
following atropine treatment (by 41 and 57%, respectively). 
We have previously shown that the cholinergic tone may 
vary from ~ 30 to 70% in perch from this region at similar 
temperatures (Sandblom et al. 2016a, b), but again, we are 
unaware of any previous reports of autonomic tones in roach.

It is largely unknown whether and to what extent the 
recent thermal history affects the influence of autonomic 
regulation on cardiac performance and whole animal toler-
ance during acute warming in fish as explored here. What 
is known, however, is that thermal acclimation may lead to 
substantial changes in basal autonomic tones in fish (Sand-
blom et al. 2016a, b; Ekström et al. 2016b; Wood et al. 
1979), which could possibly affect the scope for autonomic 
regulation during warming. For example, elevations in both 
cholinergic and adrenergic tones were observed when com-
paring a population of chronically warmed European perch 
(~ 22–25 °C) to a population from a cooler reference habitat 
(16–19 °C) (Sandblom et al. 2016a, b). Furthermore, while 
chronic warming elevates cholinergic but not adrenergic tone 
in rainbow trout (Ekström et al. 2016b; Wood et al. 1979), 
cold acclimation may reduce the adrenergic sensitivity in 
this species (Keen et al. 1993). Assessing how shifting ther-
mal acclimation regimes affect autonomic influence on car-
diac performance during acute warming or  CTmax remains 
an interesting venue for future exploration.

In summary, our results show that blockade of 
β-adrenergic, but not cholinergic, cardiac autonomic con-
trol systems has a negative influence on cardiac performance 
during warming in perch and roach; two species that lack 
coronaries and solely rely on luminal oxygen supply to the 
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heart. Moreover, adrenergic stimulation of the heart appears 
to be associated with improved acute warming tolerance in 
perch. Thus far, the current and previous findings (Ekström 
et al. 2014, 2019; Gilbert et al. 2019) have not provided 
a uniform picture of the extent to which autonomic car-
diac regulation augments cardiac performance and upper 
thermal tolerance limits in fish. While these discrepancies 
in experimental outcomes of the current and prior studies 
might be explained by the slight differences in methodologi-
cal approaches employed across studies to test these hypoth-
eses, it also likely reflects different inter-, and intra-species 
specific physiological responses and capacities in coping 
with a warming environment.
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