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Abstract: In this paper, we consider a transmit power allocation problem for secure transmission
in multi-hop decode-and-forward (DF) full-duplex relay (FDR) networks, where multiple FDRs
are located at each hop and perform cooperative beamforming to null out the signal at multiple
eavesdroppers. For a perfect self-interference cancellation (PSIC) case, where the self-interference
signal at each FDR is completely canceled, we derive an optimal power allocation (OPA) strategy
using the Karush-Kuhn-Tucker (KKT) conditions to maximize the achievable secrecy rate under
an overall transmit power constraint. In the case where residual self-interferences exist owing to
imperfect self-interference cancellation (ISIC), we also propose a transmit power allocation scheme
using the geometric programming (GP) method. Numerical results are presented to verify the secrecy
rate performance of the proposed power allocation schemes.
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1. Introduction

To enable secure communication without being eavesdropped on by unintended receivers in
wireless networks, physical layer security schemes exploit the physical characteristics of wireless
channels with no need for upper-layer operations such as encryption techniques [1]. The rate at which
a source can send information securely to an intended receiver is defined as the secrecy rate, and
the maximum achievable secrecy rate is referred to as the secrecy capacity. It is known that we can
achieve positive secrecy rates when the source-eavesdropper channel is a degraded version of the
source-destination channel [2].

To obtain positive secrecy rates, even when the source-destination channel is worse than
the source-eavesdropper channel, node cooperation has been extensively studied [3–9]. In node
cooperation approaches, multiple relay nodes located between the source, destination, and
eavesdroppers perform cooperative beamforming to enhance physical layer security. Three different
operation modes have been suggested for cooperative relays, such as amplify-and-forward (AF),
decode-and-forward (DF), and cooperative jamming (CJ) [3,6]. For the AF and DF modes, each
relay receives the information signal from the source in the first time slot, whereas it cooperatively
forwards the weighted version of its received signal for the AF mode and the weighted version of its
re-encoded signal for the DF mode in the second time slot. For the CJ mode, the cooperative relays
send weighted jamming signals to interfere with the eavesdropper. In [7], a two-way relay network
formed by cooperative relays was considered, where some relays perform cooperative beamforming
to receive and forward the signals from the sources, and other relays send jamming signals to confuse
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the eavesdropper. Furthermore, it was proven that secrecy rates can be further enhanced by using
multiple DF relays that form a multi-hop relay network including more than two hops [10].

While the above-mentioned research considered conventional half-duplex relays (HDRs) where
time partitioning was required for the transmission and reception of the relays, other research has
utilized full-duplex operation that allows simultaneous transmission and reception on the same
frequency [11–13]. In [11], the destination was designed to be a full-duplex receiver that receives the
information signal from the source and transmits jamming signals to the eavesdropper simultaneously.
In [12], a full-duplex relay (FDR) was considered in two-hop relay networks and two different
full-duplex operation modes were suggested, such as full-duplex relaying and full-duplex jamming.
Furthermore, in [13], relay nodes were designed to perform the full-duplex jamming mode in multi-hop
relay networks that include more than two hops, where each FDR receives the information signal
from the previous node and transmits jamming signals to the eavesdropper at the same time. As long
as the self-interference signals induced by the full-duplex operation are properly suppressed by
self-interference cancellation (SIC) schemes [14–18], the full-duplex approaches of [11–13] are shown
to improve the physical layer security significantly.

It is noteworthy that the conventional studies for FDR networks in [12,13] assumed that a single
FDR is located at each hop. In this study, we consider cooperative DF FDRs in multi-hop relay
networks, where multiple FDRs equipped with a single antenna are located at each individual hop to
perform cooperative beamforming to null out the signal at the eavesdroppers. Each FDR is assumed to
operate in the full-duplex relaying mode to decode and forward the information signals at the same
time instead of transmitting jamming signals. The transmit power allocation problem to maximize
the achievable secrecy rate is formulated under an overall transmit power constraint to restrict the
consumed power summed across the source and relays within a given limit. The power allocation
problems for secure communication in relay networks are also found in [19–21]. While [19] takes into
account a two-hop relay network with a single DF HDR, and a two-way relay network formed by
a single AF HDR was considered in [20,21], our research considers a power allocation problem in a
multi-hop relay network including more than two hops formed by multiple cooperative DF FDRs.
We first considered a perfect self-interference cancellation (PSIC) case, where the self-interference at
each FDR was perfectly canceled, and derived an optimal power allocation (OPA) strategy using the
Karush-Kuhn-Tucker (KKT) conditions [22]. In the case where the residual self-interference signals
remained due to the imperfect self-interference cancellation (ISIC), we also proposed a transmit power
allocation scheme using the geometric programming (GP) method [22,23].

The remainder of this paper is organized as follows. Section 2 describes a signal model for
multi-hop DF FDR networks considered in this research and describes the designs of a cooperative
beamformer at each individual hop. In Section 3, we derive a transmit power allocation problem
under the overall transmit power constraint and the DF relaying constraints. For the PSIC and ISIC
cases, we solve the transmit power optimization problem using the KKT conditions and the GP
method, respectively. Section 4 presents numerical results to verify the secrecy rate performance of the
proposed power allocation schemes. Concluding remarks are provided in Section 5.

2. System Description

As shown in Figure 1, we consider a wireless (N + 1)-hop DF FDR network consisting of
one source node S, trusted FDRs, one destination node D, and TE eavesdroppers. Let Rn be a set of Tn

FDRs located at the nth relay position with n = 1, 2, · · · , N, which perform cooperative beamforming.
Furthermore, we define E as a set of eavesdroppers. All nodes are assumed to be equipped with
a single antenna. Each DF FDR decodes the signal from the previous adjacent nodes and forwards
the weighted version of the re-encoded signal to the next adjacent nodes at the same time. The relays
and D are assumed to receive the signal from the nodes located at their adjacent hops due to the
propagation loss, whereas the eavesdroppers are assumed to overhear S as well as all the relays.
For simplicity, we index S and Rn by 0 and n, respectively. All channels are assumed to undergo flat
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fading. We let h0,1 and hN,D denote T1 × 1 and 1× TN complex channel vectors from S to R1 and
from RN to D, respectively. Hn,n+1 is defined as a Tn+1 × Tn complex channel matrix from Rn to Rn+1.
Furthermore, h0,E is a TE × 1 complex channel vector from S to E, and Hn,E is a TE × Tn complex
channel vector from Rn to E. The noise at each node is assumed to be complex additive white Gaussian
with zero-mean and variance σ2.

S

E

xi

Self-interference

D

xi-1

xi-2

xi-3

R1
R2 R3

R

R

R

R

R

R

Figure 1. Illustration of a full-duplex multi-hop decode-and-forward (DF) relay network with N = 3,
T1 = T2 = T3 = 2, and TE = 1.

2.1. Signal Model

In the ith time slot, S is assumed to send a data symbol xi to R1. The FDRs in R1 receive xi from
S and send weighted versions of xi−1 at the same time, which has been received and decoded in the
(i− 1)th time slot. In the same manner, the FDRs in Rn send weighted versions of xi−n to Rn+1 and
receive xi−n+1 from Rn−1. Finally, the FDRs in RN send xi−N to D and receive xi−N+1 from RN−1.
The received signals at the relays can be expressed as

y1 =
√

P0h0,1xi + H1,1w1xi−1 + H2,1w2xi−2 + z1,

yn = Hn−1,nwn−1xi−n+1 + Hn,nwnxi−n + Hn+1,nwn+1xi−n−1 + zn, n = 2, 3, · · · , N − 1, (1)

yN = HN−1,NwN−1xi−N+1 + HN,NwN xi−N + zN ,

where xi has unit power, P0 is the transmit power of S, wn is a Tn × 1 beamforming vector stacking
the weights of the FDRs in Rn with w†

nwn = Pn, (.)† denotes conjugated transpose, Pn is the sum of
the transmit powers of the FDRs in Rn, and zn is a Tn × 1 additive white Gaussian noise (AWGN)
vector at Rn. Note that the underlined terms in Equation (1) denote residual self-interferences after
the SIC. The transmitted signal by the tth relay of Rn induces its own self-interference and reaches the
other FDRs in Rn because they are located close to each other. Here, Hn,n is a Tn × Tn complex channel
matrix for the residual self-interference due to the transmission of Rn. In particular, the tth column of
Hn,n contains the complex channel gain for the residual self-interference induced by the transmission
of the tth relay of Rn for all the FDRs in Rn. Moreover, the transmission of Rn+1, originally destined
for the next adjacent nodes, may reversely reach the FDRs in Rn due to our assumption that the relays
can hear nodes located at their adjacent hops. Keeping in mind that the FDRs in Rn already know
what the FDRs in Rn+1 have sent, we can also suppress these interferences using the conventional SIC
schemes of [14–18]. Hn+1,n in Equation (1) is the complex Tn × Tn+1 channel matrix for the residual
interferences at the FDRs in Rn that are induced by the transmission of Rn+1. The received signals at D
and E are given as

yD = hN,DwN xi−N + zD, (2)

yE =
√

P0h0,Exi +
N

∑
n=1

Hn,Ewnxi−n + zE, (3)
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where zD and zE are the AWGN at D and E, respectively.

2.2. Cooperative Beamformer Design

Let us assume that global channel state information (CSI) is available because the eavesdropper
is a legitimate user in the network and its transmission can be monitored [24]. In this scenario,
the eavesdropper is assumed to be a low-level user able to access less information than the destination.
In the case where only imperfect or partial CSI is available [25], we expect that our proposed scheme
can be modified to cooperate with artificial noise-assisted techniques [26,27], where the spatial degrees
of freedom provided by multiple cooperative relays at each hop are exploited to send artificially
generated noise signals. In particular, for the residual self-interference channels, we assume that
Hn,n and Hn,n+1 are not available. If Hn,n and Hn,n+1 are available, we can cancel even the residual
self-interferences, which implies that the SIC is always perfect. Here, let us assume that only the
residual self-interference powers are measurable.

Let us consider the design of wn to null out the signals at E. In order to determine wn with
n = 1, 2, · · · , N − 1, we incorporate the zero-forcing (ZF) approach in [3] with the max–min fair
beamforming of [28] to null out the signals at E and maximize the minimum channel gain in Rn+1

shown as
w̄n = argmax

w̃n

min
t=1,··· ,Tn+1

|h(t)
n,n+1(ITn − Pn,E)w̃n|2, (4)

where w̄†
nw̄n = 1, h(t)

n,n+1 is the tth row of Hn,n+1, ITn is a Tn × Tn identity matrix, and Pn,E is the
orthogonal projection matrix onto the subspace spanned by Hn,E given as [3]

Pn,E = H†
n,E(Hn,EH†

n,E)
−1Hn,E, (5)

where (.)† denotes conjugated transposition. We can solve the optimization problem in Equation (4)
by following the max-min fair beamforming approach of [28], which is highlighted in Appendix A.
After obtaining w̄n, we compute wn as

wn =
√

Pn
(ITn − Pn,E)w̄n

||(ITn − Pm,E)w̄n||
, (6)

where n = 1, 2, · · · , N − 1. Furthermore, we determine wN to null out the signals at E shown as [3]

wN =
√

PN
(ITN − PN,E)h†

N,D

||(ITN − PN,E)h†
N,D||

. (7)

Since all of the above beamformers null out the signals at E, each eavesdropper can receive the
signal only from S and Equation (3) can be simply given as

yE =
√

P0h0,Exi + zE. (8)

3. Transmit Power Allocation

In Equations (2) and (8), the rates at D and E are given as

Rd = log2 (1 + αN,DPN) , (9)

Re = log2 (1 + α0,EP0) , (10)

where

αN,D =
|hN,DwN |2

σ2 , α0,E = max
t=1,··· ,TE

|h(t)0,E|2

σ2 , (11)
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and h(t)0,E is the tth entry of h0,E. Using Equations (9) and (10), we compute the achievable secrecy rate
as Rs = max{Rd − Re, 0}. In Equation (1), we compute the rate at the tth relay of Rn given as

R(t)
n = log2

(
1 +

α
(t)
n−1,nPn−1

1+β
(t)
n,nPn+β

(t)
n+1,nPn+1

)
,

R(t)
N = log2

(
1 +

α
(t)
N−1,N PN−1

1+β
(t)
N,N PN

)
,

(12)

where n = 1, 2, · · · , N − 1 and

α
(t)
n−1,n =

|h(t)
n−1,nwn−1|2

σ2 , (13)

β
(t)
n,n =

|h(t)
n,nwn|2

σ2 , β
(t)
n+1,n =

|h(t)
n+1,nwn+1|2

σ2 . (14)

Here, h(t)
n,n and h(t)

n+1,n denote the tth row of Hn,n and Hn+1,n, respectively. It is also meaningful
to exploit a multi-antenna relay equipped with Tn antennas at the nth relay position instead of Tn

single-antenna relays. In this case, Equation (12) should be modified for the rate at the multi-antenna
relay, assuming that it performs maximal ratio combining [29].

In order to guarantee that each DF relay correctly decodes the information from the previous
nodes and forwards it to the next nodes, we must consider the DF relaying constraints, where the rates
at the relays are greater than or equal to Rd, (i.e., R(t)

n ≥ Rd). Under an overall power constraint P,
we derive the optimization problem for transmit power allocation to maximize the achievable secrecy
rate given as

max
P0,P1,···PN

Rd − Re,

s.t. R(t)
n ≥ Rd, t = 1, 2, · · · , Tn, n = 1, 2, · · · , N,

∑N
n=0 Pn ≤ P,

0 ≤ Pn ≤ P, n = 0, 1, · · · , N.

(15)

We first consider the PSIC case where the self-interference is completely removed and derive the
OPA using the KKT conditions. Then, the GP-based power allocation (GPPA) is also proposed for the
ISIC case.

3.1. Optimal Power Allocation for PSIC

For the PSIC case, we have β
(t)
n,n = β

(t)
n+1,n = 0 for all t and n. Substituting Equations (9), (10)

and (12) into Equation (15), we rewrite the optimization problem in Equation (15) as

min
P0,P1,···PN

log2 (1 + α0,EP0)− log2 (1 + αN,DPN) ,

s.t. αN,DPN − αn,n+1Pn ≤ 0, n = 0, · · · , N − 1,

∑N
n=0 Pn ≤ P,

0 ≤ Pn ≤ P, n = 0, 1, · · · , N,

(16)

where αn,n+1 = mint=1,··· ,Tn+1 α
(t)
n,n+1. In Appendix B, we have proven the following:

• We can achieve positive secrecy rates only when α0,1 > α0,E, and the OPA is given by

Pn =
γ

αn,n+1
P, PN =

γ

αN,D
P, (17)
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where n = 0, 1, · · · , N − 1 and

γ =
1

∑N−1
n=0

1
αn,n+1

+ 1
αN,D

. (18)

• We have no choice but to obtain zero secrecy rates when α0,1 ≤ α0,E.

Note that the OPA for the PSIC case is given in a simple closed form. As discussed in Appendix B,
the OPA in Equation (17) satisfies the overall power constraint and the DF relaying constraints
with equality, which depend only on the channel conditions between S, Rn, and D (i.e., αn,n+1 with
n = 0, 1, · · · , N − 1 and αN,D). It is noteworthy that the channel conditions for E (i.e., α0,E) only
influence whether positive secrecy rates can be achieved or not.

3.2. GP-Based Power Allocation for ISIC

Now, let us consider that the residual self-interference exists due to the ISIC, which implies that
β
(t)
n,n and β

(t)
n+1,n are non-zero. Substituting Equations (9), (10) and (12) into Equation (15) with β

(t)
n,n and

β
(t)
n+1,n, we obtain

max
P0,P1,···PN

1 + PNαN,D

1 + P0α0,E
,

s.t.
Pn−1α

(t)
n−1,n

1 + Pnβ
(t)
n,n + Pn+1β

(t)
n+1,n

≥ PNαN,D, t = 1, 2, · · · , Tn, n = 1, · · · , N − 1,

PN−1α
(t)
N−1,N

1 + PN β
(t)
N,N

≥ PNαN,D, t = 1, 2, · · · , TN , (19)

∑N
n=0 Pn ≤ P,

0 ≤ Pn ≤ P, n = 0, 1, · · · , N.

Since it is difficult to obtain the optimal solution of Equation (19), we propose a suboptimal
approach to maximize the lower bound of the objective function, PN αN,D

1+P0α0,E
[23], which is equivalent to

minimizing 1+P0α0,E
PN αN,D

. Then, we obtain

min
P0,P1,···PN

1
αN,D

P−1
N +

α0,E

αN,D
P0P−1

N ,

s.t.
αN,D

α
(t)
n−1,n

P−1
n−1PN(1 + β

(t)
n,nPn + β

(t)
n+1,nPn+1) ≤ 1, t = 1, 2, · · · , Tn, n = 1, · · · , N − 1,

αN,D

α
(t)
N−1,N

P−1
N−1PN(1 + β

(t)
N,N PN) ≤ 1, t = 1, 2, · · · , TN , (20)

1
P ∑N

n=0 Pn ≤ 1,

0 ≤ Pn ≤ P, n = 0, 1, · · · , N.

Note that Equation (20) is a GP problem and the solution can be obtained by the GP solver [30].
Since we have N + 1 optimizing variables and N + 2 + ∑N

n=1 Tn constraints, the complexity of solving
Equation (20) isO((N + 1)3(N + 2+ ∑N

n=1 Tn)) [31]. The detailed complexity analysis for solving a GP
problem can be found in [32,33]. We refer to the above power allocation strategy as the GPPA scheme.

4. Numerical Results

In this section, numerical results are presented to verify the secrecy rate performance of the
proposed power allocation schemes. We assumed that S, Rn, and D are located in a line as in [3] and [6],
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whereas the eavesdroppers are located vertically away from the line. The path losses from Rn to their
adjacent nodes were assumed to be almost the same, considering that the distances between the FDRs
in Rn themselves are much smaller than the distances between Rn and their adjacent nodes. Similarly,
it was also assumed that the eavesdroppers were closely located and the path losses from the other
node to E are almost the same. The S-R1, Rn-Rn+1, and RN-D distances are denoted as d0,1, dn,n+1, and

dN,D, respectively. Furthermore, the S-E and Rn-E distances are computed as d0,E =
√

d2
E + d2

Ex and

dn,E =
√

d2
E + (d0,n − dEx)2, respectively, where d0,n = ∑n−1

m=0 dm,m+1. It was assumed that channels
between any two nodes follow a line-of-sight (LOS) model, where each channel coefficient is evaluated
by d−

c
2 ejθ , where d is the distance between the nodes, θ is a random phase uniformly distributed

within [0, 2π), and c = 3.5 is the path loss exponent [3,6]. In particular, the residual self-interference
channels were also assumed to follow the LOS channel model, and the channel gains for Hn,n and
Hn+1,n were set to be η dB smaller than those for h0,1 for n = 1 and those for Hn−1,n for n = 2, · · · , N.
In the following results, we set σ2 = −30 dBm, N = 2, T1 = T2 = T, and d0,1 = d1,2 = d2,D = 100 m.

For comparison, we also considered the secrecy rates of the HDRs. In the HDR network,
the even-indexed relays were assumed to receive the signal from the previous adjacent nodes in
the even time slots and to forward the re-encoded signal to the next adjacent nodes in the odd time
slots, whereas the odd-indexed relays performed reception in the odd time slots and transmission
in the even time slots. When the beamformers of Equations (6) and (7) were used, it was found that
the power allocation problem in the HDR network was the same as that in the FDR network for the
PSIC in Equation (16), except that the objective function was multiplied by one half because two time
slots are required for the reception and transmission of HDRs. Therefore, the OPA of the HDR was
obviously the same as that of the FDR for the PSIC, while the secrecy rate of the HDR with OPA was
one half of that of the FDR with OPA for the PSIC. In addition, we also evaluated the secrecy rates for
the FDRs with equal power allocation (EPA), where Pn = P

N+1 with n = 0, 1, · · · , N.
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Figure 2. Comparison of secrecy rates as a function of η when T = 4, TE = 1, dEx = 150 m, dE = 10 m,
and P = 60 dBm.

Figure 2 compares the secrecy rates as a function of η when T = 4, TE = 1, dEx = 150 m,
dE = 10 m, and P = 60 dBm. The decrease of η implies that the residual self-interference signals
became stronger. Note that the FDR for the PSIC and the HDR do not depend on η. It was observed
that the FDR with OPA for the PSIC provided the best performance. Furthermore, the secrecy rate of
the FDR with EPA was worse than that of the HDR with OPA, even though the self-interference signals
were perfectly canceled. When we employ OPA for the FDR, even though the residual self-interference
exists due to the ISIC, the secrecy rate was found to decrease steeply with the decrease of η, and
η > 20 dB should be guaranteed to provide a better secrecy rate than the HDR with OPA. In this
case, the FDR with GPPA outperformed the FDR with OPA and required η > 16 dB to provide a better
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secrecy rate than the HDR with OPA. This confirms that the OPA in Section 3.1 provided the best
secrecy rate for the PSIC, while it was not robust for the ISIC. For the ISIC, we have to use the GPPA in
Section 3.2 to enhance the secrecy rate.

Figure 3 shows how the secrecy rates vary with dEx when T = 4, TE = 2, dE = 10 m, and
P = 60 dBm. As expected, the secrecy rate increases as E moves away from S. It was also confirmed
that the FDR with OPA was the best power allocation strategy for the PSIC, while it provided severely
degraded performance in all ranges of dEx for the ISIC. In particular, the FDR with OPA for η = 20 dB
provided better performance than the HDR with OPA only when dEx > 170 m. However, the FDR
with GPPA was shown to outperform the HDR with OPA when dEx > 125 m. It was noted for the ISIC
that the FDR with GPPA was superior to the FDR with OPA in all ranges of dEx.
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Figure 3. Comparison of secrecy rates as a function of dEx when T = 4, TE = 2, dE = 10 m, and
P = 60 dBm.

In Figure 4, the secrecy rates are compared as a function of P when T = 4, TE = 2, dEx = 150 m,
and dE = 10 m. For the PSIC, the secrecy rate of the FDR with OPA provided the best performance in
all ranges of P and increased with an increase of P, while the FDR with EPA was worse than the HDR
with OPA in all ranges of P. Next, let us focus on the secrecy rates for the ISIC. As the overall transmit
power P increases, more transmit power will be assigned to each relay (i.e., Pn will increase). When the
self-interference channel gain η is given, it is evident that the increase of Pn results in an increase of
the self-interference signal power. For η = 20 dB, the secrecy rate of the FDR with OPA was found
to increase until P < 55 dBm, while it decreased with an increase of P and approached zero when
P > 55 dBm. These observations indicate that the residual self-interference severely affected the
secrecy rate performance of the FDR with OPA as the overall transmit power increased. However, it is
remarkable that the FDR with GPPA prevented the secrecy rate from decreasing with an increase of P,
and its secrecy rate performance almost converged when P > 55 dBm. For η = 25 dB at P > 60 dBm,
it was observed that the secrecy rate of the FDR with OPA decreased to zero with an increase of P, while
the FDR with GPPA provided the converged secrecy rate and still outperformed the HDR with OPA.

In Figure 5, we present the secrecy rates according to TE when T = 6, dEx = 150 m, dE = 10 m,
and P = 60 dBm. The secrecy rates are found to decrease with an increase in TE. In particular, the FDR
with OPA for η = 20 dB achieves only 27% to 34% of the secrecy rate of that for the PSIC and is even
worse than the HDR with OPA in all ranges of TE. Meanwhile, the FDR with GPPA of η = 20 dB
achieves 51% to 62% of the secrecy rate of the FDR with OPA for the PSIC. For η = 25 dB, it is also
seen that the FDR with OPA achieves 65% to 71% of the secrecy rate of that for the PSIC, whereas the
FDR with GPPA achieves 74% to 79% in all ranges of TE. This also confirms that the FDR with OPA is
vulnerable to the ISIC and that the GPPA scheme can be utilized to enhance the secrecy rates for the
ISIC even in the presence of multiple eavesdroppers.
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Figure 4. Comparison of secrecy rates as a function of P when T = 4, TE = 2, dEx = 150 m,
and dE = 10 m.
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Figure 5. Comparison of secrecy rates as a function of TE when T = 6, dEx = 150 m, dE = 10 m,
and P = 60 dBm.

5. Conclusions

In this study, we investigated the secrecy rate of multi-hop DF FDR networks under the overall
transmit power constraint when the cooperative beamformer at each individual hop was designed to
null out the signals at the eavesdroppers. Using the KKT conditions, we proved that the OPA for PSIC
to maximize the achievable secrecy rate was obtained when the overall transmit power constraint and
the DF relaying constraints held with equality, which depended on the channel conditions between
the source, FDRs, and destination. The channel conditions for the eavesdroppers only influenced
whether positive secrecy rates could be achieved. In the case where residual self-interference signals
existed owing to the ISIC, we also proposed a suboptimal GPPA scheme to maximize the lower
bound of the achievable secrecy rate. From numerical results, we found that the FDR with OPA for
PSIC doubled the secrecy rate of the conventional HDR with OPA, while it was vulnerable to the
residual self-interference power. For the ISIC, the GPPA scheme was shown to significantly enhance
the immunity to the residual self-interference power.
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Appendix A

In Equation (4), we use the fact that |h(t)
n,n+1(ITn − Pn,E)w̃n|2 = tr(H(t)W̃n), where tr(.) denotes

trace operations, W̃n = w̃nw̃†
n, and

H(t) =
(

h(t)
n,n+1(ITn − Pn,E)

)†
h(t)

n,n+1(ITn − Pn,E). (A1)

Then, the optimization problem in Equation (4) can be rewritten as

max
W̃n

min
t=1,··· ,Tn+1

tr(H(t)W̃n),

s.t. tr(W̃n) = 1, W̃n � 0, (A2)

rank W̃n = 1,

where W̃m � 0 indicates that W̃m must be a symmetric positive semidefinite matrix. Using semidefinite
relaxation [34,35], we drop the rank constraint in Equation (A2). Then, we can rewrite Equation (A2)
as [22]

max
W̃n ,τ

τ,

s.t. tr(H(t)W̃n) ≥ τ, t = 1, · · · , Tn+1, (A3)

tr(W̃n) = 1, W̃n � 0.

We convert the inequality constraints in Equation (A3) to the equality constraints to obtain

min
W̃n ,τ,st

−τ,

s.t. −τ − st + vec(W̃T
n )

Tvec(H(t)) = 0,
τ ≥ 0, st ≥ 0, t = 1, · · · , Tn+1,
tr(W̃n) = 1, W̃n � 0,

(A4)

which can be solved by SeDuMi [36] and Yalmip [37]. When the solution of Equation (A4), W?
n,

is of rank one, its principal eigenvector can be used as w̄n. If the rank of W?
n is higher than one,

we employ a randomization technique [28]. In this study, we eigendecompose W?
n as W?

n = UΛU†

and generate a set of candidate weight vectors, w̌k = UΛ1/2vk, where each entry of vk is ejθ and θ is
independently and uniformly distributed on [0, 2π). Then, we choose the best result to provide the
greatest mint |h(t)

n,n+1(ITn − Pn,E)w̌k|2.
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Appendix B

The KKT conditions for Equation (16) are given as [22]

α0,E

1 + α0,EP0
− α0,1µ0 + µN = 0, (B1)

−αn,n+1µn + µN = 0, n = 1, · · · , N − 1, (B2)

− αN,D

1 + αN,DPN
+ αN,D

N−1

∑
n=0

µn + µN = 0, (B3)

αN,DPN − αn,n+1Pn ≤ 0, n = 0, · · · , N − 1, (B4)

∑N
n=0 Pn − P ≤ 0, (B5)

µn(αN,DPN − αn,n+1Pn) = 0, n = 0, · · · , N − 1, (B6)

µN

(
∑N

n=0 Pn − P
)
= 0, (B7)

µn ≥ 0, n = 0, · · · , N. (B8)

It is seen that Equation (B2) yields µn = µN
αn,n+1

with n = 1, · · · , N − 1. Since µN ≥ 0 in
Equation (B8), let us consider two cases with µN = 0 and µN > 0.

When µN = 0, we have µn = 0 with n = 1, · · · , N − 1. In this case, the KKT conditions in
Equations (B1)–(B8) are simplified as follows:

α0,E

1 + α0,EP0
− α0,1µ0 = 0, (B9)

− αN,D

1 + αN,DPN
+ αN,Dµ0 = 0, (B10)

αN,DPN − αn,n+1Pn ≤ 0, n = 0, · · · , N − 1, (B11)

∑N
n=0 Pn − P ≤ 0, (B12)

µ0(αN,DPN − α0,1P0) = 0, (B13)

µ0 ≥ 0. (B14)

In Equations (B9) and (B10), it is found that

µ0 =
α0,E/α0,1

1 + α0,EP0
=

1
1 + αN,DPN

> 0. (B15)

Since µ0 > 0, we have αN,DPN = α0,1P0 in Equation (B13). Substituting it into Equation (B15), we
found that α0,E

1+α0,EP0
=

α0,1
1+α0,1P0

should be satisfied. This is guaranteed only when α0,E = α0,1, which
results in α0,EP0 = αN,DPN . Then, it is obvious that the secrecy rate becomes zero in Equation (16).

Now, we consider the case with µN > 0, which yields µn > 0 with n = 1, · · · , N − 1. The KKT
conditions in Equations (B1)–(B8) are written as

α0,E

1 + α0,EP0
− α0,1µ0 + µN = 0, (B16)

− 1
1 + αN,DPN

+ µ0 +

(
N−1

∑
n=1

1
αn,n+1

+
1

αN,D

)
µN = 0, (B17)

αN,DPN − α0,1P0 ≤ 0, n = 0, · · · , N − 1, (B18)

αN,DPN = αn,n+1Pn, n = 1, · · · , N − 1, (B19)

∑N
n=0 Pn = P, (B20)
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µ0(αN,DPN − α0,1P0) = 0, (B21)

µ0 ≥ 0. (B22)

In Equation (B16), one can find that µ0 > 0 is always true when µN > 0, which yields

αN,DPN = α0,1P0. (B23)

From Equations (B19), (B20) and (B23), the optimal power allocation is found to satisfy

αN,DPN = αn,n+1Pn, n = 0, · · · , N − 1,

∑N
n=0 Pn = P,

(B24)

which implies that the DF relaying constraints and the overall power constraint hold with equality.
The solution of Equation (B24) is given in Equation (17). In order to confirm the validity of the solution,
we have to check that µN > 0. From Equations (B16) and (B17), we obtain

µN =
γ(α0,1 − α0,E)

α0,1(1 + α0,1P0)(1 + α0,EP0)
, (B25)

where γ is defined in Equation (18). It is observed that the condition of α0,1 > α0,E guarantees µN > 0.
In the above derivation, we have found that the two cases µN = 0 and µN > 0 correspond to the

channel conditions α0,1 = α0,E and α0,1 > α0,E, respectively. When α0,1 < α0,E, we have the relation of

αN,DPN ≤ α0,1P0 < α0,EP0, (B26)

owing to the DF relaying constraint. In this case, it is obviously impossible to achieve positive
secrecy rates.
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