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A B S T R A C T   

The POLE subtype of Endometrial carcinoma (EC) is linked to a favourable prognosis in the 
molecular classification. We proposed to ascertain the potential connection between the POLE 
subtype and improved prognosis. In order to forecast the prognosis, least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis and weighted gene co-expression network 
analysis (WGCNA) were employed, and a POLE-related risk signature (PRS) model was developed 
and validated. Single-sample gene set enrichment analysis (ssGSEA) with the "GSVA" package was 
employed to analyse immunity characteristics. Drug susceptibility studies were conducted to 
compare the half-maximal inhibitory concentration (IC50) of medicines between high- and low- 
risk groups. The PRS model was generated employing the LASSO Cox regression coefficients of 
the ELF1, MMADHC, and AL021707.6 genes. Our study demonstrated that the risk score was 
linked to tumour stage, grade, and survival. Furthermore, the low-risk group possessed elevated 
levels of gene expression connected with immunological checkpoints and HLA. Our outcomes 
emerged that the PRS model might have value in identifying patients with a good prognosis and 
in facilitating personalised treatment in the clinic.   

1. Introduction 

Endometrial carcinoma is a cancerous tumour that develops in the female reproductive system, and based on a report on cancer 
statistics, in 2023, there has been a steady rise in the occurrence and death rates of endometrial cancer [1]. EC is mostly treated with 
surgery that is often performed in conjunction with adjuvant therapy, including radiotherapy, chemotherapy, and endocrine therapy 
[2]. There is still controversy regarding the ideal choice for adjuvant therapy, which depends on the characteristics of cancer patients, 
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such as the status of metastasis to the lymph nodes [3]. Moreover, the increase in mortality observed in recent decades has also 
suggested the limitations of pathological assessment, tumour grade and stage, and lymphovascular space invasion in selecting clinical 
treatments [4]. Thus, it is vital to develop and create clinical treatment guidelines for the selection of postsurgical adjuvant therapy and 
to identify new therapeutic targets to improve prognosis. 

The Cancer Genome Atlas (TCGA) has introduced four new prognostic classifications: microsatellite stability unstable (MSI) 
hypermutated, DNA polymerase epsilon ultramutated (POLEmut), copy-number low, and high [5]. Clinical prognosis has been verified 
to be significantly correlated with these subtypes [6]. For example, it is predicted that the clinical prognosis of EC could be improved 
and that the incidence of both overtreatment and undertreatment could be reduced by reclassifying patients with EC according to the 
TCGA classification system [5,7]. As one TCGA subtype, the POLEmut subtype has better outcomes than the other three molecular 
subtypes [8]. However, the mechanism underlying the good prognosis in patients with the POLEmut subtype remains unclear. 

In tumorigenesis-related research, mounting data indicates that the tumour microenvironment (TME) significantly contributes to 
the growth and medication resistance of tumour cells [9], especially immune cells, as vital constituents of the TME, also contribute to 
an essential function in tumour survival and development [10]. Previous investigations revealed that the POLE gene has the activity of 
DNA polymerase and the activity of possesses 3′-5′ exonuclease [11], which is also linked to the presence of immune cells around EC 
cells [12]. Nevertheless, few investigations have presented the characteristics of EC immune cells, particularly in the POLE subtype. 

Weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) Cox 
regression analysis are crucial bioinformatics methods at present [13–15]. These analyses may help researchers identify and study 
modules and reveal the key genes involved in different diseases [16–18]. Therefore, we established a POLE-related risk score (PRS) 
model employing WGCNA and LASSO Cox regression analysis and assessed its capacity to anticipate the EC prognosis and to identify 
differences in response to immuno and chemotherapy between risk groups. 

2. Materials and methods 

2.1. Data collection 

The transcription database was gathered from TCGA UCEC cohort (https://www.cancer.gov/types/uterine). The data on copy 
number variation (CNV) and somatic mutation were gathered from the NCI Genomic Data Commons (GDC) site. Prior to analysis, the 
raw data was normalised by employing fragments per kilobase of transcripts per million mapped reads (FPKM) values. Moreover, we 
excluded specimens with missing information on corresponding patient survival and drug treatment. Then, Perl scripts were used to 
determine the difference in tumour mutation burden (TMB) according to the total human exon length per sample. A total of 525 cancer 

Fig. 1. The investigation flowchart.  
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specimens were visualised as waterfall plots employing the Maftools software [19]. The overall flowchart of this study and the clinical 
information are manifested in Fig. 1 and Table 1. 

2.2. WGCNA 

After data cleaning, the RNA-seq data of TCGA UCEC was analysed using WGCNA (version 1.61) [20]. Soft thresholding (β = 6) was 
selected by scale-free fit index (y = 0.9) to construct the coexpression network. After deleting outlier samples, consensus data were 
employed to analyse the connection between clinical characteristics and gene expression. Subsequently, the acquisition of new 
modules was achieved through the merging of modules that had a dissimilarity value of less than 0.7 and choosing the module trees 
with a tangent of 0.25. Afterwards, a correlation study was executed to ascertain the association between module participation and 
POLE. Finally, the gene significance (GS) and module membership (MM) of the turquoise module were computed to estimate the 
connections between the genes and clinical features. 

2.3. Construction of a prognostic PRS signature 

LASSO regression was performed to identify genes related to the POLEmut subtype and correlated with overall survival (OS) using 
the “glmnet” package. The partial likelihood deviance nomography was used to select the penalisation parameter (λ) as the optimal 
and minimal criteria. The median risk score was employed to divide the entire EC cohort into high-risk group (HRG) and low-risk group 
(LRG) (risk score = Expi × bi; Exp: The model gene expression level; b: model gene coefficient) [21]. The heatmap analyses were 
conducted utilising the "pheatmap" package in order to illustrate the distinction between the genes linked to POLE and the pattern of 
distribution that exists between clinicopathological characteristics and risk groups. The prediction capability of the risk score model 
was ascertained by employing the area under the time-dependent receiver-operating characteristic curve (AUROC). Additionally, the 
risk curve was constructed to ascertain the variability in survival status between various risk groups. Completion of the criteria is 
detailed in Supplementary Tables S1–S3. 

2.4. Construction of the prognostic model 

Univariate and multivariate analyses were employed to ascertain whether the risk score could independently impact the survival of 
EC patients in the TCGA UCEC cohort. The "regplot" package was employed to combine stage, grade, and risk signature in order to 
forecast survival. The predicted precision of the nomogram was assessed by means of a calibration curve. 

2.5. Immune cell infiltration analysis 

On the basis of the findings of the single-sample gene set enrichment analysis (ssGSEA), the "ESTIMATE" programme was deployed 
to ascertain the stromal, immune, and estimate scores. The activity scores of immune-linked pathways were computed employing 
ssGSEA with the "GSVA" package. The analysis of immune infiltration and functioning was conducted across various risk groups 
utilising the stat_compare_means method. The immune checkpoint (ICP)- and human leukocyte antigen (HLA)-correlated gene 
expression was further compared across the different risk groups. 

2.6. Drug sensitivity between different risk groups 

The Genomics of Drug Sensitivity in Cancer database was deployed to anticipate the drug efficacy. All drugs (A.443654, A.770041, 
ABT.263, ABT.888, AG.014699, AICAR, AKT.inhibitor.VIII, AMG.706, AP.24534, AS601245, ATRA, AUY922, Axitinib, AZ628, 
AZD.0530, AZD.2281, AZD6244, AZD6482, AZD7762, AZD8055, BAY.61.3606, Bexarotene, BI.2536, BIBW2992, Bicalutamide, BI. 
D1870, BIRB.0796, Bleomycin, BMS.509744, BMS.536924, BMS.708163, BMS.754807, Bortezomib, Bosutinib, Bryostatin.1, BX.795, 
Camptothecin, CCT007093, CCT018159, CEP.701, CGP.082996, CGP.60474, CHIR.99021, CI.1040, Cisplatin, CMK, Cyclopamine, 
Cytarabine, Dasatinib, DMOG, Docetaxel, Doxorubicin, EHT.1864, Elesclomol, Embelin, Epothilone. B, Erlotinib, Etoposide, FH535, 
FTI.277, GDC.0449, GDC0941, Gefitinib, Gemcitabine, GNF.2, GSK269962A, GSK.650394, GW.441756, GW843682X, Imatinib, 

Table 1 
Clinical characteristics.   

Alive Dead 

Grade 
G1 (n = 102) 102 0 
G2 (n = 130) 120 10 
G3 (n = 364) 326 38 
Stage 
I (n = 369) 354 15 
II (n = 58) 54 4 
III (n = 135) 116 19 
IV (n = 34) 24 10  
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IPA.3, JNJ.26854165, JNK.9L, JNK.Inhibitor.VIII, JW.7.52.1, KIN001.135, KU.55933, Lapatinib, Lenalidomide, LFM.A13, Metformin, 
Methotrexate, MG.132, Midostaurin, Mitomycin. C, MK.2206, MS.275, Nilotinib, NSC.87877, NU.7441, Nutlin.3a, NVP.BEZ235, NVP. 
TAE684, Obatoclax.Mesylate, OSI.906, PAC.1, Paclitaxel, Parthenolide, Pazopanib, PD.0325901, PD.0332991, PD.173074, 
PF.02341066, PF.4708671, PF.562271, PHA.665752, PLX4720, Pyrimethamine, QS11, Rapamycin, RDEA119, RO.3306, Roscovitine, 
Salubrinal, SB.216763, SB590885, Shikonin, SL.0101.1, Sorafenib, S.Trityl.L.cysteine, Sunitinib, Temsirolimus, Thapsigargin, Tipi-
farnib, TW.37, Vinblastine, Vinorelbine, Vorinostat, VX.680, VX.702, WH.4.023, WO2009093972, WZ.1.84, X17.AAG, X681640, 
XMD8.85, Z.LLNle.CHO, ZM.447439)were analysed, and the half-maximal inhibitory concentration (IC50) was compared using the 
“pRRophetic” and “ggplot2” packages to anticipate further changes in drug sensitivity between various risk groups of EC patients. 

2.7. Statistical analysis 

The statistical analyses and graphs in this investigation were generated employing R software R.4.1.1 (https://www.r-project.org/ 
). In contrast, the Wilcoxon rank-sum test was employed to compare variables that did not follow a normal distribution, whereas the t- 
test was applied to the various risk groups. A significance level of P < 0.05 was deemed significant. 

3. Results 

3.1. Tumor mutation analysis in EC samples 

We investigated the variation between mutation and wild-type groups of TMB in EC tissues using the TCGA UCEC database (Fig. 2a 

Fig. 2. Tumor mutation analysis in EC specimens 
In the TCGA UCEC database, a Waterfall plot was displayed to analyse Tumor mutation. b The histogram plot was used to show the Tumor mutation 
burden (TMB). c K-M survival curve was used to analyse the Overall survival (OS) between POLEmut group and POLEwild group. *P < 0.05, **P 
< 0.01. 
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Fig. 3. Construction of WGCNA network module 
a Soft thresholds selection by scale independence and mean connectivity in WGCNA network analysis. b The histogram and the correlation coef-
ficient were performed to show k and the correlation between k and p (k). c-d Dynamic Tree Cut algorithm was performed, and cluster dendrogram 
of the genes was plotted in the EC samples. e-f Clustering of module eigengenes and cluster dendrogram was performed to show the merge modules 
in EC samples. g The heatmap showed the correlation between merge modules and the survival state, POLE. h The correlation plot was performed to 
analyse the connection between GS and MM in the turquoise module. *P < 0.05, **P < 0.01. 
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and b). K-M analysis manifested that the POLEmut group possessed longer OS than the POLEwild group (P = 0.006; Fig. 2c). 

3.2. WGCNA module construction 

All genes with information in the TCGA UCEC dataset were applied for the WGCNA analysis to obtain the POLE-associated genes. 
The soft thresholds (β = 6) used for strengthening the adjacency matrix were determined using scale-free topology with R2 > 0.9 
(Fig. 3a and b). Subsequently, topological overlap matrix-based dissimilarity analysis and the dynamic tree-cut algorithm were used to 
construct a dendrogram of the genes in the EC samples (Fig. 3c and d). Next, hierarchical clustering was conducted, revealing the 
presence of identical gene expression patterns within the same branch (Fig. 3e). After identifying gene modules and combining similar 
gene modules, we obtained 10 coexpression modules (Fig. 3f). The correlation coefficient results demonstrated that the turquoise and 
green modules related to the POLE gene exhibited a correlation with survival time. (Fig. 3g). Moreover, the connection between GS and 
MM in the turquoise module was very significant (Fig. 3h). 

3.3. Creation and verification of the PRS signature 

We employed LASSO Cox regression analyses and identified three candidate genes related to POLE to ensure the stability of the 
model (Fig. 4a and b). Risk curve analysis was also conducted in the test, training, and total sets. The plots revealed that the LRG had a 
lower risk coefficient and mortality than those in the HRG (Fig. 4c–h). The heatmap revealed the change in the POLE-associated gene 
expression between the HRG and LRG (Fig. 4i–k). The K-M analysis manifested that patients with EC in the HRG had a less overall 
survival (OS) contrasted with those in the LRG (Fig. 4l-n). In the testing group (Fig. 4o), the AUC was 0.803 for the 1-year OS, 0.688 for 
the 3-year OS, and 0.680 for the 5-year OS. The AUC values for the 1-, 3-, and 5-year OS in the training set were 0.718, 0.704, and 
0.734, respectively. As shown in Fig. 4p-q, the AUC values for the entire set were 0.770, 0.697, and 0.713, respectively. 

3.4. Creation and determination of the predictive nomogram of survive 

We executed univariate and multivariate Cox regression analyses to see if the PRS is an independent prognostic factor. The out-
comes manifested that the risk score had independent implications for forecasting the prognosis in the TCGA-UCEC cohort (Fig. 5a and 
b). Moreover, we established the nomenclature and the values of the nomogram plot of prediction and actually revealed that our 
nomogram is better reliable and accurate in anticipating both short- and long-term survival (Fig. 5c). Furthermore, We developed a 
nomogram employing the clinical features of PRS, clinical stage, and grade to forecast the short- and long-term survival of EC patients 
(Fig. 5d). 

3.5. The immune properties of each PRS signature 

Next, we assessed the differences in tumour immune microenvironment features and the immune-associated pathways activation 
between risk groups. We employed the ESTIMATE algorithm and manifested that the immune, estimate, and stromal scores in the LRG 
were greater than in the HRG (Fig. 6a). These outcomes manifest that distinct variations in TME cell infiltration patterns were observed 
between the two risk groups. Thus, an immune infiltration study was performed, and the outcomes manifested variations in the 
proportions of 15 various kinds of immune cells in the cancer immunological microenvironment between the two risk groups (Fig. 6b). 
Subsequently, the CIBERSORT analysis plot indicated that the LRG has a greater number of infiltrating immune cells than in the HRG 
(Fig. 6c). Additionally, immune-associated function analysis demonstrated that most function-related scores, especially HLA and 
Checkpoint score, were significantly greater in the LRG than in the HRG (Fig. 6d). Then, we conducted a comparative analysis to 
ascertain the ICP- and HLA-related genes expression levels in the two risk groups. A boxplot exhibited that the checkpoint-associated 

Fig. 3. (continued). 
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genes (PDCD1, TNFRSF9, VTCN1, VSIR LAIR1, NRP1, and TNFRSF14) and HLA had higher expression levels in the LRG than in the HRG 
(Fig. 6e and f). The above outcomes presented that the LRG may exhibit a more immunogenic phenotype than the HRG. 

3.6. Drug sensitivity between different risk groups 

Furthermore, we evaluated the variation in drug sensitivity across various risk groups, and the outcomes indicated that Temsir-
olimus, Gefitinib, Lapatinib, Lenalidomide, and Metformin had hindered IC50 values in the LRG than in the HRG. Additionally, in the 
LRG, another 22 drugs exhibited higher IC50 values than in the HRG (Fig. 7a-o and Supplementary Fig. S1). These results manifested 
that patients with different risk groups get advantages from the clinical drug therapy differently. 

4. Discussion 

EC, a female reproductive tract cancer, has recently become a younger trend [1]. Previously, surgery as the primary treatment was 
manifested to be linked to a good prognosis in early-stage EC patients. However, adjuvant therapy, including radiotherapy, 

Fig. 4. Creation and validation of the PRS signature 
a The log (lambda) sequence was generated in the LASSO model. b The LASSO Cox model was employed to choose three candidates’ POLE-related 
genes. c-e The risk score distribution was shown in the testing, training, and total sets between the two risk groups. f-h The survival time (years) was 
analysed in the testing, training, and total sets between the two risk groups. i-k The heatmap was shown the expression of three candidates POLE- 
related genes in the testing, training, and total sets between the two risk groups. l-m K-M survival curve was analysed in the testing, training, and 
total sets. o-q ROC analysis was conducted in the testing, training, and total sets encompassing 1-, 3-, and 5- years of EC patients. 

Fig. 5. Creation and estimation of the predictive nomogram of survive a-b univariate and multivariate Cox regression analyses for the clinical 
characteristics and risk score. c Calibration curves of the nomogram in prediction of the 1-, 3-, and 5-year survival probability. d The Nomogram 
with the clinical characteristics was created to anticipate 1-, 3-, and 5- years of survival. 
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chemotherapy, or a combination of both, and endocrine therapy are required for EC patients with recurrence and metastasis, as these 
types of EC have a poor prognosis [22]. An elevating number of researchers have discovered the importance of prognosis prediction 
before postsurgical adjuvant therapy, and its importance is further highlighted by the increasing EC mortality rate [4]. Therefore, 
according to the TCGA classification, The patients with EC were categorised into four distinct molecular categories based on their 
prognosis: copy-number-low/TP53-wild-type, POLE/ultramutated (POLE), copy-number-high/TP53-mutant, and 
microsatellite-instable/hypermutated (MSI) [23]. The introduction of the TCGA molecular categorisation enhanced the precision of 
risk prediction in EC patients. Moreover, the POLEmut subtype, one of the four TCGA subtypes, also presented a better prognosis than 
other subtypes after the clinical treatment [24]. However, there is little knowledge of the connection between the POLEmut subtypes 
and a good prognosis. 

With the ongoing immune therapy, the application of immunotherapy-related drugs in the clinical treatment of several refractory 
solid malignancies has gradually increased [25]. For example, ICP inhibitors that have been assessed in several studies also exhibited 
promise in treating different solid and refractory malignancies [26,27]. According to numerous studies, ICP therapy shows potential as 
a personalised therapeutic option for EC patients [28]. In the POLEmut subtype, patients with EC exhibit high numbers of 

Fig. 6. The Immune properties of each PRS signature a The stromal, immune, and estimate scores were analysed between various groups. b The 
infiltration of immune cells expression levels was analysed between different groups. c CIBERSORT analysis plot was performed between various 
risk groups. d The immune-associated function analysis was illustrated between different groups. e The variation in immune checkpoint gene 
expression was analysed between various risk groups. f The variation in HLA expression was analysed between various risk groups. *P < 0.05, **P <
0.01, ***P < 0.001. 
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Fig. 7. Drug sensitivity between different risk groups a-o IC50 values of different drugs were compared between different groups.  
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tumour-infiltrating lymphocytes and PD-1 and -L1 overexpression [29,30] because a high mutational load caused by POLEmut pro-
motes increased expression of neoantigen and the immune system activation [25,31]. The above observations demonstrated that EC 
patients, especially the POLEmut subtype, may benefit from immunotherapy, suggesting that further investigation of the POLEmut 
subtype may provide additional useful information that could facilitate personalised treatment in the future. 

Hence, we explored the POLE-related modules using WGCNA and established a PRS signature model using LASSO Cox regression 
analysis to validate prognostic risk in the TCGA UCEC datasets. Then, we employed the heatmap analysis to analyse the candidate gene 
expression levels linked to POLE (ELF1, MMADHC, and AL021707.6). Previous studies have indicated that ELF1, an ETS family 
member, participates in the tumorigenesis of various cancers and in regulating immunity to defend against pathogens, malignancies, 
and self-tolerance [32–35]. However, the other two genes were less reported in cancer progression or immunity. Moreover, we 
explored the candidate gene expression levels connected with the POLEmut subtype according to clinical stage and grade in this 
section (Supplementary Fig. S2). These results may suggest a potential correlation between candidate genes and clinical 
characteristics. 

With this model, we also observed that the HRG had a significantly greater survival rate than the LRG. The LRG manifested elevated 
stromal score, raised immunological score, and greater extent of immune cell infiltration. In addition, the CIBERSORT analysis 
validated a strong association between a low-risk score and reduced levels of activated dendritic cells, together with elevated levels of 
regulatory T cells (Tregs) (Supplementary Fig. S3). Dendritic cells have been shown to be crucial in the antitumor response by 
attracting and facilitating the activation of antitumor T lymphocytes in the tumour microenvironment, as indicated by several studies 
[36]. Meanwhile, dendritic cells may also regulate the T cell differentiation priming towards Treg cells under the pressure of antitumor 
immunity [37,38]. Moreover, Treg cells participate in tumour development and act as a suppressor in antitumor immunity [39]. These 
findings may explain the poor prognosis in the LRG. Simultaneously, we observed that the LRG had a higher checkpoint score. The ICP 
gene expression levels were greater in the LRG contrasted with the HRG. ICP genes with high expression levels probably cultivate a 
microenvironment of immune suppression and support tumour immune escape [40]. Numerous clinical therapeutic analyses have also 
confirmed that ICP inhibitors are essential in tumour immunotherapy, including EC patients [41]. Hence, our established model may 
offer a promising prediction of immunotherapy in clinical treatment of ICP inhibitors. 

We proposed to estimate the potential value of the PRS model in forecasting prognosis, immunotherapy efficacy, and drug 
sensitivity in EC patients. Our outcomes demonstrated the high potential value of this model. However, our study still has some 
limitations, such as the lack of multiple database analyses and clinical confirmation, which we will address in future studies to clarify 
the practical value of this model. 

5. Conclusions 

In brief, we created and verified a PRS model to accurately anticipate the OS of EC patients, and we proved its high predictive 
accuracy. Moreover, we identified candidate genes related to POLE (ELF1, MMADHC, and AL021707.6) via bioinformatics analyses. 
Furthermore, we evaluated the variation in immune infiltration and drug sensitivity between PRS risk groups. All these results provide 
information on the relationship between the POLEmut subtype and a good prognosis and provide a PRS model as a new technique for 
directing personalised clinical treatment. 

Data availability statement 

The datasets produced and examined in the present investigation may be found in the TCGA UCEC repository, a free public 
database available to all researchers [https://www.cancer.gov/types/uterine]. We express our gratitude to the TCGA database for 
donating their platforms and to the authors for uploading their valuable datasets. 

Funding 

The funding for this investigation was provided by the Nanjing Medical University Foundation of Jiangsu Province, China [Grant 
No. NMUB20210148] and the Affiliated Jiangning Hospital of Nanjing Medical University [Grant No. JNYYZXKY202114]. 

Ethical approval 

TCGA belong to public databases. Our work uses open-source data. Hence, the Research Ethics Committee at Jiangning Hospital has 
determined that ethical clearance is unnecessary. 

CRediT authorship contribution statement 

Wei Qiu: Writing – original draft, Visualization, Formal analysis. Runjie Zhang: Validation, Resources, Data curation, Concep-
tualization. Yingchen Qian: Writing – review & editing, Supervision, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 

W. Qiu et al.                                                                                                                                                                                                            

https://www.cancer.gov/types/uterine


Heliyon 10 (2024) e29548

12

influence the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e29548. 

References 

[1] R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023, CA Cancer J Clin 73 (2023) 17–48, https://doi.org/10.3322/caac.21763. 
[2] N. Colombo, C. Creutzberg, F. Amant, T. Bosse, A. Gonzalez-Martin, J. Ledermann, C. Marth, R. Nout, D. Querleu, M.R. Mirza, C. Sessa, Group E-E-EECCW, 

ESMO-ESGO-ESTRO consensus Conference on endometrial cancer: diagnosis, treatment and follow-up, Ann. Oncol. 27 (2016) 16–41, https://doi.org/10.1093/ 
annonc/mdv484. 

[3] R.A. Brooks, G.F. Fleming, R.R. Lastra, N.K. Lee, J.W. Moroney, C.H. Son, K. Tatebe, J.L. Veneris, Current recommendations and recent progress in endometrial 
cancer, CA Cancer J Clin 69 (2019) 258–279, https://doi.org/10.3322/caac.21561. 

[4] A. Travaglino, A. Raffone, A. Gencarelli, A. Mollo, M. Guida, L. Insabato, A. Santoro, G.F. Zannoni, F. Zullo, TCGA classification of endometrial cancer: the Place 
of carcinosarcoma, Pathol. Oncol. Res. 26 (2020) 2067–2073, https://doi.org/10.1007/s12253-020-00829-9. 

[5] N. Cancer Genome Atlas Research, C. Kandoth, N. Schultz, A.D. Cherniack, R. Akbani, Y. Liu, H. Shen, A.G. Robertson, I. Pashtan, R. Shen, C.C. Benz, C. Yau, P. 
W. Laird, L. Ding, W. Zhang, G.B. Mills, R. Kucherlapati, E.R. Mardis, D.A. Levine, Integrated genomic characterization of endometrial carcinoma, Nature 497 
(2013) 67–73, https://doi.org/10.1038/nature12113. 

[6] A. Raffone, A. Travaglino, M. Mascolo, L. Carbone, M. Guida, L. Insabato, F. Zullo, TCGA molecular groups of endometrial cancer: pooled data about prognosis, 
Gynecol. Oncol. 155 (2019) 374–383, https://doi.org/10.1016/j.ygyno.2019.08.019. 

[7] E. Stelloo, R.A. Nout, E.M. Osse, I.J. Jurgenliemk-Schulz, J.J. Jobsen, L.C. Lutgens, E.M. van der Steen-Banasik, H.W. Nijman, H. Putter, T. Bosse, C. 
L. Creutzberg, V.T. Smit, Improved risk assessment by integrating molecular and clinicopathological factors in early-stage endometrial cancer-combined analysis 
of the PORTEC cohorts, Clin. Cancer Res. 22 (2016) 4215–4224, https://doi.org/10.1158/1078-0432.CCR-15-2878. 

[8] Q. Wu, N. Zhang, X. Xie, The clinicopathological characteristics of POLE-mutated/ultramutated endometrial carcinoma and prognostic value of POLE status: a 
meta-analysis based on 49 articles incorporating 12,120 patients, BMC Cancer 22 (2022) 1157, https://doi.org/10.1186/s12885-022-10267-2. 

[9] Y. Xiao, D. Yu, Tumor microenvironment as a therapeutic target in cancer, Pharmacol. Ther. 221 (2021) 107753, https://doi.org/10.1016/j. 
pharmthera.2020.107753. 

[10] D.C. Hinshaw, L.A. Shevde, The tumor microenvironment innately modulates cancer progression, Cancer Res. 79 (2019) 4557–4566, https://doi.org/10.1158/ 
0008-5472.CAN-18-3962. 

[11] V.S. Park, Z.F. Pursell, POLE proofreading defects: contributions to mutagenesis and cancer, DNA Repair 76 (2019) 50–59, https://doi.org/10.1016/j. 
dnarep.2019.02.007. 

[12] A. Raffone, A. Travaglino, D. Raimondo, M.P. Boccellino, M. Maletta, G. Borghese, P. Casadio, L. Insabato, A. Mollo, F. Zullo, R. Seracchioli, Tumor-infiltrating 
lymphocytes and POLE mutation in endometrial carcinoma, Gynecol. Oncol. 161 (2021) 621–628, https://doi.org/10.1016/j.ygyno.2021.02.030. 

[13] X. Guo, H. Xiao, S. Guo, L. Dong, J. Chen, Identification of breast cancer mechanism based on weighted gene coexpression network analysis, Cancer Gene Ther. 
24 (2017) 333–341, https://doi.org/10.1038/cgt.2017.23. 

[14] J. Liu, Y. Ma, W. Xie, X. Li, Y. Wang, Z. Xu, Y. Bai, P. Yin, Q. Wu, Lasso-based machine learning algorithm for predicting postoperative lung complications in 
elderly: a single-center retrospective study from China, Clin. Interv. Aging 18 (2023) 597–606, https://doi.org/10.2147/CIA.S406735. 

[15] J. Ribbing, J. Nyberg, O. Caster, E.N. Jonsson, The lasso–a novel method for predictive covariate model building in nonlinear mixed effects models, 
J. Pharmacokinet. Pharmacodyn. 34 (2007) 485–517, https://doi.org/10.1007/s10928-007-9057-1. 

[16] S. Afshar, T. Leili, P. Amini, I. Dinu, Introducing novel key genes and transcription factors associated with rectal cancer response to chemoradiation through co- 
expression network analysis, Heliyon 9 (2023) e18869, https://doi.org/10.1016/j.heliyon.2023.e18869. 

[17] J. Zhang, S. Feng, M. Chen, W. Zhang, X. Zhang, S. Wang, X. Gan, Y. Zheng, G. Wang, Identification of potential crucial genes shared in psoriasis and ulcerative 
colitis by machine learning and integrated bioinformatics, Skin Res. Technol. 30 (2024) e13574, https://doi.org/10.1111/srt.13574. 

[18] Y. Tian, K. Tao, S. Li, X. Chen, R. Wang, M. Zhang, Z. Zhai, Identification of m6A-related biomarkers in systemic lupus erythematosus: a bioinformation-based 
analysis, J. Inflamm. Res. 17 (2024) 507–526, https://doi.org/10.2147/JIR.S439779. 

[19] A. Mayakonda, D.C. Lin, Y. Assenov, C. Plass, H.P. Koeffler, Maftools: efficient and comprehensive analysis of somatic variants in cancer, Genome Res. 28 (2018) 
1747–1756, https://doi.org/10.1101/gr.239244.118. 

[20] P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinf. 9 (2008) 559, https://doi.org/10.1186/1471-2105-9- 
559. 

[21] S. Liu, Y. Zheng, S. Li, Y. Du, X. Liu, H. Tang, X. Meng, Q. Zheng, Integrative landscape analysis of prognostic model biomarkers and immunogenomics of 
disulfidptosis-related genes in breast cancer based on LASSO and WGCNA analyses, J. Cancer Res. Clin. Oncol. 149 (2023) 16851–16867, https://doi.org/ 
10.1007/s00432-023-05372-z. 

[22] J. Zhang, Z. Wang, R. Zhao, L. An, X. Zhou, Y. Zhao, H. Wang, An integrated autophagy-related gene signature predicts prognosis in human endometrial Cancer, 
BMC Cancer 20 (2020) 1030, https://doi.org/10.1186/s12885-020-07535-4. 

[23] M. Alexa, A. Hasenburg, M.J. Battista, The TCGA molecular classification of endometrial cancer and its possible impact on adjuvant treatment decisions, Cancers 
13 (2021), https://doi.org/10.3390/cancers13061478. 

[24] L. Casey, N. Singh, POLE, MMR, and MSI testing in endometrial cancer: proceedings of the ISGyP companion society session at the USCAP 2020 annual meeting, 
Int. J. Gynecol. Pathol. 40 (2021) 5–16, https://doi.org/10.1097/PGP.0000000000000710. 

[25] L. Musacchio, S.M. Boccia, G. Caruso, G. Santangelo, M. Fischetti, F. Tomao, G. Perniola, I. Palaia, L. Muzii, S. Pignata, P. Benedetti Panici, V. Di Donato, 
Immune checkpoint inhibitors: a promising choice for endometrial cancer patients? J. Clin. Med. 9 (2020) https://doi.org/10.3390/jcm9061721. 

[26] Y. Wu, W. Chen, Z.P. Xu, W. Gu, PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition, Front. Immunol. 10 (2019) 
2022, https://doi.org/10.3389/fimmu.2019.02022. 

[27] H.O. Alsaab, S. Sau, R. Alzhrani, K. Tatiparti, K. Bhise, S.K. Kashaw, A.K. Iyer, PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: 
mechanism, combinations, and clinical outcome, Front. Pharmacol. 8 (2017) 561, https://doi.org/10.3389/fphar.2017.00561. 

[28] F. De Felice, C. Marchetti, V. Tombolini, P.B. Panici, Immune check-point in endometrial cancer, Int. J. Clin. Oncol. 24 (2019) 910–916, https://doi.org/ 
10.1007/s10147-019-01437-7. 

[29] R. Murali, R.A. Soslow, B. Weigelt, Classification of endometrial carcinoma: more than two types, Lancet Oncol. 15 (2014) e268–e278, https://doi.org/10.1016/ 
S1470-2045(13)70591-6. 

[30] S. Bellone, F. Centritto, J. Black, C. Schwab, D. English, E. Cocco, S. Lopez, E. Bonazzoli, F. Predolini, F. Ferrari, D.A. Silasi, E. Ratner, M. Azodi, P.E. Schwartz, 
A.D. Santin, Polymerase epsilon (POLE) ultra-mutated tumors induce robust tumor-specific CD4+ T cell responses in endometrial cancer patients, Gynecol. 
Oncol. 138 (2015) 11–17, https://doi.org/10.1016/j.ygyno.2015.04.027. 

[31] S. Inaguma, J. Lasota, Z. Wang, A. Felisiak-Golabek, H. Ikeda, M. Miettinen, Clinicopathologic profile, immunophenotype, and genotype of CD274 (PD-L1)- 
positive colorectal carcinomas, Mod. Pathol. 30 (2017) 278–285, https://doi.org/10.1038/modpathol.2016.185. 

W. Qiu et al.                                                                                                                                                                                                            

https://doi.org/10.1016/j.heliyon.2024.e29548
https://doi.org/10.3322/caac.21763
https://doi.org/10.1093/annonc/mdv484
https://doi.org/10.1093/annonc/mdv484
https://doi.org/10.3322/caac.21561
https://doi.org/10.1007/s12253-020-00829-9
https://doi.org/10.1038/nature12113
https://doi.org/10.1016/j.ygyno.2019.08.019
https://doi.org/10.1158/1078-0432.CCR-15-2878
https://doi.org/10.1186/s12885-022-10267-2
https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1016/j.dnarep.2019.02.007
https://doi.org/10.1016/j.dnarep.2019.02.007
https://doi.org/10.1016/j.ygyno.2021.02.030
https://doi.org/10.1038/cgt.2017.23
https://doi.org/10.2147/CIA.S406735
https://doi.org/10.1007/s10928-007-9057-1
https://doi.org/10.1016/j.heliyon.2023.e18869
https://doi.org/10.1111/srt.13574
https://doi.org/10.2147/JIR.S439779
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1007/s00432-023-05372-z
https://doi.org/10.1007/s00432-023-05372-z
https://doi.org/10.1186/s12885-020-07535-4
https://doi.org/10.3390/cancers13061478
https://doi.org/10.1097/PGP.0000000000000710
https://doi.org/10.3390/jcm9061721
https://doi.org/10.3389/fimmu.2019.02022
https://doi.org/10.3389/fphar.2017.00561
https://doi.org/10.1007/s10147-019-01437-7
https://doi.org/10.1007/s10147-019-01437-7
https://doi.org/10.1016/S1470-2045(13)70591-6
https://doi.org/10.1016/S1470-2045(13)70591-6
https://doi.org/10.1016/j.ygyno.2015.04.027
https://doi.org/10.1038/modpathol.2016.185


Heliyon 10 (2024) e29548

13

[32] M. Hu, H. Li, H. Xie, M. Fan, J. Wang, N. Zhang, J. Ma, S. Che, ELF1 transcription factor enhances the progression of glioma via ATF5 promoter, ACS Chem. 
Neurosci. 12 (2021) 1252–1261, https://doi.org/10.1021/acschemneuro.1c00070. 

[33] X.H. Xiao, S.Y. He, ELF1 activated long non-coding RNA CASC2 inhibits cisplatin resistance of non-small cell lung cancer via the miR-18a/IRF-2 signaling 
pathway, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 3130–3142, https://doi.org/10.26355/eurrev_202003_20680. 

[34] D. Han, X. Li, Y. Cheng, Transcription factor ELF1 modulates cisplatin sensitivity in prostate cancer by targeting MEIS homeobox 2, Chem. Res. Toxicol. 36 
(2023) 360–368, https://doi.org/10.1021/acs.chemrestox.2c00233. 

[35] S. Gallant, G. Gilkeson, ETS transcription factors and regulation of immunity, Arch. Immunol. Ther. Exp. 54 (2006) 149–163, https://doi.org/10.1007/s00005- 
006-0017-z. 

[36] S.K. Wculek, F.J. Cueto, A.M. Mujal, I. Melero, M.F. Krummel, D. Sancho, Dendritic cells in cancer immunology and immunotherapy, Nat. Rev. Immunol. 20 
(2020) 7–24, https://doi.org/10.1038/s41577-019-0210-z. 

[37] M. Clement, G. Fornasa, K. Guedj, S. Ben Mkaddem, A.T. Gaston, J. Khallou-Laschet, M. Morvan, A. Nicoletti, G. Caligiuri, CD31 is a key coinhibitory receptor in 
the development of immunogenic dendritic cells, Proc Natl Acad Sci U S A 111 (2014) E1101–E1110, https://doi.org/10.1073/pnas.1314505111. 

[38] D.H. Munn, A.L. Mellor, Ido in the tumor microenvironment: inflammation, counter-regulation, and tolerance, Trends Immunol. 37 (2016) 193–207, https:// 
doi.org/10.1016/j.it.2016.01.002. 

[39] Y. Ohue, H. Nishikawa, Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci. 110 (2019) 2080–2089, https://doi.org/ 
10.1111/cas.14069. 

[40] T. Wang, L. Dai, S. Shen, Y. Yang, M. Yang, X. Yang, Y. Qiu, W. Wang, Comprehensive molecular analyses of a macrophage-related gene signature with regard to 
prognosis, immune features, and biomarkers for immunotherapy in hepatocellular carcinoma based on WGCNA and the LASSO algorithm, Front. Immunol. 13 
(2022) 843408, https://doi.org/10.3389/fimmu.2022.843408. 

[41] X. Wu, O. Snir, D. Rottmann, S. Wong, N. Buza, P. Hui, Minimal microsatellite shift in microsatellite instability high endometrial cancer: a significant pitfall in 
diagnostic interpretation, Mod. Pathol. 32 (2019) 650–658, https://doi.org/10.1038/s41379-018-0179-3. 

W. Qiu et al.                                                                                                                                                                                                            

https://doi.org/10.1021/acschemneuro.1c00070
https://doi.org/10.26355/eurrev_202003_20680
https://doi.org/10.1021/acs.chemrestox.2c00233
https://doi.org/10.1007/s00005-006-0017-z
https://doi.org/10.1007/s00005-006-0017-z
https://doi.org/10.1038/s41577-019-0210-z
https://doi.org/10.1073/pnas.1314505111
https://doi.org/10.1016/j.it.2016.01.002
https://doi.org/10.1016/j.it.2016.01.002
https://doi.org/10.1111/cas.14069
https://doi.org/10.1111/cas.14069
https://doi.org/10.3389/fimmu.2022.843408
https://doi.org/10.1038/s41379-018-0179-3

	POLE -related gene signature predicts prognosis, immune feature, and drug therapy in human endometrioid carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 WGCNA
	2.3 Construction of a prognostic PRS signature
	2.4 Construction of the prognostic model
	2.5 Immune cell infiltration analysis
	2.6 Drug sensitivity between different risk groups
	2.7 Statistical analysis

	3 Results
	3.1 Tumor mutation analysis in EC samples
	3.2 WGCNA module construction
	3.3 Creation and verification of the PRS signature
	3.4 Creation and determination of the predictive nomogram of survive
	3.5 The immune properties of each PRS signature
	3.6 Drug sensitivity between different risk groups

	4 Discussion
	5 Conclusions
	Data availability statement
	Funding
	Ethical approval
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	References


