

Citation: Vanden Wyngaert K, Van Craenenbroeck AH, Van Biesen W, Dhondt A, Tanghe A, Van Ginckel A, et al. (2018) The effects of aerobic exercise on eGFR, blood pressure and VO₂peak in patients with chronic kidney disease stages 3-4: A systematic review and meta-analysis. PLoS ONE 13(9): e0203662. https://doi.org/10.1371/journal. pone.0203662

Editor: Wisit Cheungpasitporn, University of Mississippi Medical Center, UNITED STATES

Received: June 15, 2018

Accepted: August 26, 2018

Published: September 11, 2018

Copyright: © 2018 Vanden Wyngaert et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

The effects of aerobic exercise on eGFR, blood pressure and VO₂peak in patients with chronic kidney disease stages 3-4: A systematic review and meta-analysis

Karsten Vanden Wyngaert¹, Amaryllis H. Van Craenenbroeck^{2,3}, Wim Van Biesen⁴, Annemieke Dhondt⁴, Anouk Tanghe¹, Ans Van Ginckel¹, Bert Celie¹, Patrick Calders¹*

 Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium, 2 Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium,
 Laboratory of Experimental Medicine and Paediatrics, University of Antwerp, Antwerp, Belgium,

4 Department of Internal Medicine, Renal Division, Ghent University Hospital, Ghent, Belgium

* Patrick.Calders@ugent.be

Abstract

Background

CKD is associated with several comorbidities, cardiovascular disease being the most significant. Aerobic training has a beneficial effect on cardiovascular health in healthy and some well-defined non-healthy populations. However, the effect of aerobic training on glomerular filtration rate in patients with CKD stages 3–4 is unclear.

Objective

To review the effects of aerobic exercise training on kidney and cardiovascular function in patients with chronic kidney disease (CKD) stages 3–4.

Methods

A random-effects meta-analysis was performed to analyse published randomized controlled trials through February 2018 on the effect of aerobic training on estimated glomerular filtration rate, blood pressure and exercise tolerance in patients with CKD stages 3–4. Web of Science, PubMed and Embase databases were searched for eligible studies.

Results

11 randomized controlled trials were selected including 362 participants in total. Favourable effects were observed on estimated glomerular filtration rate (+2.16 ml/min per 1.73m²; [0.18; 4.13]) and exercise tolerance (+2.39 ml/kg/min; [0.99; 3.79]) following an on average 35-week aerobic training program when compared to standard care. No difference in change in blood pressure was found.

Conclusions

There is a small beneficial effect of aerobic training on estimated glomerular filtration rate and exercise tolerance, but not on blood pressure, in patients with CKD stages 3–4. However, data are limited and pooled findings were rated as of low to moderate quality.

Introduction

Patients with chronic kidney disease (CKD) have a high risk to develop cardiovascular (CV) disease, for which exercise training is known to be a successful preventive strategy [1]. Also, the probability for death (with CV disease as leading cause) in patients with CKD stages 3-4 is higher than the probability to progress to end-stage renal disease [2-4]. Therefore alone already it is useful to stress the utility of exercise training. In addition, most patients suffer of a severely impaired exercise tolerance and performance, both in themselves predictors of survival [5]. Underlying mechanisms include renal anaemia, malnutrition, vascular dysfunction and/or polyneuropathy [6-8]. Consequently, the majority of patients with CKD do not meet the European Guidelines for physical activity of 150 min/week of moderate intensity (class I, level of recommendation A) [9]. This creates a vicious circle of worsened exercise intolerance and physical inactivity further enhancing increased CV risks [10]. Exercise tolerance plays a pivotal role in reaching recommended physical activity levels, which in turn is essential in the preservation of functional movement, general well-being and the management of CV risk factors (e.g. body weight control) in patients without CKD. Exercise training improves exercise tolerance and allows individuals to increase their physical activity levels. Some evidence suggests a similar beneficial impact in patients with CKD [11]. Primarily patients with CKD stages 3 or worse [4], i.e. when CV risk starts to increase, could potentially benefit from aerobic exercise training [12].

Despite the absence of a consensus on which frequency, intensity, type and time of exercise is of most benefit, regular exercise increases peak oxygen consumption (VO₂peak), improves blood pressure control, CV risk profile, mental health and health-related Quality of Life in the entire range of CKD patients [10, 11]. Aerobic exercise, as opposed to anaerobic training, is assumed to induce systemic changes, possibly affecting determinants of glomerular filtration rate. However, there is still a knowledge gap concerning the effect of aerobic exercise on estimated glomerular filtration rate. Therefore, an updated meta-analysis can present new insights on the effects of exercise training with respect to the most recent Cochrane review [11]. In this meta-analysis, we investigated the effect of aerobic exercise in patients with CKD stages 3-4through a meta-analysis. The following research questions will be answered: What is the effect of aerobic exercise on (1) estimated glomerular filtration rate (eGFR) and (2) blood pressure and VO₂peak compared to standard care in patients with CKD stages 3-4?

Materials & methods

Data sources and selection criteria

This systematic search and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [13] and checklist (S1 Checklist). The protocol of this meta-analysis was registered retrospectively on PROSPERO (registration number: CRD42018103223). Only randomized controlled trails (RCTs) were included. Following inclusion criteria needed to be fulfilled: (1) adult (>18 years) human

subjects, (2) mean baseline eGFR of the population between 59 and 15 ml/min per $1.73m^2$ (CKD stage 3 and 4), (3) aerobic exercise includes the intervention method, (4) intervention encompassed at least 3 months of training with at least 2 sessions per week and (5) studies had to be written in Dutch, English, German or French. Non-randomized controlled and observational trials, reviews, meta-analyses, short communication articles, letters to the editor and study protocols were excluded. No publication date or other restrictions were imposed. Studies were searched describing the effect of aerobic exercise compared to standard care on eGFR, blood pressure or VO₂peak in patients with CKD stages 3-4. Three electronic databases were consulted and searched for eligible papers until February 2018 (i.e. Web of Science, PubMed and Embase) with a supplementary search on clinicaltrials.gov to identify potential missing trials and to retrieve protocols. Reference lists of included studies were screened for additional studies. MeSH-terms or keywords used in the search strategy (S1 Table) included: 'Chronic Renal Insufficiency', 'Chronic Kidney Disease', 'Chronic Renal Failure', 'Exercise', 'Circuit-Based Exercise', 'Rehabilitation', 'Aerobic Exercise Training', 'Aerobic Exercise', 'Exercise Training', 'Glomerular Filtration Rate', 'GFR', 'Kidney Function', 'Renal Function', 'Heart Rate', 'Blood Pressure', 'Oxygen Consumption', 'VO2peak' and 'Aerobic Capacity'. Search strategy, full selection process, screening on title, abstract, full text (Kappa: 0.97), data extraction and quality assessment were developed and executed in duplicate by 2 independent assessors (VWK and TA, PhD students Rehabilitation Sciences and Physiotherapy, under the supervision of CP, PhD). Discrepancies were discussed and in case of no unanimous conclusion referred to CP, who had the final decision.

Data extraction and quality assessment

Qualitative (Table 1) and quantitative data were extracted from the included articles. Corresponding authors were addressed to provide missing or tailored data based on our eligibility criteria (e.g. excluding patients with CKD stage 2). Data for between-groups analyses was extracted from the results of patient and control group analyses. Body mass index (BMI) was post hoc included as secondary outcome. Methodological quality of studies was evaluated according the checklist for assessing risk of bias provided by the Cochrane Collaboration [14]. Quality of evidence and strength of recommendations were assessed by the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) method [15].

Statistical analysis for meta-analysis

The 'GRADEpro Guideline Development Tool' and 'Review Manager 5.3.5' from the Cochrane Collaboration were used for quality assessment of evidence and to calculate effect estimates for combinations of single effects from included studies and to subsequently perform subgroup analyses respectively. Treatment effects were calculated as mean differences in outcomes. If eGFR was calculated using another equation than the CKD-EPI or Modified Diet in Renal Disease formula (MDRD), the CKD-EPI formula was applied on mean and standard deviation values of the population [16]. The Dersimonian-Laird inverse variance weighted random effects method was used to pool study findings and heterogeneity was calculated (I², <25% = no heterogeneity and \geq 75% = high heterogeneity) [17]. Sensitivity analysis was planned and subgroup analyses were performed on changes in eGFR to explore sources of heterogeneity and subgroup variables included: intervention type (i.e. aerobic exercise vs. resistance and aerobic exercise) and duration, age and BMI. Age and BMI were categorised based on cut-off points: 60 years old and 32 kg/m² respectively. Subgroup breakdown for intervention duration was based on duration more or less than 6 months. Results were considered significant at 95% study confidence interval. Forest plots were used to present findings of the meta-analysis.

Study	Purpose and primary outcome	Exercise group	Control group	Intervention	Time frame	Kidney parameters	Cardiovascular parameters	Main results
Aoike et al (2015)	Home-based aerobic exercise provides physical and clinical benefits in OP with CKD; Primary outcome ^a :VO ₂ peak	9ơ, 59; BMI 31.7 ±4.5; GFR 28.4 ±11.6; Age 55.9 ±7.7	10°, 59; BMI 30.7 ±4.1; GFR 25.3 ±13.4; Age 54.3 ±8.7	Aerobic exercise training: 3 sessions/ week: 5min warming up/cooling down; 30min walking at heart rate at VT 1 obtained in CPET and spirometry; +10min each 4 weeks; At start 3 supervised sessions	12 Weeks	GFR	Heart rate; Blood pressure; VO ₂	Increased heart rate at VT; Decreased heart rate in rest; Decreased resting systolic and diastolic blood pressure; Improvement GFR; Improvement peak- and VT-VO ₂
Baria et al (2014)	Impact of aerobic exercise on visceral fat in CKD obese patients; Primary outcome ^a : Reduction visceral fat	Centre based; 10 \$\sigma; BMI 30.8±5.1; GFR 25.8±8.8; Age 52.1±11.4— Home based; 8 \$\sigma; BMI 30.9±3.9; GFR 29.4±11.2; Age 50.8±7.7	9 o°; BMI 29.6 ±1.9; GFR 27.7 ±15.0; Age 53.4 ±9.6	Aerobic exercise training: Centre based, 3 sessions/week: 5min warming up/cooling down; 30min walking at heart rate at VT 1 obtained in CPET and spirometry; +10min each 4 weeks—Home based, 3 sessions/week: Exercise with uniform instructions as centre- based group; +10min each 4 weeks during one supervised session	12 Weeks	GFR	Blood pressure; VO ₂	Improvement GFR and blood pressure in centre-based group; No improvement GFR and blood pressure in home-based group; No improvement VO ₂ peak
Greenwood et al (2015)	Effects of exercise on GFR and cardiovascular function; Primary outcome ^a : eGFR	6σ, 29; BMI 27.4 ±3.52; GFR 36.6 ±10.1; Age 53.8 ±13.5	90°, 19; BMI 28.4 ±4.24; GFR 46.5 ±20.6; Age 53.8 ±13	Aerobic and resistance exercise training: 2 supervised sessions/ week (20min); 1 unsupervised session/ week (40min); 5min warming up / cooling down; 80% heart rate reserve cycling with maximal heart rate obtained in CPET; 80% 1RM resistance training	52 Weeks	GFR	Blood pressure; Heart rate; VO ₂	Improvement mean rate of change in GFR compared the 12 months pre- intervention period; No between-group change GFR; No change resting blood pressure and heart rate; Improvement relative VO ₂ peak; No change absolute VO ₂ peak
Headley et al (2012)	Exercise improves heart rate recovery and VO ₂ peak in predialysis kidney patients; Primary outcome ^b : eGFR	10 patients; BMI 32.7±7.2; GFR 33.2±20.1; Age 57.5±11.5	11 patients BMI 34.2±5.7 GFR 48.5 ±23.4; Age 57.5 ±11	Aerobic and resistance exercise training: 3 supervised sessions/ week:; 5min warming up/cooling down; 45min at HR at 50–60% VO2peak obtained in CPET and spirometry; Treadmill, cycle, elliptical machines, stairmasters; Week 24 to 48: Resistance training to avoid boredom	48 Weeks	GFR; Proteinuria	blood pressure; Heart rate; VO ₂	No change in GFR, creatinine clearance and proteinuria; No change in resting ambulatory blood pressure; Decreased resting ambulatory heart rate; Improvement VO ₂ peak
Headley et al (2014)	Effects short-term aerobic exercise on vascular function in CKD; Primary outcome ^a : Pulse wave velocity	25 patients; BMI 34.9±8.0; GFR 47.0±12.0; Age 58.0±8.0	21 patients; BMI 36.5 ±8.9; GFR 48.3 ±12.7; Age 57.1 ±9.0	Aerobic exercise training: 3 supervised sessions/week: 5min warming up/cooling down; 45min at HR at 50–60% VO ₂ peak obtained in CPET and spirometry: Treadmill, cycle, elliptical machines, stairmasters	16 Weeks	1	Blood pressure	No change blood pressure

Table 1. Table of evidence and characteristics of included studies.

(Continued)

Table 1. (Continued)

PLOS ONE

Study	Purpose and primary outcome	Exercise group	Control group	Intervention	Time frame	Kidney parameters	Cardiovascular parameters	Main results	
Howden et al (2013)	Effect of exercise and lifestyle intervention on cardiovascular function in CKD; Primary outcome ^a : VO ₂ peak	36 patients; BMI 32.5±6.8; GFR 38.4±8.8; Age 60.2±9.7;	36 patients; BMI 33.0 ±8.0; GFR 39.4 ±8.9; Age 62.0 ±8.4	Aerobic and resistance exercise training: 3 supervised sessions/ week for 8 weeks; 5min warming up/cooling down; 30min treadmill, cycling and rowing at 11–13 on RPE-scale; 3 unsupervised session/ week:; 150min exercise/ week at 11–13 on RPE- scale	52 Weeks	GFR	Blood pressure; VO ₂	No change in GFR and blood pressure; Improvement VO2peak; More patients reached age-predicted exercise tolerance	
Leehey et al (2009)	Effect of aerobic exercise in obese patients with CKD; Primary outcome ^b : /	7ơ; Diabetes Mellitus type 2; GFR 23.3±12.0; Age 66	4ở; Diabetes Mellitus type 2; GFR 30.4 ±13.2; Age 66	Aerobic exercise training: 3 supervised sessions/week for 6 weeks; 5min warming up/cooling down; Week 1–3: 6min 25–44%, 18min 45–59% and 6min 60–84% of VO ₂ peak; Week 4–6: 6min 25–44%, 22min 45–59% and 12min 60– 84% of VO ₂ peak; 3 unsupervised sessions/ week: Increase step count by 10%/week; Intensity based on CPET & spirometry	24 Weeks	GFR; Proteinuria	Blood pressure; Heart rate; VO ₂	Decreased resting systolic blood pressure, no effect after follow- up; No change GFR and heart rate; Decreased proteinuria; Improvement VO ₂ peak; Tendency improvement VO ₂ at isotime (at the exact same workload)	
Leehey et al (2016)	Exercise in obese patients with CKD; Primary outcome ^a : Urine protein to creatinine ratio	145; BMI 36.2 ±4.8; GFR 41.5 ±18.8; Age 65.4 ±8.7	18°; BMI 37.4 ±4.2; GFR 38.9 ±20.3; Age 66.6 ±7.5	Aerobic and resistance exercise training: 3 supervised sessions/ week for 12 week; 60min interval training on treadmill, elliptical machine and cycle at 25–84% HR at VO ₂ peak obtained in CPET; 30min resistance training: 3 (60min) or 6 (30min) unsupervised sessions/week with similar instructions	52 Weeks	GFR; Proteinuria	Blood pressure; VO ₂	No change GFR and proteinuria; No change resting systolic blood pressure and VO ₂ peak	
Miele et al (2016)	Lipoprotein pattern and response to moderate aerobic exercise in CKD; Primary outcome ^b : HDL-pattern	25 patients; BMI 34.9±8.0; GFR 47±12	21 patients; BMI 36.5 ±8.9; GFR 48.3 ±12.7	Aerobic exercise training: 3 supervised sessions/week; 15min to 55min aerobic exercise 50–60% VO2peak obtained on CPET and spirometry	16 Weeks	GFR	VO ₂	No change GFR; Improvement VO ₂ peak	
Mustata et al (2011)	Effects of exercise on arterial stiffness in predialysis CKD; Primary outcome ^b :/	7ơ, 39; BMI 27.5; GFR 27±?; Age 64±4.5	6ơ, 49; BMI 29; GFR 28 ±?; Age 72.5±3.5	Aerobic exercise training: 5 sessions/ week:; 2 supervised + 3 unsupervised sessions; 20min at 40–60% VO2peak obtained in CPET:; Treadmill, cycle, elliptical trainer; Duration +10% each week to 60min	52 Weeks	GFR	Blood pressure; VO ₂	No change in GFR and blood pressure; Improvement VO ₂ peak	

(Continued)

LOS ONE

Table 1. (Continued)

Study	Purpose and primary outcome	Exercise group	Control group	Intervention	Time frame	Kidney parameters	Cardiovascular parameters	Main results
Van	Effect of 12 weeks	11ơ, 89; BMI	11ď,	Aerobic exercise	12	GFR	Blood pressure;	No change in GFR and
Craenenbroeck	home-based exercise	28.3±6.2; GFR	10 ;	training: 4 sessions/day;	Weeks		VO ₂	blood pressure;
et al (2015)	training on	37.5±13.2; Age	BMI	10min cycling/session				Improvement peak- and
	endothelial function	51.5±11.8	28.3	at 90% heart rate at VT				VT-VO ₂ ; More P
	in CKD 3–4; Primary		±5.8;	obtained at CPET and				reaching age-predicted
	outcome ^a : Flow-		GFR	spirometry; 3				VO ₂ peak
	mediated dilation		39.6	supervised sessions in				
			±12.9;	week 1-2; 1 supervised				
			Age 54.7	session in week 3-4				
			±14					

P = Female Patients; σ = Male Patients; BMI: Body Mass Index; CG = Control Group; CKD = Chronic Kidney Disease; GFR = Glomerular Filtration Rate in ml/min/ 1,73m²; METs = Metabolic Equivalents; Min = Minutes; RM = 1 Repetition Maximum; RPE = Borgs' Rating of Perceived Exertion Scale; VT = at Ventilatory Treshold (ml/kg/min)

 $^{\rm a}$ Power calculation was performed at ${\geq}80\%$

^b No power calculation was performed

https://doi.org/10.1371/journal.pone.0203662.t001

Results

Search results

A total of 1038 studies were identified through our database search. After removing duplicates and two screening phases (title/abstract and full text), 11 studies were withheld based on the in- and exclusion criteria (Fig 1).

Study characteristics

Depending on the study and following the 'Kidney Disease Outcomes Quality Initiative' (KDOQI) guidelines [18], participants presented with stages 2–4 [19–21], 3–4 [22–26] or stage 3 [1, 27, 28] CKD. Four studies had a therapy duration of 6 months or more [1, 19, 24, 25] and aerobic exercise modalities included: (1) walking [20, 22, 23, 25], (2) cycling [24, 26] or (3) use of various training-devices like treadmill, cycle ergometer, elliptical machines, stairmasters or rowing machines [1, 19, 21, 25, 27, 28]. Resistance training was included as intervention in four studies [1, 19, 21, 24]. Training intensities were monitored based on: (1) heart rate at 90% [26] or 100% [22, 23] heart rate at ventilatory threshold, (2) percentage of intensity at VO₂peak (i.e. 50–60% [19, 27, 28], 40–60% [25] and 25–84% [20, 21]), (3) heart rate at 80% of heart rate reserve [24] and (4) Borg Rating of Perceived Exertion scale 11–13 [1].

Quality assessment

Risk for selection and detection bias was unclear in four (36%) [19, 22, 23, 28] and five (45%) [19, 20, 22, 27, 28] RCTs respectively. Only Leehey et al was scored as high risk for selection bias due to allocation concealment [20]. Because blinding of participants is an insurmountable obstacle in exercise intervention RCTs, high risk of detection bias was granted to all RCTs. Five studies scored unclear risk for reporting bias based on lacking registration on clinical trial registries [1, 20, 23, 24, 28]. Attrition and the other sources of bias performed better compared to the aforementioned bias criteria with a low risk in more than 75% of the studies (Fig 2). Quality of evidence for the eGFR and BMI analyses were rated as of moderate strength deriving from detection bias (Table 2). Findings of blood pressure and VO₂peak were valued of

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit <u>www.prisma-statement.org</u>.

Fig 1. PRISMA flow diagram for the systematic review and meta-analysis.

https://doi.org/10.1371/journal.pone.0203662.g001

poorer quality due to high heterogeneity (i.e. $I^2 \ge 75\%$) and blood pressure outcome was rated of high risk for publication bias based on asymmetrical funnel plots (S1–S5 Fig).

Training-induced effects

Estimated glomerular filtration rate. Ten studies assessed eGFR as endpoint kidney function parameter [1, 19-26, 28]. eGFR was obtained using the CKD-EPI creatinine equation in three studies [22-24, 29] and the MDRD formula in seven studies [1, 16, 19-21, 25, 26, 28]. Nine RCTs compared aerobic exercise with standard care in, respectively, 151 and 154 participants over a mean period of 35 weeks [1, 19-24, 26, 28]. One study was excluded based on incomplete reporting of data [25]. Duration of intervention varied between 12 weeks [22, 23, 26] and one year [1, 21, 24]. A calculated mean difference shows an improvement in eGFR of 2.16 ml/min per 1.73m² [0.18; 4.13] (I² = 50%) in participants allocated to aerobic exercise compared to standard care (Fig 3). No significant within-group changes in eGFR were established (Fig 4 and S6 Fig).

Blood pressure. Ten studies described the effect of aerobic exercise on blood pressure in patients with CKD stages 3–4. For systolic and diastolic blood pressure, respectively, eight and seven studies were included in the meta-analysis covering a total of 133 and 119 patients receiving aerobic exercise compared to 136 and 118 control subjects [1, 19–22, 24, 26, 27]. Two and three studies were excluded for systolic [23, 25] and diastolic [21, 23, 25] blood pressure analysis based on incomplete reporting of data respectively.

Blood pressure measurements took place in a sitting position after at least 5 minutes rest and the average of 2 readings when pressures differed for less than 6 mmHg [19, 27] or of 3 readings [19, 22, 24, 26, 30] was used. Protocol was not clearly stated in three studies [1, 20, 21].

Aerobic exercise training of a 32-week duration on average showed no effect on blood pressure in the between-groups analysis (Fig 3). However, mean decreases in systolic blood pressure of 5.20 mmHg [1.00; 9.4] ($I^2 = 15\%$) in patients assigned to aerobic exercise (Fig 4) and of 4.92 mmHg [1.10; 8.75] ($I^2 = 7\%$) in patients receiving standard care were obtained (S6 Fig).

Exercise tolerance. Ten studies examined exercise tolerance, as quantified by VO₂peak in CKD stages 3–4. These studies compared 161 participants receiving aerobic exercise with 164 control subjects [1, 19–26, 28]. Similarly, over an intervention period of on average 32 weeks, meta-analysis of the VO₂peak showed a within-group increase of 1.70 ml/kg/min [0.65; 2.74] ($I^2 = 6\%$) amongst patients following aerobic exercise training (Fig 4). When compared to standard care, aerobic training improved VO₂peak by 2.39 ml/kg/min [0.99; 3.79] ($I^2 = 90\%$) (Fig 3).

Body mass index. Eight studies were included in the analysis of BMI covering 144 patients receiving on average 32 weeks aerobic exercise training compared to 150 control subjects [1, 19, 21–24, 26, 27]. A decrease of 0.73 kg/m² [-1.38; -0.09] (I² = 54%) was found in favour of the exercise group (S7 Fig).

Subgroup analyses. Analysis performed on changes in eGFR outcome with studies categorised mean age <60 or ≥60 years old showed a difference disfavouring the elderly (p = 0.004; $I^2 = 88\%$) (S8 Fig). Also a subgroup difference with mean BMI 32 kg/m² as cut-off point was noted (p < 0.001; $I^2 = 92.2\%$); in favour of subjects scoring <32 kg/m² (S9 Fig). Leehey et al was excluded in the latter analysis due to a nutritional intervention in the control group [21]. No subgroup differences were found when studies were divided based on intervention duration and type (S10 and S11 Figs).

Fig 2. Risk of bias.

https://doi.org/10.1371/journal.pone.0203662.g002

Discussion

The purpose of this meta-analysis was to evaluate the effects of aerobic exercise training in patients with CKD stages 3-4 on outcomes of cardiovascular and kidney function when compared to standard care. We found that aerobic exercise improved eGFR (2.16 ml/min per 1.73 m^2), VO₂peak (2.39 ml/kg/min) and decreased BMI (-0.73 kg/m²) when compared to

PLOS ONE

Table 2. Quality assessment of outcome (GRADE).

Certainty	Assessmen	ıt			Nº of Patier	nts	Effect	Certainty	Importance		
№ of Studies	Study Design	Risk of Bias	Inconsistency	Indirectness or Imprecision	Other Considerations	Exercise Control Group Group		Absolute (95% CI)		(/9)	
Glomerular Filtration Rate											
10	RCT	+ a	+ ^b	-	Strong Association	151	154	2.16 ml/kg per 1.73m ² ; [0.18; 4.13]	⊕⊕⊕○ (Moderate)	Crucial (7)	
Systolic B	lood Pressu	re									
8	RCT	+ ^a	++ ^c	-	Publication Bias Strongly Suspected ^d	133	136	1.22 mmHg; [-4.45; 6.90]	⊕○○○ (Very Low)	Not Important (2)	
Diastolic	Blood Press	ure									
7	RCT	+ ^a	++ ^c	-	Publication Bias Strongly Suspected ^d	119	118	0.06 mmHg; [-3.22; 3.34]	⊕000 (Very Low)	Not Important (2)	
Exercise 7	olerance										
11	RCT	+ ^a	++ ^c	-	Strong Association	161	164	2.39 ml/kg per min; [0.99; 3.79]	⊕⊕○○ (Low)	Important (6)	
Body Mas	s Index										
8	RCT	+ ^a	+ ^b	-	Strong Association	144	150	-0.73 kg/m ² ; [-1.38; -0.09]	⊕⊕⊕○ (Moderate)	Important (6)	

- = Not Serious; + = Serious; + = Very Serious; CI = Confidence Interval; RCT = Randomized Controlled Trials

^a High risk for detection bias

 $^{b}25\%{<}I^{2}{<}75\%$

 c I² \geq 75%

^d High risk for publication bias based on funnel plots

https://doi.org/10.1371/journal.pone.0203662.t002

standard care. In line with the most recent Cochrane review [11], aerobic exercise may thus be beneficial for the CV risk profile. We did not find differences in blood pressure following an aerobic training program compared to standard care. Hence, our study supports European guidelines on physical exercise are also applicable in patients with CKD stages 3–4 [9].

Even though only two studies used exercise tolerance as primary outcome, it is not really surprising to find an increase in VO₂peak after an aerobic exercise intervention in patients with CKD stages 3–4, as this effect is well established in other settings [31, 32]. We considered an increase of 2.38 ml/min per kg (i.e. +10.9%) in VO₂peak as clinically relevant based on a minimal clinically important difference of 2 ml/min per kg or 6% reported in studies including patients with other chronic diseases [33–35]. Also the accompanying improvements in global and physical aspects of Quality of Life (four included studies assessing Quality of Life found clinical relevant changes) indicated the improvement in VO₂peak being of clinical relevance [21, 25–27]. Aerobic training has been shown to effect several central and peripheral CV adaptations such as improved cardiac output, decreased peripheral vascular resistance, higher blood volume, expanded capillary volume and increased peripheral O₂-extraction, improving maximal oxygen uptake [36], with shear stress as key factor in vascular adaptations [37]. It is well documented that plasma volume expands up to 25% after 10-14 exercise sessions through increased plasma albumin levels and sodium retention in sedentary healthy subjects. A sustained 8-10% higher plasma compared to erythrocyte volume has also been noted after 30 days of training in sedentary people [38].

Sympathetic vasomotor over-activity is already present in the early stages of CKD and might play a role in the further deterioration of kidney function [39, 40]. Aerobic exercise restores surrogate parameters of sympathetic nervous system over-activity in patients with

Study or Subgroup Mean SD Total Mean SD	Cor		Control group			ing gro	up	Mean Difference	Mean Difference
1.1.1 Generation Role Acike et al. (2015) 1.4 4.67 15 3.5 4.79 1.4 4.90 [1.45, 8.35] Baria et al. (2014) 1.8 6.84 9 3.6 3.91 10 5.40 [0.32, 10.48] Baria et al. (2014) 4.8 6.84 9 3.6 3.01 [1.01, 12.99, 4.59] Heading et al. (2015) 4.8 6.84 9.77 7.51 8 3.01 [1.01, 12.99, 4.59] Leehry et al. (2016) -3.5 7.32 8.4 -9.95 7.44 7.24 [1.67, 3.36] Leehry et al. (2016) -3.1 6.5 1.6 1.5 7.31 1.4 1.20 [2.3, 4.61] Mike et al. (2016) -3.4 4.35 1.54 1.4 4.55 1.50 (1.4, 4.13) Test for overall effect Z = 2.14 (P = 0.03) 1.4 4.80 [2.06, 7.4, 5.4] 1.90 [2.02, 7.58] Test for overall effect Z = 2.14 (P = 0.03) 1.0 7.66 [7.4, 5.4] 1.00 [7.67, 7.2 3.40 [1.01, 0.80] Leehry et al. (2015) 7.8 3.22 [1.0, 7.5 3.40 [1.01, 0.80] 1.30 [1.22 [1.42, 8.69] 1.30 [1.22 [1.42, 8.69] Leehry et al. (2016) 7.6 7.7 <td>Study or Subgroup</td> <td>Mean</td> <td>SD</td> <td>Total</td> <td>Mean</td> <td>SD</td> <td>Total</td> <td>IV, Random, 95% Cl</td> <td>IV, Random, 95% Cl</td>	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Random, 95% Cl	IV, Random, 95% Cl
Acide et al. (2015) 1.4 4.67 15 -3.5 4.79 14 4.90 (14.5, 3.5) Baris et al. (2014) Home Based 1.8 6.84 9 -1.8 6.36 3 31 0 5.40 (0.2); 10.48 Baris et al. (2014) Home Based 1.8 6.84 9 -1.8 6.36 3 34.0 [2.28, 0.48] Headley et al. (2015) -5 11.45 11 -1 6.53 10 -4.00 [-12.59, 4.58] Headley et al. (2015) -5 18 0 -14 7.7 5 3 -2.41 [H 273, 397] Leehey et al. (2016) -3.37 3.20 4 -0.96 7.44 7 7 -2.41 [H 273, 397] Leehey et al. (2015) -1.8 4.43 21 -5.4 4.51 23 38.0 [0.19, 8.21] Stabbad (25% C) -1.8 4.43 21 -5.4 4.51 23 38.0 [0.19, 8.21] Stabbad (25% C) -1.8 4.43 21 -5.4 4.51 23 38.0 [0.19, 8.21] Stabbad (25% C) -1.7 28 4.10 -2.6 9.13 3.2 14 -2.6 15 2 -2.6 1.0 12.28] To rearrowood et al. (2015) -1.8 4.43 21 -1.1 4.4 19 1.50 -1.2 2.41 [-2.3, 1.7.58] Headley et al. (2015) -1.8 4.35 21 -1.1 4.4 19 1.50 -1.2 2.41 [-2.3, 1.7.58] Headley et al. (2015) -1.8 4.43 21 -1.7 48 11 -2.0 4.13 2.4 12.3 1.23 1.41 -1.0 2.0 +1.2.8 1.7.58] Headley et al. (2015) -1.7 28 4.10 -2.6 8 1.9 1 -0.00 +6.74 5.140 -1.58 1.50 -1.528 (-1.40 -1.58 -1.5	1.1.1 Glomerular Filtration Rate								
Banie stal. (2014) Home Based Banie stal. (2014) Home Based Banie stal. (2015) Banie stal. (2015) Banie stal. (2015) Banie stal. (2015) Banie stal. (2015) Banie stal. (2015) Banie stal. (2016) Banie stal. (2017) Banie stal. (2016) Banie stal. (2016) Banie stal. (2017) Banie stal. (2017) Banie stal. (2017) Banie stal. (2016) Banie stal. (2017) Banie stal. (2017) Banie stal. (2017) Banie stal. (2017) Banie stal. (2016) Banie stal. (2017) Banie stal. (2018) Banie sta	Aoike et al. (2015)	1.4	4.67	15	-3.5	4.79	14	4.90 [1.45, 8.35]	
Baria et al. (2014) Home Based 1.8 6.84 9 -1.6 5.95 8 .0.4 0.0 +12.89, 4.88 Headiny et al. (2015) -5 11.45 11 -1 8.53 10 +0.0 +12.29, 4.89 Headiny et al. (2015) -5 18.45 11 -1 8.53 10 +0.0 +12.29, 4.89 Leehery et al. (2016) -3.37 3.20 4 -0.96 7.44 7 -2.41 (4.72, 3.97) Leehery et al. (2016) -3.37 3.20 4 -0.96 7.44 7 -2.41 (4.72, 3.97) Heading et al. (2016) -4.8 4.49 21 -5.4 4.51 25 3.00 (0.39, 6.21) Subtotal (2015) -4.8 4.49 21 -5.4 4.51 25 3.00 (0.39, 6.21) Van Creanencrock et al. (2016) -4.8 4.49 21 -5.1 4 4.5 12 5 3.00 (0.39, 6.21) Subtotal (2055 C) -4.8 4.49 21 -5.1 4 4.5 12 5 3.00 (0.39, 6.21) Subtotal (2055 C) -7.2 8.49 10 2.6 9.030 4 4.60 (5.00, 1.2.28) Heading et al. (2015) -7.8 11 0 0 7 6.81 10 -0.00 (6.74, 5.14) Heading et al. (2015) -7.8 11 0 0 7 6.81 10 -0.00 (6.74, 5.14) How on et al. (2015) -7.8 7.13 1 7.14 4 60.00 (1.20, 1.000) Leehery et al. (2015) -7.8 7.13 1 7.14 5.00 (1.20, 3.067) How on et al. (2015) -7.8 7.13 1 7.14 5.00 (1.20, 3.067) Heading et al. (2015) -7.8 7.13 1 7.14 6.00 (1.20, 3.067) Heading et al. (2015) -7.8 7.13 1 7.14 4 5.00 (1.20, 3.067) Heading et al. (2015) -7.8 7.13 1 7.14 4 5.00 (1.20, 3.067) Heading et al. (2015) -7.8 7.13 1 7.14 4 5.00 (1.20, 3.067) Heading et al. (2015) -7.8 7.13 1 7.14 4 5.00 (1.20, 3.067) Heading et al. (2015) -7.8 7.13 1 7.14 4 5.00 (1.20, 3.067) Heading et al. (2015) -7.8 7.13 1 7.7 2.4 2.5 2.10 (1.00, 3.0.67) Heading et al. (2015) -7.8 7.13 1 7.24 2.5 2.10 (1.00, 3.0.67) Heading et al. (2015) -7.8 1.5 0.6 2.5 1 14 -5.70 (7.3.9, 4.01) Heading et al. (2015) -7.8 1.5 0.6 2.8 1.5 -2.9 1.0 3.0 4.60 (0.00, 9.00) Heading et al. (2015) -7.8 1.5 0.6 2.8 1.5 -2.9 1.0 3.0 4.60 (0.00, 9.00) Heading et al. (2015) -7.8 1.0 2.8 1.67 -2.9 2.77 8 5.000 (1.20, 2.00, 2.00) Heading et al. (2015) -0.8 2.8 1.5 -2.2 6.8 1 Heading et al. (2015) -0.5 2.8 1.5 -2.2 6.8 1 Heading et al. (2015) -0.5 2.8 1.5 -2.8 1.5 -2.8 1.00 1.200, 0.000, 0.78 10 Heading et al. (2015) -0.5 2.8 1.5 -2.8 1.69 10 Heading et al. (2015) -7.8 1.0 1.7 7.7 8 1.5 0.0000, 7	Baria et al. (2014) Centre Based	1.8	6.84	9	-3.6	3.91	10	5.40 [0.32, 10.48]	_
Oreenvood et al (2015) 48 0.68 10 -3.7 7.51 6 3 5.0 (1.0.1, 15.98) Howden et al (2017) -0.5 6.3 36 11 -1 0.83 10 -0.00 (1.25, 4.63) Leehrey et al. (2016) -3.7 3.7 3.28 4 -0.96 7.44 7 -2.41 18.79, 3.71 Leehrey et al. (2016) -3.8 6.39 21 6.4 4.51 25 3.80 (0.98, 6.21) Van Crearenchroeck et al (2015) -0.4 4.35 21 -1.1 4.45 10 1.50 (1.23, 4.23) Subtotal (95% C1) -4.4 (0.16) -0.03 (1.4 -0.6 0.03), P= 50% Test for overal effect Z= 2.14 (P= 0.03), P= 50% Test for overal effect Z= 2.14 (P= 0.03) 1.12 Systolic Blood Pressure Active et al. (2015) -3.8 3.2 3.5 15 14 3.8 14 -10.20 (1.2.81, -7.50) (neterwood et al. (2015) -3.8 3.2 3.5 15 14 3.8 14 -10.20 (1.2.81, -7.50) (neterwood et al. (2015) -3.8 3.2 3.5 15 14 3.8 14 -0.03, 0.12, 220 Headley et al. (2015) -3.8 3.2 3.5 15 14 3.8 14 -0.03, 0.12, 220 Headley et al. (2015) -3.8 3.2 1 13 4.7 7 25 3.40 (-10, 0.80) Correerwood et al. (2015) -7.6 7 13 1 7 14 0.001 (-2.00) Subtotal (95% C1) -4.6 0.7 5.0 12 1 7.7 28 -4.40 (-10, 0.80) Subtotal (95% C1) -7.0 8 11 0.7 6.8 110 -0.01 (-2.00) Headley et al. (2015) 7 6.7 13 1 7 14 0.001 (-2.3, 0.50) Subtotal (95% C1) -7.4 0.8 4.50 -10.0 1.10 0.00001; P= 91% Test for overal effect Z= 0.42 (P= 0.67) Headley et al. (2015) -9 2.11 15 6.6 2.51 14 -5.70 (7.79, -4.01) Orgenwood et al. (2015) -9 2.12 15 0.64 7 0.00101; P= 91% Test for overal effect Z= 0.03 (P= 0.87) Headley et al. (2015) -2 2.63 21 13 -4.7 22 6.64 14 -0.70 (-12.7, 12.27) Headley et al. (2015) -2 2.63 15 -2 2.66 14 -0.00 0.00, 0.00 Headley et al. (2015) -2 2.63 15 -2 2.66 14 -0.00 12.27, 12.71 Headley et al. (2015) -0.6 2.8 15 -2 2.66 14 -0.00 12.27, 12.71 Headley et al. (2015) -0.6 2.8 15 -2 2.66 14 -0.00 12.27, 12.71 Headley et al. (2015) -0.6 2.8 15 -2 2.66 14 -0.00 12.27, 12.71 Headley et al. (2015) -0.6 2.8 15 -2 2.66 14 -0.00 12.27, 12.71 Headley et al. (2015) -0.6 2.8 15 -2 2.66 14 -0.00 12.27, 12.71 Headley et al. (2015) -0.6 2.8 15 -2 2.66 14 -0.00 0.28, 0.73 Headley et al. (2015) -0.6 2.8 15 -2 2.66 14 -0.00 0.28, 0.73 Headley et al. (201	Baria et al. (2014) Home Based	1.8	6.84	9	-1.6	5.95	8	3.40 [-2.68, 9.48]	
Headley et al. (2012) -5 11.45 11 -1 8.53 10 -4.00 [+12.68, 45.69] Headley et al. (2013) -05 6.9 86 14 7.5 36 -1.00 [+2.31, 45.9] Leehey et al. (2016) -1.8 4.49 21 -5.4 4.51 25 36.00 (.9.0, 6.21) Non Creanethorek et al. (2016) -1.8 4.49 21 -5.4 4.51 25 36.00 (.9.0, 6.21) Subtool (65% C) -1.2 4.2 5 21 -1.1 4.45 19 1.50.01 -1.2 4.2 31 Subtool (65% C) -1.2 4.2 5 21 -1.1 4.45 19 1.50.01 -1.2 4.2 31 Test for overall effect $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.42$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.32$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 0.32$ ($P = 0.03$); $P = 10\%$ Test for overall effect $Z = 0.33$ ($P = 0.03\%$); $P = 10\%$ Test for overall effect $Z = 0.33$ ($P = 0.03\%$); $P = 10\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 90\%$ Test for overall effect $Z = 0.33$ ($P = 0.00000$); $P = 0.000000$; $P = 0.00000$; $P = 0.00000$; $P = 0.00000$; P	Greenwood et al. (2015)	4.8	8.69	10	-3.7	7.51	8	8.50 [1.01, 15.99]	
Howden tai (2013) -0.5 6.9 36 1.4 7.5 36 -1.00 (5.2) 1.43 Leehey et al. (2016) -3.7 3.28 4 -0.96 7.44 7 -2.44 (1.87.9, 37.1 Leehey et al. (2016) -3.6 6.7 18 1.9 7.31 14 1.20 (3.7.4, 6.14) Mikele et al. (2016) -1.8 4.49 21 -5.4 4.51 25 3.300 (0.9.8, 6.2) Van Creanenbroeck et al. (2015) -0.4 4.35 21 -1.1 4.45 19 1.50 (1.2.3, 4.33) Subtotal (95% CI) -1.1 1.4 25 19 1.50 (1.2.3, 4.33) 1.1.2 Systolic Blood Pressure Aolke et al. (2015) -3.8 3.35 15 14 3.8 14 -10.20 (1.2.81, 7.59) Headley et al. (2015) -3.8 3.25 17.5 36 2.4 16.2 36 -10.09 (8.6, 5.9) Headley et al. (2015) -0.1 7.08 11 0.7 6.81 10 -0.00 (6.7.80, 15.00) Headley et al. (2015) -7.6 36 2.4 16.2 36 -10.09 (8.6, 5.9) Headley et al. (2016) 7 6 7.1 8 1 7.1 4 6.00 (1.2.3, 9.67) Leehey et al. (2016) 7 7 6.7 18 1 7.1 4 6.00 (1.2.3, 9.67) Headley et al. (2015) 7 6 37 13 6 .01 33 6.021 3.3 1.22 (1.445, 6.90) Headley et al. (2015) 7 7 6.7 18 1 7.7 14 6.00 (1.2.3, 9.67) Subtotal (95% CI) -1.2 5.6 1.4 1 7.2 (4.2.6 5.00 (1.5.6) Subtotal (95% CI) -1.2 5.8 5.0 d - 7 (9.4.00001); P = 91% Test for overall effect Z = 0.42 (P = 0.67) 1.1.3 Datatolic Blood Pressure Aolke et al. (2015) 7.8 3.28 1.1 -2.2 2.66 14 1.40 (5.05, 3.39) Eacher et al. (2015) 7.8 3.97 21 1.7 2.4 25 7.10 (1.05, 4.15) Headley et al. (2015) 7.8 3.97 21 1.7 2.4 25 7.10 (1.05, 4.15) Headley et al. (2015) 7.8 3.1 9 -3 2.42 10 2.30 (1.02, 23.03) Headley et al. (2015) 7.8 3.1 9 -3 2.42 10 2.30 (1.02, 23.03) Headley et al. (2015) 7.8 3.1 9 -3 2.42 10 2.30 (1.02, 23.03) Headley et al. (2015) 7.1 2.15 7.1 9 -2.3 2 8 1.00 (1.6, 22, 23.34) Heterogeneity Tat# = 1.52 C.1^m = 2.8 1.5 7.1 7 -2.2 2.66 14 1.40 (5.05, 3.39) Eacher et al. (2015) 7.1 2.15 7.1 9 -2.3 2 7.6 1.50 (2.16, 5.21) Subtotal (95% CI) -1.1 4.1 8 1.1 3.1 4 2.00 (1.00, 2.26, 1.23) Headley et al. (2015) 7.1 2.15 7.1 9 -2.2 2.65 1.4 1.52 7.10 (1.05, 2.23, 3.21) Heterogeneity Tat# = 1.45 (2.1^m = 4.81, 0.416 4.20 1.1 0.3 2.01 (1.6, 5.22) Subtotal (95% CI) -1.1 4.1 8 1.1 3.1 4 2.00 (1.02, 2.07) Headley et al. (2015) 0.3 2.1	Headley et al. (2012)	-5	11.45	11	-1	8.53	10	-4.00 [-12.59, 4.59]	
Leehey et al. (2019) -3.37 3.28 4 -0.96 7.44 7 -2.41 8.79, 3.87 Meile et al. (2015) -1.8 4.49 21 6.54 4.51 25 3.60 (0.99, 6.21) Van Creanentbreck et al. (2015) -1.8 4.49 21 6.54 4.51 25 3.60 (0.99, 6.21) Subtotal (6% CI) -1.23 4.23 1 -1.1 4.45 19 1.50 (1-123, 4.23) Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 0.24$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 0.24$ ($P = 0.03$); $P = 50\%$ Testro overall effect. $Z = 0.24$ ($P = 0.0000$); $P = 91\%$ Testro overall effect. $Z = 0.24$ ($P = 0.0000$); $P = 91\%$ Testro overall effect. $Z = 0.24$ ($P = 0.00000$); $P = 91\%$ Testro overall effect. $Z = 0.42$ ($P = 0.00000$); $P = 91\%$ Testro overall effect. $Z = 0.42$ ($P = 0.00000$); $P = 91\%$ Testro overall effect. $Z = 0.32$ ($P = 0.000000$); $P = 91\%$ Testro overall effect. $Z = 0.32$ ($P = 0.000000$); $P = 0.0000000000000000000000000000000000$	Howden et al. (2013)	-0.5	6.9	36	1.4	7.5	36	-1.90 [-5.23, 1.43]	
Leehey et al. (2016) 3.1 6.75 18 1.9 7.31 14 1.2013.74, 6.14 Mike et al. (2016) 1.8 4.49 21 -5.4 4.51 25 3.00 (0.96, 6.21) Van Craenenbroek et al. (2015) 0.4 4.35 21 -1.1 4.45 19 1.50(-1.23, 4.23) Subtotal (59% C) 154 151 2.10(-1.23, 4.23) Test for overall effect $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 2.14$ ($P = 0.03$); $P = 50\%$ Test for overall effect $Z = 2.14$ ($P = 0.03$) 1.2 Systolic Blood Pressure Aoke et al. (2015) 7.2 8.49 10 2.6 8.03 6 4.60(-3.06, 12.26) Headley et al. (2015) 7.2 8.49 10 2.6 8.03 6 4.60(-3.06, 12.26) Headley et al. (2015) 7.2 8.49 10 2.6 8.03 6 4.60(-3.06, 12.26) Headley et al. (2016) 7.2 8.49 10 2.6 8.03 6 4.60(-3.06, 12.26) Headley et al. (2016) 7.2 8.47 10 7.6 8.11 0 -0.80 (E 7.4, 5.14) Headley et al. (2016) 7 6.7 18 1 7 14 6.00 (1.30, 10.80) Van Craenenbroek et al. (2015) 9 5.76 21 3 6.06 19 8.00 (2.3, 9.67) Headley et al. (2015) 7.8 4.57 10 2.1 7.63 8 0.50 (1.00, 0.00) Headley et al. (2015) 7.8 4.57 10 2.1 7.63 8 0.50 (1.00, 0.00) Headley et al. (2015) 7.8 4.57 10 2.1 7.83 8 6.50 (1.06, 0.115, 0.00) Headley et al. (2015) 7.8 4.57 10 2.1 7.83 8 6.50 (1.06, 0.115, 0.00) Headley et al. (2015) 7.8 4.57 10 2.1 7.83 8 6.50 (1.06, 0.115, 0.00) Headley et al. (2015) 7.8 4.57 10 2.1 7.83 14 4.50 (1.00, 9.4 13) Headley et al. (2015) 7.8 2.2 8.1 5 -2 2.66 14 1.40 (1.05, 9.3 30) Headley et al. (2015) 7.8 4.57 110 2.2 2.63 2.1 13 3.19 19 -0.06 (-3.22, 3.34) Heterogeneity. Tau ² = 5.15 (2. Chl ² = 4.8 0.9, dt = 6 (P < 0.00001), P = 88% Test for overall effect $Z = 0.03$ (P = 0.97) 1.14 VO2peak Aoike et al. (2015) -0.6 2.8 15 -2 2.266 14 1.40 (1.05, 9.3 30) Eachey et al. (2015) -0.6 1.8 15 11 -1.4 2.26 10 3.20 (1.02, 5.3) Heterogeneity. Tau ² = 4.31; Chl ² = 4.80, 9.4 t= 6 (P < 0.00001), P = 80% Test for overall effect $Z = 0.33$ (P = 0.0008) Heterogeneity. Tau ² = 4.31; Chl ² = 9.24, de = 0.00001), P = 90% Test for overall effect $Z = 0.33$ (P = 0.0008) Heterogeneity. Tau ² = 4.31; Chl ² = 9.24, de = 0.00001), P = 90% Test for	Leehey et al. (2009)	-3.37	3.28	4	-0.96	7.44	7	-2.41 [-8.79, 3.97]	
Melet et al (2016) -1.8 4 49 21 -54 4 51 25 3.60 [0.99, 6.21] Subtotal (95% C) -1.4 45 19 -1.50 [-1.23, 4.23] Subtotal (95% C) -1.5 -1.4 45 19 -1.50 [-1.23, 4.23] Test for overall effect $2 = 2.14$ ($P = 0.03$), $P = 60\%$ Test for overall effect $2 = 2.14$ ($P = 0.03$) 1.12 Systolic Blood Pressure Aolke of al (2015) 7.2 8.49 10 2.6 8.03 8 4.60 [-3.06, 12.26] Theadley stal (2015) 7.2 8.49 10 2.6 8.03 9 4.60 [-3.06, 12.26] Theadley stal (2015) 7.2 8.49 10 2.6 8.03 9 4.60 [-3.06, 12.26] Theadley stal (2015) 7.5 8 2.44 17 7.219 7 4.00 [-7.60, 15.60] Leehey stal (2016) 7.5 8 2.44 17 7.219 7 4.00 [-7.60, 15.60] Leehey stal (2016) 7 6.7 18 1 7 14 6.001 [-3.10, 80] Headley stal (2015) 7 8 5.5, df = 7 (P < 0.00001); P = 91%. Test for overall effect $2 = 0.42$ ($P = 0.57$) 1.13 Diastoic Blood Pressure Aolke et al (2015) 7.8 4.57 10 2.1 7.63 8 6.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 2.1 7.63 8 6.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 2.1 7.63 8 6.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 2.1 7.63 8 6.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 2.1 7.63 8 6.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 6.36 2.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 6.36 2.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 6.36 2.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 6.36 2.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 6.36 2.50 [-0.50, 11.50] Headley stal (2015) 7.8 4.57 10 6.36 2.50 [-0.50, 11.50] Headley stal (2015) 7.2 2.5 11 8 10 7.2 2.5 2.61 14 1.40 [-0.50, 3.39] Baria et al (2014) Combe Rased -0.7 3.1 9 -3 2.42 10 2.30 [-0.27, 12.27] Subtotal (95% C) -1 18 166 11 -1.42 2.65 10 3.20 [1.10, 5.23] Headley stal (2015) 1.8 2.8 10 1.2 2.10 [0.93, 3.20] Headley stal (2015) 1.8 2.2 4 0.7 1 7 -30 [-1.20, 07, 2.33] Headley stal (2015) 1.8 2.2 4 0.7 1 7 -30 [-1.30, 07, 3.3] Leehey stal (2015) 1.8 2.2 4 0.7 1 7 -30 [-1.70, 057, 2.33] Headley stal (2016) 1.1 1.4 1.6 1 1.33 11 0.60 [-3.2, 2.83] Headley stal (2016) 1.1 1.4 1.6 1.1 3.3 10 0.60	Leehey et al. (2016)	3.1	6.75	18	1.9	7.31	14	1.20 [-3.74, 6.14]	
Van Createnehmoeck et al. (2015) 0.4 4.35 21 -1.1 4.45 19 1.50 [-1.22, 4.23] theterogeneity. Tau ² = 4.54, Ch ² = 18.10, df = 9 (P = 0.03); P = 50% Test for overall effect Z = 2.14 (P = 0.03) 1.12 Systolic Blood Pressure Aolke et al. (2015) 38 3.35 15 14 3.8 14 -10.20 [-1.2.81, -7.59] dreamout et al. (2015) 7.2 8.49 10 2.6 80.3 8 4.60 5.30, 12.20 Headley et al. (2015) 7.2 8.49 10 2.6 80.3 8 4.60 5.30, 12.20 Headley et al. (2015) 7.2 8.49 10 2.6 80.3 8 4.60 5.30, 12.20 Headley et al. (2013) 0.5 17.5 36 2.4 18.2 36 -1.90 [-8.60, 5.80] Leehvey et al. (2016) 7 6.7 18 1 7 14 6.00 [-7.0, 10.60] Van Createnehmoeck et al. (2015) 8 5.76 21 3 6.66 13 6.00 [2.33, 9.67] 1.13 Diastolic Blood Pressure Aolke et al. (2015) 0.9 2.11 15 6.5 2.51 14 -5.70 [-7.39, -4.01] Oreerwood et al. (2015) 0.9 2.11 15 6.5 2.51 14 -5.70 [-7.39, -4.01] Oreerwood et al. (2015) 0.9 2.11 15 6.5 2.51 14 -5.70 [-7.39, -4.01] Oreerwood et al. (2015) 0.9 2.11 15 6.5 2.51 14 -5.70 [-7.39, -4.01] Oreerwood et al. (2015) 0.9 2.11 3 3.18 19 -0.00 [-1.22, 7.12, 2.34] Hedrogeneity. Tau ² = 5.19, Ch ² = 48.09, df = 6 (P < 0.00001); P = 98% Test for overall effect Z = 0.32 (P = 0.00001); P = 98% Test for overall effect Z = 0.03 (P = 0.97) 1.14 VO2peak Aolke et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2016) -1.18 1.65 11 -1.4 266 10 3.20 [1.16, 5.22] Headley et al. (2015) 2.1 2.15 10 -2.3 2.78 8 5.00 [-2.67, 7.34] Heterogeneity. Tau ² = 1.4.52; Ch ² = 48.09, df = 6 (P < 0.00001); P = 88% Test for overall effect Z = 0.03 (P = 0.97) 1.14 VO2peak Aolke et al. (2015) 1.1 14 18 1 1.33 14 0.006 [-322, 3.84] Heterogeneity. Tau ² = 1.4.51; Ch ² = 9.21, df = 10 (P < 0.00001); P = 90% Test for overall effect Z = 0.33 (P = 0.00006) Heterogeneity. Tau ² = 4.31; Ch ² = 9.21, df = 10 (P < 0.00001); P = 90% Test for overall effect Z = 0.33 (P = 0.00006) Heterogeneity. Tau ² = 4.31; Ch ² = 9.21, df = 10 (P < 0.00001); P = 90% Test for overall effect Z = 0.33 (P = 0.00006) Heterogeneity. Tau ² =	Miele et al. (2016)	-1.8	4.49	21	-5.4	4.51	25	3.60 [0.99, 6.21]	
Heterogeneity: Tau ² = 4.54; Ch ² = 18.10, df = 9 (P = 0.03); P = 50% Test for overall effect Z = 2.14 (P = 0.03) 1.12 Systolic Blood Pressure Aolke et al. (2015) 7.2 8.44 10 2.68 8.03 8 14 -10.20 [+1.2.81, -7.59] Greenwood et al. (2015) 7.2 8.44 10 2.68 8.03 8 14 -10.20 [+1.2.81, -7.59] Greenwood et al. (2015) 7.2 8.44 10 2.68 8.03 8 -1.50 [> 68.05, 18.26] Leefhey et al. (2013) 0.5 17.5 38 2.4 16.2 38 -1.50 [> 68.06, 8.68] Leefhey et al. (2013) 0.5 17.5 38 2.4 16.2 38 -1.50 [> 68.06, 8.68] Leefhey et al. (2016) 7.6 1.75 18 1 7 14 4 0.00 [1.2.0, 10.80] Van Craenenbroeck et al. (2015) 9 5.76 21 3 0.66 19 6.00 (2.33, 8.67] Subtotal (9% C) 136 132 -1.66 105 36 -2.50 [+ 6.80, 17.6] Heterogeneity: Tau ² = 57.19; Ch ² = 7.85, df = 7. (P < 0.00001); P = 91%. Test for overall effect Z = 0.42 (P = 0.87) 1.13 Diastolic Blood Pressure Aolke et al. (2015) 7.8 4.57 10 2.17 7.63 8 5.50 [+ 5.20, 11.50] Heterogeneity: Tau ² = 4.719; Ch ² = 48.09, df = 6.(P < 0.00001); P = 91%. Test for overall effect Z = 0.03 (P = 0.37) 1.14 VO2peak Aolke et al. (2015) 7.8 4.57 10 2.2 1.3 3.19 19 -1.016 [> 2.22, 0.22] Subtotal (95% C) 118 1.65 11 -1.4 2.86 10 0.00 [1-2.27, 12.7] Van Craenenbroeck et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Heterogeneity: Tau ² = 14.52; Ch ² = 48.09, df = 6.(P < 0.00001); P = 88%. Test for overall effect Z = 0.03 (P = 0.37) 1.14 VO2peak Aolke et al. (2015) 0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Barla et al. (2014) Home Based -0.7 3.1 9 -3 2.42 10 2.30 [0.22, 4.32] Subtotal (95% C) 1.18 1.165 11 -1.4 2.86 10 3.20 (11.85, 2.2] Howden et al. (2015) 0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Barla et al. (2014) Home Based -0.7 3.1 9 -3 2.42 10 2.30 [0.28, 3.31] Heterogeneity: Tau ² = 1.41; Ch ² = 9.21, df = 10 (P < 0.00001); P = 90%. Test for overall effect Z = 0.33 (P = 0.00006) Heterogeneity: Tau ² = 4.81; Ch ² = 9.21, df = 10 (P < 0.00001); P = 90%. Test for overall effect Z = 3.34 (P = 0.00006) Heterogeneity: Tau ² = 4.81; Ch ² = 9.21, df = 10 (P < 0.00	Van Craenenbroeck et al. (2015) Subtotal (95% Cl)	0.4	4.35	21 154	-1.1	4.45	19 151	1.50 [-1.23, 4.23] 2.16 [0.18, 4.13]	•
1.1.2 Systolic Blood Pressure Anike et al. (2015) 3.8 3.35 1.5 1.4 3.8 1.4 -10.20 [12.26], -7.59 Headley et al. (2015) 0.1 7.2 8.49 10 2.6 8.03 8 4.60 [3.06, 12.26] Headley et al. (2014) 0.5 1.7.08 11 0.7 6.81 10 -0.08 [6.7.4, 5.14] Headley et al. (2015) 0.5 1.7.5 3.6 2.4 16.2 3.6 -1.90 [9.69, 5.89] Leehey et al. (2016) 7 6.7 1.8 1 7.1 4 6.00 [1.20, 10.80] Van Craenenbroeck et al. (2015) 9 5.76 21 3 6.60 [1.20, 10.80] Yan Craenenbroeck et al. (2015) 0.9 2.11 1.5 6.6 2.51 1.4 -5.70 [7.7.39, -4.01] Toerewood et al. (2015) 0.9 2.11 1.5 6.6 2.51 1.4 -5.70 [7.7.39, -4.01] Toerewood et al. (2015) 0.9 2.10 1.7.63 8 5.50 [-0.50, 11.50] Headley et al. (2014) 3.8 3.71 1.7.244 2.5 1.00 [-0.52, 1.22] <td>Heterogeneity: Tau² = 4.54; Chi² = Test for overall effect: Z = 2.14 (P =</td> <td>18.10, df : 0.03)</td> <td>= 9 (P =</td> <td>= 0.03);</td> <td>; I² = 509</td> <td>6</td> <td></td> <td></td> <td></td>	Heterogeneity: Tau ² = 4.54; Chi ² = Test for overall effect: Z = 2.14 (P =	18.10, df : 0.03)	= 9 (P =	= 0.03);	; I² = 509	6			
Achie et al. (2015) 3.8 3.35 16 14 3.8 14 + 10.20 [+1.281, -7.59] Headley et al. (2012) -0.1 7.08 11 0.7 6.81 10 -0.80 [+7.4, 51.4] Headley et al. (2012) -0.1 7.08 11 0.7 6.81 10 -0.80 [+7.4, 51.4] Headley et al. (2013) 0.5 17.5 36 2.4 16.2 36 -1.90 [+9.69, 5.69] Leehey et al. (2016) 7 6 7.7 18 1 7 14.0 0.07 7 0.01 (-7.6) (-	1.1.2 Systolic Blood Pressure								
Greenwood et al. (2015) 7.2 9.49 10 2.6 9.03 8 4.60 (3.06, 12.26) Headley et al. (2014) 5.3 6.93 21 1.9 4.77 25 3.40 (5.40, 6.50) Howden et al. (2013) 0.5 17.5 36 2.4 16.2 36 -1.90 (9.69, 5.89) Leehey et al. (2009) 21 7.43 4 17 12.19 7 4.00 (7.60, 15.60) Leehey et al. (2015) 9 5.76 21 3 6.06 19 6.00 (12.3, 9.67) Subtoal (95% C) 136 133 1.22 [4.45, 6.90] Heterogeneity. Taul = 5.71 g, Chi ² = 78.55, di = 7 (P < 0.00001); P = 91% Testfor overall effect Z = 0.42 (P = 0.67) 1.1.3 Diastolic Blood Pressure Aolice et al. (2015) 0.9 2.11 15 6.6 2.51 14 -5.70 [-7.39, -4.01] Greenwood et al. (2015) 7.6 4.17 12.49 7 2.44 5.6 9.00 (1.22, 7.39, -4.01] Greenwood et al. (2015) 7.6 4.17 12.49 7 2.44 5.6 9.00 (1.22, 7.39, -4.01] Greenwood et al. (2015) 7.6 4.17 12.49 7 2.44 5.00, 9.00] Headley et al. (2014) 4.38 3.97 21 1.17 .294 22 7.10 (0.00, 9.00] Headley et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.50 (6.58, 1.78] Leehey et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.60 (6.58, 1.78] Heterogeneity. Tau ⁻ = 14.52; Chi ² = 48.09, di = 6 (P < 0.00001); P = 88% Testfor overall effect Z = 0.03 (P = 0.97) 1.1.4 VO2peak Aoike et al. (2015) 0.6 2.8 15 -2 2.66 14 1.40 (0.59, 3.39] Baria et al. (2014) Home Based -0.7 3.1 9 -3 2.42 10 2.30 (F.0.2, 8.2] Baria et al. (2015) 0.6 2.8 15 -2 2.68 14 1.40 (0.59, 3.39] Baria et al. (2014) Home Based -0.7 3.1 9 -3 2.42 10 2.30 (F.0.3, 3.41) Headley et al. (2015) 0.4 1.49 36 -2.28 4.3 3 3.20 (1.18, 5.23) Leehey et al. (2015) 0.4 1.49 36 -2.28 4.3 3 3.20 (1.18, 5.23) Leehey et al. (2015) 0.5 1.81 21 -1.6 2.04 25 2.10 (0.99, 3.21] Mustate et al. (2015) 0.5 1.81 21 -1.6 2.04 25 2.10 (0.99, 3.21] Mustate et al. (2015) 0.5 1.81 21 -1.6 2.04 25 2.10 (0.99, 3.21] Mustate et al. (2015) 0.5 1.81 21 -1.6 2.04 25 2.10 (0.99, 3.21] Mustate et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 (5.3, 7.84] Heterogeneity fause et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 (5.3, 7.84] Heterogeneity fause et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 (5.3, 7.84] Heterogeneity fause et al. (2015) 0.8	Aoike et al. (2015)	3.8	3.35	15	14	3.8	14	-10.20 [-12.81, -7.59]	
Headley et al. (2012) -0.1 7.08 11 0.7 6.81 10 -0.80 [6.74, 5.14] Headley et al. (2013) 0.5 17.5 36 2.4 16.2 36 -1.90 [9.69, 6.80] Leehey et al. (2015) 7 6.7 18 1 7 12.19 7 4 00.17.60, 15.60] Leehey et al. (2015) 7 6.7 18 1 7 14 6.00 [1.20, 10.80] Van Craenenbroeck et al. (2015) 9 5.76 2.1 3 6.06 13 6.00 [2.33, 9.67] Heterogeneity. Tau" = 57.19, Chi" = 78.5, df = 7 ($P < 0.00001$); $P = 91\%$ Test for overall effect $Z = 0.42$ ($P = 0.67$) 1.1.3 Diastolic Blood Pressure Aoike et al. (2015) 7.6 4.67 10 2.1 7.63 8 5.06 [-0.00, 9.00] Headley et al. (2015) 7.6 4.67 10 2.1 7.63 8 5.06 [-0.00, 9.00] Headley et al. (2015) 7.6 4.67 10 2.1 7.63 8 5.06 [-0.00, 9.00] Headley et al. (2015) 7.6 4.67 10 2.1 7.63 8 5.06 [-0.60, 9.00] Headley et al. (2015) 7.6 4.67 10 2.2 7.63 2.1 3 10 4.50 [-0.00, 9.00] Headley et al. (2015) 7.6 4.67 10 2.2 7.63 2.1 3 19 -1.00 [-2.82, 0.82] Subtotal (95% Ct) 1.2 2.6 114 1 -2 4.3 10 4.50 [-0.00, 9.00] Headley et al. (2015) 7.6 4.67 10 2.2 6.6 12.6 17.6 (-2.80, 0.73) Heterogeneity. Tau" = 14.52; Chi" = 4.8 0.9, df = 6 ($P < 0.00001$); $P = 86\%$ Test for overall effect $Z = 0.03$ ($P = 0.87$) 1.1.4 VO2peak Aoike et al. (2014) Centre Based -0.7 3.1 9 -2.3 2 8 1.60 [-0.85, 7.34] Heterogeneity Tau" = 14.52; Chi" = 4.8 0.9, df = 6 ($P < 0.00001$); $P = 86\%$ Test for overall effect $Z = 0.03$ ($P = 0.97$) 1.1.4 VO2peak Aoike et al. (2015) 1.1 1.14 18 1 1.33 14 0.00 [-0.67, 33] Leehey et al. (2012) 1.8 1.65 11 -1.4 2.26 10 3.20 [1.18, 5.22] Headley et al. (2015) 0.5 2.1 2.1.5 10 -2.9 2.7.8 5.00 (2.66, 7.34] Headley et al. (2015) 0.5 2.01 2.1 5.8 1.99 19 6.60 (5.36, 7.84] Subtotal (95% Ct) 1.14 10 -2.4 1.16 10 1.70 [0.57, 2.83] Leehey et al. (2015) 0.8 2.01 21 -58 1.99 19 6.60 (5.36, 7.84] Subtotal (95% Ct) 1.0 -7 1.47 10 ($P < 0.00001$); $P = 90\%$ Test for overall effect $Z = 3.34$ ($P = 0.00008$) Heterogeneity Tau" = 4.81; Chi" = 99.24; df = 10 ($P < 0.00001$); $P = 90\%$ Test for overall effect $Z = 3.34$ ($P = 0.00008$)	Greenwood et al. (2015)	7.2	8.49	10	2.6	8.03	8	4.60 [-3.06, 12.26]	
Headley et al. (2014) 5.3 6.33 21 1.9 4.77 25 3.40 [$b - 0.0, 6.90$] Leehey et al. (2013) 0.5 175 36 24 162 36 -1.90 [$b - 80, 5.89$] Leehey et al. (2016) 7 6.7 18 1 7 14 6.00 [$1.20, 10.80$] Van Craenenbroeck et al. (2015) 9 5.76 21 3 6.06 133 1.22 [$4.45, 6.39$] Heterogenetic, Tau" = 57.19, Chi" = 78.55, dit " 7 ($r < 0.00001$); I" = 91%. Testfor overall effect Z = 0.42 ($P = 0.67$) 1.13 Distolic Blood Pressure Aolike et al. (2015) 0.9 2.11 15 6.6 2.51 14 -570 [$r.39, -4.01$] Orreenwood et al. (2015) 7.6 4.57 10 2.1 7.63 8 5.50 [$r.000, 5.415$] Headley et al. (2014) 3.8 397 21 1.7 2.94 25 2.10 [$r.005, 4.15$] Headley et al. (2015) 7.6 4.57 10 2.1 7.63 8 5.50 [$r.005, 4.15$] Headley et al. (2014) 3.8 397 21 1.7 2.94 25 2.10 [$r.005, 4.15$] Headley et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.60 [$r.88, 7.10$] Subtotal (95% CI) 118 1.7 2.94 25 2.10 [$r.005, 4.15$] Heterogenetic, Tau" = 14.52; Chi" = 48.09, dir = 6 ($r < 0.00001$); I" = 88% Testfor overall effect Z = 0.03 ($P = 0.97$) 1.14 VO2peak Aolike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [$r.59, 3.39$] Baia et al. (2014) Chime Based -0.7 3.1 9 -3 2.42 10 2.30 [$r.022, 4.82$] Baria et al. (2014) Chime Based -0.7 3.1 9 -3 2.42 10 2.30 [$r.022, 4.82$] Baria et al. (2014) Chime Based -0.7 3.1 9 -2.3 2 8 1.60 [$r.087, 0.87$] Headley et al. (2015) -1.0 82 4.07 1 7 7 -0.30 [$r.1.90, 7.2.33$] Leehey et al. (2015) -1.0 82 4.07 1 7 7 -0.30 [$r.0.87, 0.87$] Miele et al. (2015) 0.8 2.01 21 -1.6 2.04 25 2.10 [$r.0.87, 0.87$] Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 25 2.10 [$r.0.87, 0.87$] Miele et al. (2015) 0.8 2.01 21 -58 1.99 19 6.00 [$r.3.27, 3.39$] Heterogenetic Fau's -1.64 10 -0.7 1.47 10 -2.4 1.16 10 1.70 [$r.0.7, 2.33$] Leehey et al. (2015) 0.8 2.01 21 -58 1.99 19 6.00 [$r.0.87, 0.87$] Miele et al. (2011) 0.5 1.81 21 -1.6 2.04 25 2.10 [$r.0.87, 0.87$] Miele et al. (2015) 0.8 2.01 21 -58 1.99 19 6.00 [$r.0.87, 0.87$] Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 25 2.10 [$r.0.87, 0.87$] Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 2	Headley et al. (2012)	-0.1	7.08	11	0.7	6.81	10	-0.80 [-6.74, 5.14]	
Howden et al. (2013) 0.5 17.5 36 2.4 16.2 36 -1.90 [P.88, 58] Leehey et al. (2016) 7 6.7 18 1 7 12.19 7 4.00[-7.80, 15.60] Van Craenenbroeck et al. (2015) 9 5.76 21 3 6.06 19 6.00 [2.33, 9.67] Subtotal (95% C1) 13 1.22 [-4.45, 6.30] Heterogeneity. Tau" = 57.19, Chi" = 78.55, df = 7 ($P < 0.00001$); $P = 91%$. Test for overall effect $Z = 0.42$ ($P = 0.67$) 1.1.3 Diastolic Blood Pressure Acike et al. (2015) 0.9 2.11 15 6.6 2.51 14 -5.70 [-7.39, -4.01] Greenwood et al. (2015) 7.6 4.57 10 2.1 7.763 8 5.50 [-0.50, 11.50] Headley et al. (2015) 7.6 4.57 10 2.1 7.763 8 5.50 [-0.50, 11.50] Leehey et al. (2015) 7.6 4.57 10 2.1 7.7 2.94 25 2.10 [0.05, 4.18] Leehey et al. (2014) 3.8 3.97 21 1.7 2.94 25 2.10 [0.05, 4.18] Leehey et al. (2013) -2.2 2.63 21 3 3.19 19 -1.00 [-2.82, 0.82] Subtotal (95% C1) 118 109 0.06 [-3.22, 3.34] Heterogeneity. Tau" = 14.52; Chi" = 48.09, df = 6 ($P < 0.00001$); $P = 88%$ Test for overall effect $Z = 0.03$ ($P = 0.97$) 1.1.4 VO2peak Acike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Home Based -0.7 3.1 9 -3 2.42 10 2.30 [-0.22, 4.02] Headley et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.84] Headley et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.84] Headley et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.84] Headley et al. (2015) 0.5 1.81 2.1 -1.6 2.04 25 2.10 [0.98, 3.79] Headley et al. (2015) 0.5 1.81 2.1 -1.6 2.04 25 2.10 [0.98, 7.87] Wincisa et al. (2015) 0.5 1.81 2.1 -1.6 2.04 25 2.10 [0.98, 3.79] Helerogeneity. Tau" = 4.81; Chi" = 99.21; df = 10 ($P < 0.00001$); $P = 90\%$ Test for overall effect $Z = 3.34$ ($P = 0.0008$) Test for overall effect $Z = 3.34$ ($P = 0.0008$) Test for overall effect $Z = 3.34$ ($P = 0.0008$) Test for overall effect $Z = 3.34$ ($P = 0.0008$)	Headley et al. (2014)	5.3	6.93	21	1.9	4.77	25	3.40 [-0.10, 6.90]	
Leehey et al. (2016) 7 6.7 13 4 17 12.19 7 4 0.00 [7.60, 15.60] Van Craenenbroeck et al. (2015) 9 6.76 21 3 6.06 19 6.00 [2.3, 9.67] Subtotal (95% CI) 136 57.6 2.1 3 6.06 19 6.00 [2.3, 9.67] 1.1.3 122 [4.45, 6.90] Heterogeneity: Tau ² = 57.19, Chi ² = 78.55, df = 7 (P < 0.00001); P = 91% Test for overall effect: $Z = 0.42$ ($P = 0.67$) 1.1.3 Diastolic Blood Pressure Aolke et al. (2015) 7.6 4.57 10 2.1 7.53 8 5.50 [-0.50, 11.50] Headley et al. (2015) 7.6 4.57 10 2.1 7.53 8 5.50 [-0.50, 11.50] Headley et al. (2014) 3.8 397 21 1.7 2.94 25 2.10 [0.05, 4.15] Howden et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.60 [-6.98, 1.78] Leehey et al. (2009) 6 10.77 4 6 8.45 7 0.00 [-12.27, 12.27] Van Craenenbroeck et al. (2015) 2 13 3.19 9 -1.00 [-2.42, 0.82] Subtotal (95% CI) 118 119 006 [-3.22, 3.34] Heterogeneity: Tau ² = 4.52; Chi ² = 4.09, df = 6 (P < 0.00001); P = 68% Test for overall effect: $Z = 0.03$ ($P = 0.97$) 1.1.4 VO2peak Aolke et al. (2014) Centre Based -0.7 3.1 9 -3.2 4 10 2.30 [-0.27, 3.34] Baria et al. (2014) Centre Based -0.7 3.1 9 -3.2 4 2 10 2.30 [-0.27, 3.34] Headley et al. (2015) 1.8 15 11 -1.4 2.86 10 3.20 [1.07, 5.33] Leehey et al. (2014) Centre Based -0.7 3.1 9 -3.2 4 2 10 2.30 [-0.27, 8.3 3.00 [1.43, 5.22] Howden et al. (2015) 1.8 165 11 1.4 1.2 8 10 13 200 [1.07, 3.34] Leehey et al. (2016) 1.1 1.4 18 1.3 31 4 0.00 [-0.87, 0.87] Mela et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2016) 1.1 1.14 18 1.3 31 4 0.00 [-0.87, 0.87] Mustal et al. (2014) Centre Based -0.7 1.4 10 (-2.4 1.16 10 1.70 [0.57, 2.33] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% CI) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 9.921, df = 10 (P < 0.00001); P = 90% Test for overall effect: $Z = 3.34$ ($P = 0.00008$)	Howden et al. (2013)	0.5	17.5	36	2.4	16.2	36	-1.90 [-9.69, 5.89]	
Leehey et al. (2016) 7 6.7 18 1 7 14 6.00 [1.20, 10.80] Van Craarenenbroeck et al. (2015) 9 5.76 2.1 3 6.06 19 6.00 [2.33, 9.67] Heterogeneity: Tau" = 67.19; Chi ² = 78.55, df = 7 (P < 0.00001); P = 91% Test for overail effect Z = 0.42 (P = 0.67) 1.13 Diastolic Blood Pressure Aoike et al. (2015) 7.6 4.57 10 2.1 7.63 8 5.50 [F 0.00, 9.00] Headley et al. (2012) 2.5 6.14 11 -2 4.3 10 4.50 [-0.00, 9.00] Headley et al. (2013) -3.2 8.2 38 -0.6 10.6 36 -2.50 [F 3.9], 178] Leehey et al. (2013) -3.2 8.2 38 -0.6 10.6 36 -2.50 [F 3.9], 178] Leehey et al. (2013) -3.2 8.2 38 -0.6 10.6 36 -2.50 [F 3.9], 178] Heterogeneity: Tau" = 14.52; Chi ² = 48.09, df = 6 (P < 0.00001); P = 88% Test for overall effect Z = 0.03 (P = 0.97) 1.14 VOZpeak Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Home Based -0.7 3.1 9 -2.3 2.42 10 2.30 [-0.25, 4.82] Baria et al. (2015) -10. 82 4 -0.7 1 7 -0.30 [-1.30, 0.78] Leehey et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2016) -1 1.14 118 1 1.33 14 0.00 [-0.87, 0.87] Mustate et al. (2015) -1 0.82 4 -0.7 1 7 -0.30 [-1.30, 0.78] Leehey et al. (2016) -1 1.14 118 1 1.33 14 0.00 [-0.87, 0.87] Mustate et al. (2011) 0.7 1.41 10 (-2.4 1.16 10 1.77 [0.70, 7, 2.33] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% Ch) -1 1.14 10 (P < 0.00001); P = 90% Test for overall effect Z = 3.34 (P = 0.0008) 1.0 Contended by the table of the table of the table of the table of table	Leehey et al. (2009)	21	7.43	4	17	12.19	7	4.00 [-7.60, 15.60]	
Van Craenenbroeck et al. (2015) 9 5.76 21 3 6.06 19 6.00 [2.33, 9.67] Heterogeneity: Tau ² = 57.19; Ch ² = 78.55; df = 7 ($P < 0.00001$); $P = 91\%$ Test for overall effect $Z = 0.42$ ($P = 0.67$) 1.3 Diastolic Blood Pressure Aoike et al. (2015) 0.8 2.11 15 6.6 2.51 14 -5.70 [F.39, -4.01] Greenwood et al. (2015) 7.6 4.57 10 2.1 7.63 8 5.50 [F.50, 11.50] Headley et al. (2012) 2.5 6.14 11 -2.4 3 10 4.50 [-0.00, 9.00] Headley et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.60 [5.8, 1.78] Leehey et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.60 [5.8, 1.78] Leehey et al. (2015) 2 2.63 21 3 3.19 19 -1.00 [-2.82, 0.82] Subtotal (95% CI) -118 119 0.06 [-3.22, 3.34] Heterogeneity: Tau ² = 14.52; Ch ² = 48.09; df = 6 ($P < 0.00001$); $P = 88\%$ Test for overall effect $Z = 0.03$ ($P = 0.97$) 1.1.4 VO2peak Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -3 2.42 10 2.30 [-0.22, 4.82] Baria et al. (2015) -1.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -2.3 2.8 8 5.00 [26, 7.34] Headley et al. (2012) 1.8 1.65 111 -1.4 2.86 10 3.20 [1.18, 5.22] How den et al. (2012) 1.8 1.65 111 -1.4 2.86 10 3.20 [1.18, 5.22] How den et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Heterogeneity: Tau ² = 4.81; Ch ² = 99.21, df = 10 ($P < 0.00001$); $P = 90\%$ Test for overall effect $Z = 3.34$ ($P = 0.0008$) Heterogeneity: Tau ² = 4.81; Ch ² = 99.21, df = 10 ($P < 0.00001$); $P = 90\%$ Test for overall effect $Z = 3.34$ ($P = 0.0008$)	Leehey et al. (2016)	7	6.7	18	1	7	14	6.00 [1.20, 10.80]	_
Heterogeneity: Tau ² = 57.19; Ch ² = 78.55; df = 7 ($P < 0.00001$); $P = 91\%$ Test for overall effect: $Z = 0.42$ ($P = 0.67$) 1.3 Diastolic Blood Pressure Aclike et al. (2015) 0.8 2.11 15 6.6 2.51 14 -5.70 (F.3.9, -4.01) Greenwood et al. (2015) 7.6 4.57 10 2.1 7.63 8 5.50 (P.5.01, 15.0) Headley et al. (2012) 2.5 6.14 11 -2.4 3 10 4.50 (F.0.00, 9.00) Headley et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.20 (F.9.8), 1.78] Leehey et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.20 (F.9.8), 1.78] Use hey et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.20 (F.9.8), 1.78] Van Craenenbroeck et al. (2015) 2 2.63 21 3 3.19 19 -0.00 (F.3.22, 3.34] Heterogeneity: Tau ² = 14.52; Ch ² = 48.09, df = 6 ($P < 0.00001$); $P = 88\%$ Test for overall effect: $Z = 0.03$ ($P = 0.97$) 1.14 VO2peak Acike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 (-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -3 2.42 10 2.23 (P.0.22, 4.82] Baria et al. (2015) -1.0 2.9 2.78 8 5.00 (2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 (1.18, 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 (1.07, 5.33] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 (P.87, 0.87] Miele et al. (2016) 1 0.5 1.81 21 -1.6 2.04 25 2.10 (0.99, 3.79] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 (F.0.7, 5.33] Heterogeneity: Tau ² = 4.81; Ch ² = 99.21, df = 10 ($P < 0.00001$); $P = 90\%$ Test for overall effect: $Z = 3.34$ ($P = 0.0008$) Heterogeneity: Tau ² = 4.81; Ch ² = 99.21, df = 10 ($P < 0.00001$); $P = 90\%$ Test for overall effect: $Z = 3.34$ ($P = 0.0008$)	Van Craenenbroeck et al. (2015) Subtotal (95% Cl)	9	5.76	21 136	3	6.06	19 133	6.00 [2.33, 9.67] 1.22 [-4.45, 6.90]	
1.13 Diastolic Blood Pressure Aoike et al. (2015) 0.9 2.11 15 6.6 2.51 14 -5.70 [-7.39, -4.01] Greenwood et al. (2015) 7.6 4.57 10 2.1 7.63 8 5.50 [-5.01, 1.50] Headley et al. (2014) 3.8 3.97 21 1.7 2.94 25 2.10 [0.05, 4.15] Headley et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.80 [-5.98, 1.78] Leehey et al. (2015) 2 2.63 21 3 3.19 19 -0.00 [-12.27, 12.27] Van Craenenbroeck et al. (2015) 2 2.63 21 3 3.19 19 -0.00 [-2.22, 3.34] Heterogeneity: Tau" = 1.45.2; Chi" = 48.09, dif = 6 (P < 0.00001); I" = 88%	Heterogeneity: Tau ² = 57.19; Chi ² : Test for overall effect: Z = 0.42 (P =	= 78.55, d : 0.67)	if = 7 (P	' < 0.0C	1001); I ? :	= 91%			
Aoike et al. (2015) 0.9 2.11 15 6.6 2.51 14 -5.70 [7.39, -4.01] Greenwood et al. (2015) 7.6 4.57 10 2.1 7.63 8 5.50 [-0.50, 11.50] Headley et al. (2014) 3.8 3.97 21 1.7 2.94 25 2.10 [0.05, 4.15] Howden et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.60 [-6.89, 1.78] Leehey et al. (2009) 6 10.77 4 6 8.45 7 0.00 [-12.27, 12.77] Van Craenenbroeck et al. (2015) 2 2.63 21 3 3.19 19 -1.00 [-2.82, 0.82] Subtotal (95% CI) 118 119 0.06 [-3.22, 3.34] Heterogeneity: Tau ² = 14.52; Ch ² = 48.09, df = 6 (P < 0.00001); P = 88% Test for overall effect Z = 0.03 (P = 0.97) 1.1.4 VO2peak Aoike et al. (2015) 2.1 2.15 10 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.07, 5.33] Leehey et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2013) 0.4 4.9 36 -2.8 4.3 34 3.20 [1.07, 5.33] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-8.7, 0.87] Musta et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.6, 7.84] Subtotal (95% CI) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Ch ² = 99.21, df = 10 (P < 0.00001); P = 90% Test for overall effect Z = 3.34 (P = 0.0008)	1.1.3 Diastolic Blood Pressure								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aoike et al. (2015)	0.9	2.11	15	6.6	2.51	14	-5.70 [-7.39, -4.01]	
Headley et al. (2012) Headley et al. (2012) Headley et al. (2014) Headley et al. (2013) Headley et al. (2015) Subtotal (95% CI) Heterogeneity: Tau ² = 14.52; Chi ² = 48.09, df = 6 ($P < 0.00001$); P = 88% Test for overall effect Z = 0.03 ($P = 0.97$) Headley et al. (2014) Headley et al. (2015) Headley et al. (2015) Headley et al. (2014) Headley et al. (2015) Headley et al. (2015) Headley et al. (2014) Home Based Headley et al. (2014) Home Based Headley et al. (2012) Headley et al. (2012) Headley et al. (2013) Headley et al. (2013) Headley et al. (2016) Headley et al. (2016)	Greenwood et al. (2015)	7.6	4.57	10	2.1	7.63	8	5.50 [-0.50, 11.50]	
Headley et al. (2014) Headley et al. (2013) -3.2 8.2 36 -0.6 10.6 36 -2.60 +6.98, 1.78] Leehey et al. (2015) 2 2.63 21 3 3.19 19 -1.00 [-2.82, 0.82] Subtotal (95% CI) Heterogeneity: Tau ² = 14.52; Chi ² = 48.09, df = 6 (P < 0.00001); P = 88% Testfor overall effect Z = 0.03 (P = 0.97) 1.14 VO2peak Aoike et al. (2015) Baria et al. (2015) Creenwood et al. (2015) Creenwood et al. (2015) Creenwood et al. (2015) Creenwood et al. (2015) Leehey et al. (2015) Creenwood et al. (2015) Leehey et al. (2012) Headley et al. (2013) Leehey et al. (2016) Mustata et al. (2016) Mustata et al. (2016) Mustata et al. (2011) Mustata et al. (2011) Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Testfor overall effect Z = 3.34 (P = 0.0008) Extero verall effect Z = 3.34 (P = 0.0008) Extero verall effect Z = 3.34 (P = 0.0008) Extero verall effect Z = 3.34 (P = 0.0008)	Headley et al. (2012)	2.5	6.14	11	-2	4.3	10	4.50 [-0.00, 9.00]	
Howden et al. (2013) 13.2 8.2 36 -0.6 10.6 36 -2.60 [-6.98, 1.78] Leehey et al. (2003) 6 10.77 4 6 8.45 7 0.00 [-12.27, 12.27] Van Craenenbroeck et al. (2015) 2 2.63 21 3 3.19 19 -1.00 [-2.82, 0.82] Heterogeneity: Tau ² = 14.52; Chi ² = 48.09, df = 6 (P < 0.00001); P = 88% Test for overall effect $Z = 0.03$ (P = 0.97) 1.14 VO2peak Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -2.3 2 8 1.60 [-0.85, 4.05] Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.07, 5.33] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 1 0.71 14 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% CI) 1 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); P = 90% Test for overall effect $Z = 3.34$ (P = 0.0008)	Headley et al. (2014)	3.8	3.97	21	1.7	2.94	25	2.10 [0.05, 4.15]	⊢ •−
Leehey et al. (2009) 6 10.77 4 6 8.45 7 0.00 [-12.27, 12.27] Van Craenenbroeck et al. (2015) 2 2.63 21 3 3.19 19 -1.00 [-2.82, 0.62] Subtotal (95% CI) 118 119 0.06 [-3.22, 3.34] Heterogeneity: Tau ² = 14.52; Chi ² = 48.09, df = 6 (P < 0.00001); I ² = 88% Test for overall effect $Z = 0.03$ (P = 0.97) 1.1.4 VO2peak Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -3 2.42 10 2.30 [-0.22, 4.82] Baria et al. (2014) Centre Based -0.7 3.1 9 -23 2 8 1.60 [-0.65, 4.05] Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.07, 5.33] Leehey et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Mustata et al. (2015) 0.5 1.81 21 -1.6 2.04 25 2.10 [0.99, 3.21] Mustata et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotat (95% CI) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: $Z = 3.34$ (P = 0.0008)	Howden et al. (2013)	-3.2	8.2	36	-0.6	10.6	36	-2.60 [-6.98, 1.78]	
Van Craenenbroeck et al. (2015) 2 2.63 21 3 3.19 19 Subtotal (95% CI) 118 19 Heterogeneity: Tau ² = 14.52; Chi ² = 48.09, df = 6 (P < 0.00001); P = 88% Test for overall effect: Z = 0.03 (P = 0.97) 1.1.4 VO2peak Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -2.3 2 8 1.60 [-0.85, 4.05] Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 (1.18, 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 (1.18, 5.22] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Milel et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% CI) 164 10 (P < 0.00001); P = 90% Test for overall effect: Z = 3.34 (P = 0.0008) Ee A. Fuerted back between some while (I) dimension functional (I) P = 0.0001); P = 90% Test for overall effect: Z = 3.34 (P = 0.0008)	Leehey et al. (2009)	6	10.77	4	6	8.45	7	0.00 [-12.27, 12.27]	
Subtotal (95% Cl) 118 119 0.06 [-3.22, 3.34] Heterogeneity: Tau ² = 14.52; Chi ² = 48.09, df = 6 (P < 0.00001); P = 88%	Van Craenenbroeck et al. (2015)	2	2.63	21	3	3.19	19	-1.00 [-2.82, 0.82]	
Heterogeneity: Tau ² = 14.52; Chi ² = 48.09, df = 6 (P < 0.00001); P = 88% Test for overall effect: $Z = 0.03$ (P = 0.97) 1.14 VO2peak Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -3 2.42 10 2.30 [-0.22, 4.82] Baria et al. (2014) Home Based -0.7 3.1 9 -2.3 2 8 1.60 [-0.85, 4.05] Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.18, 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2009) -1 0.82 4 -0.7 1 7 -0.30 [1.39, 0.79] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Mustate et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% C1) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: Z = 3.34 (P = 0.0008)	Subtotal (95% CI)			118			119	0.06 [-3.22, 3.34]	
1.1.4 VO2peak Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59 , 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -3 2.42 10 2.30 [-0.22 , 4.82] Baria et al. (2014) Home Based -0.7 3.1 9 -2.3 2 8 1.60 [0.85 , 4.05] Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66 , 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.18 , 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07 , 5.33] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [0.87 , 0.87] Mustata et al. (2011) -0.7 1.41 1.62 2.10 [0.99 , 3.21] -70 -5.8 1.99 19 6.60 [5.36 , 7.84] Subtotal (95% Cl) 164 161 2.39 [0.99 , 3.79] -10 <td>Heterogeneity: Tau² = 14.52; Chi² : Test for overall effect: Z = 0.03 (P =</td> <td>= 48.09, d : 0.97)</td> <td>∦f = 6 (P</td> <td>' < 0.0C</td> <td>1001); I^z :</td> <td>= 88%</td> <td></td> <td></td> <td></td>	Heterogeneity: Tau² = 14.52; Chi² : Test for overall effect: Z = 0.03 (P =	= 48.09, d : 0.97)	∦f = 6 (P	' < 0.0C	1001); I ^z :	= 88%			
Aoike et al. (2015) -0.6 2.8 15 -2 2.66 14 1.40 [-0.59, 3.39] Baria et al. (2014) Centre Based -0.7 3.1 9 -3 2.42 10 2.30 [-0.22, 4.82] Baria et al. (2014) Home Based -0.7 3.1 9 -2.3 2 8 1.60 [-0.85, 4.05] Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.8, 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 25 2.10 [0.99, 3.21] Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% CI) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: Z = 3.34 (P = 0.0008) Et al. Encrease Increase	1.1.4 VO2peak								
Baria et al. (2014) Centre Based -0.7 3.1 9 -3 2.42 10 2.30 [-0.22, 4.82] Baria et al. (2014) Home Based -0.7 3.1 9 -2.3 2 8 1.60 [-0.85, 4.05] Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.18, 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2009) -1 0.82 4 -0.7 1 7 $-0.30 [-1.39, 0.79]$ Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Leehey et al. (2016) 0.5 1.81 21 -1.6 2.04 25 2.10 [0.99, 3.21] Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% CI) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); P = 90% Test for overall effect: Z = 3.34 (P = 0.0008)	Aoike et al. (2015)	-0.6	2.8	15	-2	2.66	14	1.40 [-0.59, 3.39]	+
Baria et al. (2014) Home Based -0.7 3.1 9 -2.3 2 8 $1.60 [-0.85, 4.05]$ Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 $5.00 [2.66, 7.34]$ Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 $3.20 [1.18, 5.22]$ Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 $3.20 [1.07, 5.33]$ Leehey et al. (2009) -1 0.82 4 -0.7 1 7 $-0.30 [-1.39, 0.79]$ Leehey et al. (2016) 1 1.14 18 1 1.33 14 $0.00 [-0.87, 0.87]$ Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 25 $2.10 [0.99, 3.21]$ Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 $1.70 [0.57, 2.83]$ Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 $6.60 [5.36, 7.84]$ Subtotal (95% Cl) 164 161 $2.39 [0.99, 3.79]$ Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); P = 90\% Test for overall effect: Z = 3.34 (P = 0.0008)	Baria et al. (2014) Centre Based	-0.7	3.1	9	-3	2.42	10	2.30 [-0.22, 4.82]	<u>⊢-</u>
Greenwood et al. (2015) 2.1 2.15 10 -2.9 2.78 8 5.00 [2.66, 7.34] Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.18, 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2009) -1 0.82 4 -0.7 1 7 -0.30 [-1.39, 0.79] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 1 1.41 18 1 1.33 14 0.00 [-0.87, 0.87] Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 2.1 -10 -5 0 5 Subtotal (95% Cl) 164 161 2.39 [0.99, 3.79] -10 -5 0 5 10 Decrease Increase -10 -5 0 5 10 -10 -5 0 5 <td>Baria et al. (2014) Home Based</td> <td>-0.7</td> <td>3.1</td> <td>9</td> <td>-2.3</td> <td>2</td> <td>8</td> <td>1.60 [-0.85, 4.05]</td> <td>+</td>	Baria et al. (2014) Home Based	-0.7	3.1	9	-2.3	2	8	1.60 [-0.85, 4.05]	+
Headley et al. (2012) 1.8 1.65 11 -1.4 2.86 10 3.20 [1.18, 5.22] Howden et al. (2013) 0.4 4.9 36 -2.8 4.3 36 3.20 [1.07, 5.33] Leehey et al. (2009) -1 0.82 4 -0.7 1 7 -0.30 [-1.39, 0.79] Leehey et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 25 2.10 [0.99, 3.21] Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% CI) 164 161 2.39 [0.99, 3.79] -10 -5 0 5 10 Test for overall effect: Z = 3.34 (P = 0.0008) 10 P 0.00001); P = 90% -10 -5 0 5 10 Decrease Increase Increase Increase Increase Increase	Greenwood et al. (2015)	2.1	2.15	10	-2.9	2.78	8	5.00 [2.66, 7.34]	
Howden et al. (2013) Leehey et al. (2009) Leehey et al. (2009) Leehey et al. (2016) Miele et al. (2016) Mustata et al. (2016) Van Craenenbroeck et al. (2015) Van Craenenbroeck et al. (2015) Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: Z = 3.34 (P = 0.0008) Test for overall effect: Z = 3.34 (P = 0.0008) Test for overall effect: Z = 3.34 (P = 0.0008)	Headley et al. (2012)	1.8	1.65	11	-1.4	2.86	10	3.20 [1.18, 5.22]	- • -
Leeney et al. (2009) -1 0.82 4 -0.7 1 7 -0.30 [-1.39, 0.79] Leeney et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 25 2.10 [0.99, 3.21] Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% Cl) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: $Z = 3.34$ (P = 0.0008) Et al. Exercise the batteries are control of the time at (ad/min = 1.52 $\frac{2}{2}$ (2) = 5 $\frac{1}{2}$ (3) = 5 $\frac{1}{2}$ (4) = 5 $\frac{1}{2}$ (4) = 5 $\frac{1}{2}$ (4) = 5 $\frac{1}{2}$ (5) = 5 $\frac{1}{2}$ (7) = 5 $\frac{1}{2}$	Howden et al. (2013)	0.4	4.9	36	-2.8	4.3	36	3.20 [1.07, 5.33]	
Leeney et al. (2016) 1 1.14 18 1 1.33 14 0.00 [-0.87, 0.87] Miele et al. (2016) 0.5 1.81 21 -1.6 2.04 25 2.10 [0.99, 3.21] Mustata et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% Cl) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: $Z = 3.34$ (P = 0.0008) Eig 2. Fourtral table between provide filteration end (culture = 1.52 $\frac{2}{2}$ (2) = 5 is the descent of the descen	Leehey et al. (2009)	-1	0.82	4	-0.7	1	.7	-0.30 [-1.39, 0.79]	- -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Leeney et al. (2016)	1	1.14	18	1	1.33	14	0.00 [-0.87, 0.87]	T_
Immustate et al. (2011) -0.7 1.41 10 -2.4 1.16 10 1.70 [0.57, 2.83] Van Craenenbroeck et al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% Cl) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: Z = 3.34 (P = 0.0008) Line for overall effect: Z = 3.34 (P = 0.0008) Line for overall effect: Z = 3.34 (P = 0.0008) Line for overall effect: Z = 3.34 (P = 0.0008)	Miele et al. (2016) Mustata at al. (2014)	0.5	1.81	21	-1.6	2.04	25	2.10 [0.99, 3.21]	
Van Craenenoroeck er al. (2015) 0.8 2.01 21 -5.8 1.99 19 6.60 [5.36, 7.84] Subtotal (95% Cl) 164 161 2.39 [0.99, 3.79] Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90% Test for overall effect: Z = 3.34 (P = 0.0008) Image: the second	iwustata et al. (2011)	-0.7	1.41	10	-2.4	1.16	10	1.70 [0.57, 2.83]	
Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); l ² = 90% Test for overall effect: Z = 3.34 (P = 0.0008) -10 -5 0 5 10 Decrease Increase	van Graenenproeck et al. (2015) Subtotal (95% CI)	0.8	2.01	21 164	-5.8	1.99	161	0.00 [0.36, 7.84] 2.39 [0.99. 3.79]	•
-10 -5 0 5 10 Decrease Increase	Heterogeneity: Tau ² = 4.81; Chi ² = 99.21, df = 10 (P < 0.00001); I ² = 90%								
	, σοι ιστοτάπι επεσι. Σ = 0.04 (F =	5.5500)							
-10 -5 0 5 10 Decrease Increase								-	<u> </u>
Decrease Increase									-10 -5 0 5 10
	Fig 2 Format al-t- L-t-	alarte (1)) ما - ·			4. (1/		$1.72m^2$ (2)	

(mmHg) and (4) VO_2 peak (ml/kg/min).

PLOS ONE

https://doi.org/10.1371/journal.pone.0203662.g003

PLOS	ONE

	Follow-up Baseline			Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	IV, Random, 95% CI	IV, Random, 95% CI
2.1.1 Glomerular Filtration Rate								
Anike et al. (2015)	31.9	13.7	14	28.4	11.6	14	3 50 (-5 90 12 90)	
Baria et al. (2014) Centre Based	79.4	87	10	25.8	88	10	3 60 [-4 07 11 27]	
Baria et al. (2011) Centre Based	22.1	12.6	Ř	20.0	11 15	Ř	1 60 (-10 06 13 26)	
Greenwood et al. (2015)	40.3	18.7	8	20.1	10.1	2	3 70 [-11 03 18 43]	
Headley et al. (2012)	- 10.5 7 / 7	10.7	10	20.0	20.1	10	1 00 [15 73 17 73]	
Headley et al. (2012)	27.2	75	26	22.2 20.4	20.1	26	1.00[-15.72, 17.72]	
Howden et al. (2013)	37	7.5	30	30.4	12.02	30	-1.40 [-5.18, 2.38]	
Leeney et al. (2009)	24.22	15.6		23.20	12.03		0.96[-13.63, 15.55]	
Leeney et al. (2016)	39.6	19.9	14	41.5	18.8	14	-1.90[-16.24, 12.44]	
Miele et al. (2016)	52.4	19.1	25	4/	12	25	5.40 [-3.44, 14.24]	
Van Craenenbroeck et al. (2015) Subtotal (95% CI)	38.6	14.2	19 151	37.5	13.23	19 151	1.10 [-7.63, 9.83] 0.76 [-1.83, 3.35]	•
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 =$ Test for overall effect: $Z = 0.58$ (P	= 3.48, d = 0.56)	f = 9 (P	= 0.94	4); ² = ()%			
2 1 2 Systolic Blood Pressure								
Aniko et al. (2015)	110 7		1 /	127 7	17.4	11	14 00 [21 54 6 46]	
Aurke et al. (2015) Creenwood et al. (2015)	118./	145	14	132.7	17.4	14		
Greenwood et al. (2015)	133.2	14.6	8	135.8	17.4	8	-2.60[-18.34, 13.14]	
Headley et al. (2012)	117.7	11.21	10	118.4	18.4	10	-0.70 [-14.05, 12.65]	
Headley et al. (2014)	124.5	15.9	25	126.4	17.8	25	-1.90 [-11.26, 7.46]	
Howden et al. (2013)	126.4	16.2	36	128.8	16.1	36	-2.40 [-9.86, 5.06]	
Leehey et al. (2009)	113	16	7	130	28	7	-17.00 [-40.89, 6.89]	
Leehey et al. (2016)	135	18	14	136	19	14	-1.00 [-14.71, 12.71]	
Van Craenenbroeck et al. (2015) Subtotal (95% CI)	132	16	19 133	135	21	19 133	-3.00 [-14.87, 8.87] -5.20 [-9.41, -1.00]	•
Heterogeneity: $Tau^2 = 5.44$: $Chi^2 =$	= 8.22. d	f = 7 (P	= 0.33	$1): ^2 = 0$	15%			-
Test for overall effect: $Z = 2.43$ (P	= 0.02)							
2.1.3 Diastolic Blood Pressure								
Anike et al. (2015)	76.1	44	14	87.7	83	14	-6 60 (-11 52 -1 68)	_ _
Greenwood et al. (2015)	94.4	14.7	2	86.5	15.8	2	_7 10 [_17 05 17 85]	
Headley et al. (2012)	74 5	5 1	10	77.5	12.6	10	2 00 [-6 42 10 42]	
Headley et al. (2012)	77.2	10 E	75	70.5	10.7	25		
Headley et al. (2014)	77.0	10.0	25	79.5	10.2	25		
Howden et al. (2013)	/0.0	10.6	30	74.9	8.1	30	0.60 [-3.76, 4.96]	
Leeney et al. (2009)	65	10		/1	20		-6.00[-22.56, 10.56]	
Van Craenenbroeck et al. (2015)	79		19	82	12	19	-3.00 [-9.25, 3.25]	
Heterogeneity $Tau^2 = 0.00^\circ$ Chi ² =	- 5 91 d	f = 6 (P	= 0.43	2): 1 ² = 1	192	119	-2.16 [-4.58, 0.25]	•
Test for overall effect: $Z = 1.76$ (P	= 0.08)		- 0. 12	,,, - 、	//0			
2.1.4 VO2peak								
Aoike et al. (2015)	26.1	7	14	24.1	7.1	14	2.00 [-3.22, 7.22]	- +
Baria et al. (2014) Centre Based	27.8	6.2	10	24.8	4.5	10	3.00 [-1.75, 7.75]	+
Baria et al. (2014) Home Based	28.9	2.2	8	26.6	5.2	8	2.30 [-1.61, 6.21]	+
Greenwood et al. (2015)	23	5.3	8	20.1	5.8	8	2.90 [-2.54, 8.34]	
Headleviet al. (2012)	19.5	4.6	10	18.1	7.8	10	1.40 [-4.21, 7.01]	_ _
Howden et al. (2013)	26.8	83	36	24	83	36	2 80 [-1 03 6 63]	<u> </u>
Leebeviet al. (2013)	15.6	74	7	14 9	1 1	7		
Leeheyet al. (2003)	17.0	2.7	14	17.5	47	14	-1 00 [-2 62 1 62]	
Miolo at al. (2010)	14.H	2.1	75	10.5	7.Z	74		
Milete et al. (2016) Mustete et al. (2011)	21.2	1.1	20	19.0	0.7	20	1.00 [-2.40, 3.00]	
Musiala et al. (2011)	18.2	1.6	10	15.8	5.5	10	2.40 [0.13, 4.67]	
Subtotal (95% CI)	32.3	6.8	19 161	26.5	5.4	19 161	1.70 [0.65, 2.74]	→
Heterogeneity. Tau ² = 0.18; Chi ² = Test for overall effect: $7 = 3.19$ /P	= 10.60, = 0.001	df = 10 າ	(P = 0	.39); I ^z	= 6%			
τος τοι ονειαι επείτ. 2 = 3.19 (Γ	- 0.001	,						
							-	
								Decrease Increase

Fig 4. Forest plots within-group analysis (training group). (1) glomerular filtration rate (ml/min per 1.73m²), (2) systolic blood pressure (mmHg), (3) diastolic blood pressure (mmHg) and (4) VO₂peak (ml/kg/min).

https://doi.org/10.1371/journal.pone.0203662.g004

CKD stages 3–4, possibly through stimulation of vascular and renal baroregulatory systems on expanded blood volume [19, 41, 42]. Exercise training is a potential stimulus of vasodilation of

the efferent renal arteriole in CKD, suggesting a downregulation of the renin-angiotensin system [43]. Indeed, Cornelissen and Fagard reported a 20% lower plasma renin activity due to aerobic exercise training in healthy sedentary normo- and hypertensive subjects [44].

Endothelial dysfunction is already present in early stages of CKD. The efferent renal arteriole demonstrates a constriction in response to glomerular endothelial injury [45] and may eventually contribute to further deterioration in eGFR and progression to renal microvascular disease [46]. A late-onset decrease in oxidative stress and increase in anti-oxidative factors due to exercise training could prevent progressive fibrosis in the kidneys [47, 48]. Exercise-induced blood volume expansion likely contributes to increased renal blood flow and shear stress in the kidney at rest and during exercise [49–51], the latter stimulating improvements in endothelial function [52]. However, Van Craenenbroeck et al [26] and Headley et al [27] reported no effect on flow-mediated dilation in patients with CKD stages 3–4 after a 12 and 16 weeks aerobic training regimen respectively. As a possible explanation, the authors advance the relatively short intervention period, which might not be enough to reverse established endothelial dysfunction. The results of this meta-analysis do not confirm a beneficial effect of aerobic exercise training on eGFR as a proxy for kidney function (Fig 4). However, they support the hypothesis that exercise might be beneficial in slowing down the progression CKD (Fig 3). Hence, as a preventive strategy, aerobic exercise training might be useful in patients with CKD stages 3–4.

Blood pressure is recognized as a critical remediable aspect in the maintenance of kidney function [37]. Hypertensive subjects experience a more substantial decrease in blood pressure by exercise training than normotensive subjects; underlying mechanisms to this training effect in (non-)healthy hypertensive subjects are improved vascular function (vascular remodelling and endothelial function), decreased sympathetic vasomotor over-activity and downregulation of the renin-angiotensin system [44]. However, the current meta-analysis did not show significant alterations in blood pressure by aerobic exercise training [53]. Our results are in line with the Cochrane review which reported no change in blood pressure following CV exercise. The Cochrane review, however, found a decrease in systolic and diastolic blood pressure in studies describing high intensity aerobic training (>60% VO₂peak) and in studies combining aerobic and resistance training [11]. This meta-analysis included one study with such intensities [20] and four using combined exercise training [1, 19, 21, 24], and sensitivity analysis excluding these citations did not alter results. Due to a generally well-controlled blood pressure (<140/ 90 mmHg) at baseline [54], a great effect-size in blood pressure was not expected. Other possible explanations for the lack of significant change in blood pressure could be the use of and change in antihypertensives masking training effects (i.e. only four studies described unchanged medical therapy [22, 23, 25, 26]) and analysis being of low power since blood pressure was examined as secondary outcome in included studies. An unexpected decrease in systolic blood pressure by standard care was observed.

A moderate and high degree of heterogeneity ($I^2 = 50\%$ and $I^2 = 90\%$) was found in the meta-analysis of eGFR and VO₂peak respectively. Part of the heterogeneity in primary outcome might be due to age as elderly experience a smaller training effect size compared to younger subjects [55, 56]. The three studies covering the oldest participants noted a lower effect size on eGFR [1, 20, 21]. Analyses excluding these studies resulted in an improved eGFR of 3.43 ml/min per 1.73m² [1.62; 5.23] with a negligible observed heterogeneity ($I^2 < 25\%$). Also exclusion of the three studies with the highest mean BMI values [1, 19, 20] resulted in a negligible heterogeneity and subgroup analyses showed favouring results for patients with better body weight control. A detrimental correlation between BMI and oxidative stress in patients with CKD stages 3–4 [57] could result in additional impairments of endothelial function ultimately obliterating exercise training effects on eGFR. It must be noted that two of three studies with mean BMI \geq 32 kg/m² are among those covering the oldest participants [1, 20].

can partially if not almost fully be explained by between-study differences in age and BMI. Even though training modalities are determinants of treatment effects sizes for CV outcomes in patients with CKD [52], nor analyses on training type and duration nor differences in supervision, frequency or intensity of training could explain the high heterogeneity. However, exclusion of the four studies using both aerobic and resistance exercise training also resulted in a negligible heterogeneity ($I^2 = 19\%$). Sensitivity analysis excluding studies which also included patients with CKD stage 2 showed no alterations in effect size and heterogeneity (i.e. 2.16 ml/ min per 1.73m²; $I^2 = 50\%$ in the current analysis vs. 2.98 ml/min per 1.73m²; $I^2 = 56\%$ in the sensitivity analysis for eGFR, p = 0.08 for subgroup analysis) [19–21].

It should be noted that muscle gain following physical exercise also affects eGFR measurements as it increases serum creatinine levels, thereby decreasing eGFR based on equations using creatinine. Hence, an exercise-induced increase in muscle mass may underestimate beneficial effects on kidney function as absolute improvements in eGFR may have been more pronounced than observed.

Quality and strength of evidence regarding VO₂peak and blood pressure are low to very low, mainly due to high risk of bias and heterogeneity. However, exclusion of articles scoring high risk of bias on at least two different criteria did not alter the overall effect. The pooled findings of change in eGFR following aerobic exercise were rated as of moderate strength.

Even though this article could have different conclusions than the Cochrane review, in particular because only RCTs including patients with CKD stages 3–4 were selected, similar findings were retrieved for blood pressure and VO₂peak [11].

Limitations

This review has some contextual limitations and reasonable risk of bias. Selective reporting bias could result from retrospective registration of our protocol. Sedentary patients are less likely to engage in exercise intervention trials, for this reason, selection bias can be a pitfall in our meta-analysis, and results do thus not necessarily apply to the overall population with CKD stages 3–4. No studies were included reporting measured GFR and two estimation equations for eGFR were used with a rather low correlation to measured methods (i.e. r = 0.41 for the CKD-EPI and r = 0.27 for the MDRD) and to each other, inducing heterogeneity and additional bias [58]. Hydration status and muscle mass are undisputable confounders in the effects of aerobic exercise training on eGFR and should be taken into account in future studies. Outcome analyses were at risk of insufficient statistical power of individual studies since not more than 3 included studies described a similar primary outcome. Heterogeneity could be overestimated in our meta-analysis including only a small number of studies as we used the DerSimonian-Laird method. However, this is the standard approach applied by Review Manager 5.3.5 [59].

Conclusions and guidelines for further research

This meta-analysis supports a beneficial effect of aerobic exercise on glomerular filtration rate and exercise tolerance in patients with CKD stages 3–4 when compared to standard care. Given the heterogeneous data, the lack of studies on hard and patient relevant endpoints, and at best low to moderate methodological quality of studies, this meta-analysis should act as an impetus for larger and more conclusive interventional research of high methodological quality (e.g. by examining measured GFR as primary outcome and with hydration status as covariate). Consensus regarding exercise prescription for this vulnerable population can only be reached when the question about which frequency, intensity, type and time of exercise is of most benefit, is answered.

Supporting information

S1 Checklist. PRISMA checklist. (DOC)

S1 Table. Search strategy. (DOCX)

S1 Fig. Funnel plot between-groups analysis for estimated glomerular filtration rate. (TIF)

S2 Fig. Funnel plot between-groups analysis for systolic blood pressure. (TIF)

S3 Fig. Funnel plot between-groups analysis for diastolic blood pressure. (TIF)

S4 Fig. Funnel plot between-groups analysis for $\mathrm{VO}_2\mathrm{peak.}$ (TIF)

S5 Fig. Funnel plot between-groups analysis for body mass index. (TIF)

S6 Fig. Forest plots within-group analysis (control group). (1) glomerular filtration rate (ml/ min per 1.73m²), (2) systolic blood pressure (mmHg), (3) diastolic blood pressure (mmHg) and (4) VO₂peak (ml/kg/min) (TIF)

S7 Fig. Forest plot between-groups analysis of body mass index (kg/m²). (TIF)

S8 Fig. Subgroup analysis of eGFR in studies with mean age ${<}60$ vs. ${\geq}60$ years old. ${\rm (TIF)}$

S9 Fig. Subgroup analysis of eGFR in studies with mean body mass index ${<}32$ vs. ${\geq}32$ kg/m². ${\rm (TIF)}$

S10 Fig. Subgroup analysis of eGFR in studies with intervention duration $\geq\!26$ vs. $<\!26$ weeks.

(TIF)

S11 Fig. Subgroup analysis of eGFR in aerobic exercise training vs. the combination of aerobic and resistance exercise training. (TIF)

Author Contributions

Conceptualization: Karsten Vanden Wyngaert, Amaryllis H. Van Craenenbroeck, Annemieke Dhondt, Patrick Calders.

Data curation: Karsten Vanden Wyngaert.

Formal analysis: Karsten Vanden Wyngaert, Amaryllis H. Van Craenenbroeck, Ans Van Ginckel, Patrick Calders.

Methodology: Karsten Vanden Wyngaert, Wim Van Biesen, Annemieke Dhondt, Anouk Tanghe, Ans Van Ginckel, Bert Celie, Patrick Calders.

Supervision: Amaryllis H. Van Craenenbroeck, Wim Van Biesen, Bert Celie, Patrick Calders.

Validation: Karsten Vanden Wyngaert, Patrick Calders.

Visualization: Karsten Vanden Wyngaert.

Writing - original draft: Karsten Vanden Wyngaert.

Writing – review & editing: Amaryllis H. Van Craenenbroeck, Wim Van Biesen, Annemieke Dhondt, Anouk Tanghe, Ans Van Ginckel, Bert Celie, Patrick Calders.

References

- Howden EJ, Leano R, Petchey W, Coombes JS, Isbel NM, Marwick TH. Effects of Exercise and Lifestyle Intervention on Cardiovascular Function in CKD. Clinical Journal of the American Society of Nephrology. 2013; 8(9):1494–501. https://doi.org/10.2215/CJN.10141012 PubMed PMID: WOS:000325705500007. PMID: 23970136
- Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Archives of internal medicine. 2004; 164(6):659–63. Epub 2004/03/24. <u>https://doi.org/10.1001/archinte.164.6.659</u> PMID: 15037495.
- O'Hare AM, Choi AI, Bertenthal D, Bacchetti P, Garg AX, Kaufman JS, et al. Age affects outcomes in chronic kidney disease. Journal of the American Society of Nephrology: JASN. 2007; 18(10):2758–65. Epub 2007/09/15. https://doi.org/10.1681/ASN.2007040422 PMID: 17855638.
- Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. The New England journal of medicine. 2004; 351(13):1296– 305. Epub 2004/09/24. https://doi.org/10.1056/NEJMoa041031 PMID: 15385656.
- Roshanravan B, Robinson-Cohen C, Patel KV, Ayers E, Littman AJ, de Boer IH, et al. Association between physical performance and all-cause mortality in CKD. Journal of the American Society of Nephrology: JASN. 2013; 24(5):822–30. Epub 2013/04/20. https://doi.org/10.1681/ASN.2012070702 PMID: 23599380; PubMed Central PMCID: PMCPMC3636794.
- 6. Thomas R, Kanso A, Sedor JR. Chronic Kidney Disease and Its Complications. Primary Care: Clinics in Office Practice. 2008; 35(2):329–44. https://doi.org/10.1016/j.pop.2008.01.008 PMID: 18486718
- Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney international. 2005; 67(6):2089–100. Epub 2005/05/11. https://doi.org/10.1111/j. 1523-1755.2005.00365.x PMID: 15882252.
- Van Craenenbroeck AH, Van Craenenbroeck EM, Van Ackeren K, Hoymans VY, Verpooten GA, Vrints CJ, et al. Impaired vascular function contributes to exercise intolerance in chronic kidney disease. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association—European Renal Association. 2016; 31(12):2064–72. Epub 2016/08/20. https://doi.org/10. 1093/ndt/gfw303 PMID: 27540045.
- Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). European Heart Journal. 2016; 37(29):2315–81. https://doi.org/10.1093/eurheartj/ehw106 PubMed PMID: PMC4986030. PMID: 27222591
- Johansen KL. Exercise and chronic kidney disease: current recommendations. Sports Med. 2005; 35 (6):485–99. Epub 2005/06/25. PMID: 15974634.
- 11. Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. (1469-493X (Electronic)).
- KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney international Supplement. 2009;(113): S1–130. Epub 2009/08/01. https://doi.org/10.1038/ki.2009.188 PMID: 19644521.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. BMJ. 2009; 339:b2535. Epub 2009/07/23. https://doi.org/10.1136/ bmj.b2535 PMID: 19622551; PubMed Central PMCID: PMCPMC2714657.
- Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. The BMJ. 2011; 343:d5928. <u>https://doi.org/10. 1136/bmj.d5928</u> PubMed PMID: PMC3196245. PMID: 22008217

- Group GW. Grading quality of evidence and strength of recommendations. BMJ: British Medical Journal. 2004; 328(7454):1490–. PubMed PMID: PMC428525. https://doi.org/10.1136/bmj.328.7454.1490
- Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006; 145(4):247–54. Epub 2006/08/16. PMID: 16908915.
- Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ: British Medical Journal. 2003; 327(7414):557–60. PubMed PMID: PMC192859. https://doi.org/10. 1136/bmj.327.7414.557 PMID: 12958120
- K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39(2 Suppl 1):S1–266. Epub 2002/03/21. PMID: 11904577.
- Headley S, Germain M, Milch C, Pescatello L, Coughlin MA, Nindl BC, et al. Exercise training improves HR responses and V O2peak in predialysis kidney patients. Med Sci Sports Exerc. 2012; 44(12):2392– 9. Epub 2012/07/20. https://doi.org/10.1249/MSS.0b013e318268c70c PMID: 22811032.
- Leehey DJ, Moinuddin I, Bast JP, Qureshi S, Jelinek CS, Cooper C, et al. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovascular Diabetology. 2009;8. https://doi.org/10.1186/1475-2840-8-8 PubMed PMID: WOS:000273040700001.
- Leehey DJ, Collins E, Kramer HJ, Cooper C, Butler J, McBurney C, et al. Structured Exercise in Obese Diabetic Patients with Chronic Kidney Disease: A Randomized Controlled Trial. American Journal of Nephrology. 2016; 44(1):54–62. https://doi.org/10.1159/000447703 PubMed PMID: WOS:000382733200008. PMID: 27385652
- 22. Aoike DT, Baria F, Kamimura MA, Ammirati A, de Mello MT, Cuppari L. Impact of home-based aerobic exercise on the physical capacity of overweight patients with chronic kidney disease. International Urology and Nephrology. 2015; 47(2):359–67. https://doi.org/10.1007/s11255-014-0894-8 PubMed PMID: WOS:000348995500023. PMID: 25503447
- 23. Baria F, Kamimura MA, Aoike DT, Ammirati A, Rocha ML, de Mello MT, et al. Randomized controlled trial to evaluate the impact of aerobic exercise on visceral fat in overweight chronic kidney disease patients. Nephrology Dialysis Transplantation. 2014; 29(4):857–64. https://doi.org/10.1093/ndt/gft529 PubMed PMID: WOS:000336093700023. PMID: 24449105
- 24. Greenwood SA, Koufaki P, Mercer TH, MacLaughlin HL, Rush R, Lindup H, et al. Effect of Exercise Training on Estimated GFR, Vascular Health, and Cardiorespiratory Fitness in Patients With CKD: A Pilot Randomized Controlled Trial. American Journal of Kidney Diseases. 2015; 65(3):425–34. https:// doi.org/10.1053/j.ajkd.2014.07.015 PubMed PMID: WOS:000350170400013. PMID: 25236582
- Mustata S, Groeneveld S, Davidson W, Ford G, Kiland K, Manns B. Effects of exercise training on physical impairment, arterial stiffness and health-related quality of life in patients with chronic kidney disease: a pilot study. Int Urol Nephrol. 2011; 43(4):1133–41. Epub 2010/09/16. <u>https://doi.org/10.1007/s11255-010-9823-7</u> PMID: 20842429.
- 26. Van Craenenbroeck AH, Van Craenenbroeck EM, Van Ackeren K, Vrints CJ, Conraads VM, Verpooten GA, et al. Effect of Moderate Aerobic Exercise Training on Endothelial Function and Arterial Stiffness in CKD Stages 3–4: A Randomized Controlled Trial. American Journal of Kidney Diseases. 2015; 66 (2):285–96. https://doi.org/10.1053/j.ajkd.2015.03.015 PubMed PMID: WOS:000358382100024. PMID: 25960303
- Headley S, Germain M, Wood R, Joubert J, Milch C, Evans E, et al. Short-term aerobic exercise and vascular function in CKD stage 3: a randomized controlled trial. Am J Kidney Dis. 2014; 64(2):222–9. Epub 2014/04/30. https://doi.org/10.1053/j.ajkd.2014.02.022 PMID: 24776325; PubMed Central PMCID: PMCPMC4112010.
- Miele EM, Headley SAE, Germain M, Joubert J, Herrick S, Milch C, et al. High-density lipoprotein particle pattern and overall lipid responses to a short-term moderate-intensity aerobic exercise training intervention in patients with chronic kidney disease. Clinical Kidney Journal. 2017; 10(4):524–31. https://doi.org/10.1093/cki/sfx006 PubMed PMID: WOS:000413791000016. PMID: 28852492
- Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150(9):604–12. Epub 2009/05/06. PMID: 19414839; PubMed Central PMCID: PMCPMC2763564.
- Headley S, Germain M, Wood R, Joubert J, Milch C, Evans E, et al. Blood pressure response to acute and chronic exercise in chronic kidney disease. Nephrology. 2017; 22(1):72–8. https://doi.org/10.1111/ nep.12730 PubMed PMID: WOS:000392531100010. PMID: 26786187
- Clausen JP. Effect of physical training on cardiovascular adjustments to exercise in man. Physiological reviews. 1977; 57(4):779–815. Epub 1977/10/01. https://doi.org/10.1152/physrev.1977.57.4.779 PMID: 333481.
- 32. Turner DL, Hoppeler H, Claassen H, Vock P, Kayser B, Schena F, et al. Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. Acta physiologica

Scandinavica. 1997; 161(4):459–64. Epub 1998/01/16. https://doi.org/10.1046/j.1365-201X.1997. 00246.x PMID: 9429652.

- Corrà U, Mezzani A, Bosimini E, Giannuzzi P. Prognostic value of time-related changes of cardiopulmonary exercise testing indices in stable chronic heart failure: a pragmatic and operative scheme. Eur J Cardiovasc Prev Rehabil. 2006; 13(2):186–92. <u>https://doi.org/10.1097/01.hjr.0000189807.22224.54</u> PMID: 16575271.
- Sietsema KE, Amato A, Adler SG, Brass EP. Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney international. 2004; 65(2):719–24. <u>https://doi.org/ 10.1111/j.1523-1755.2004.00411.x PMID: 14717947</u>
- 35. Swank AM, Horton J, Fleg JL, Fonarow GC, Keteyian S, Goldberg L, et al. Modest Increase in Peak VO (2) is Related to Better Clinical Outcomes in Chronic Heart Failure Patients: Results from Heart Failure and a Controlled Trial to Investigate Outcomes of Exercise Training (HF-ACTION). Circulation Heart failure. 2012; 5(5):579–85. https://doi.org/10.1161/CIRCHEARTFAILURE.111.965186 PubMed PMID: PMC3732187. PMID: 22773109
- Boushel R, Ara I, Gnaiger E, Helge JW, Gonzalez-Alonso J, Munck-Andersen T, et al. Low-intensity training increases peak arm VO2 by enhancing both convective and diffusive O2 delivery. Acta physiologica (Oxford, England). 2014; 211(1):122–34. Epub 2014/02/18. https://doi.org/10.1111/apha.12258 PMID: 24528535.
- Hellsten Y, Nyberg M. Cardiovascular Adaptations to Exercise Training. Comprehensive Physiology. 2015; 6(1):1–32. Epub 2016/01/13. https://doi.org/10.1002/cphy.c140080 PMID: 26756625.
- Convertino VA. Blood volume response to physical activity and inactivity. The American journal of the medical sciences. 2007; 334(1):72–9. Epub 2007/07/17. <u>https://doi.org/10.1097/MAJ.</u> 0b013e318063c6e4 PMID: 17630597.
- 39. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early Sympathetic Activation in the Initial Clinical Stages of Chronic Renal Failure. Hypertension. 2011; 57(4):846. <u>https://doi.org/10.1161/HYPERTENSIONAHA.110.164780 PMID: 21300663</u>
- Neumann J, Ligtenberg G Fau—Klein II, Klein Ii Fau—Koomans HA, Koomans Ha Fau—Blankestijn PJ, Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. (0085–2538 (Print)).
- Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. (0305–1870 (Print)).
- Takaya Y, Kumasaka R, Arakawa T, Ohara T, Nakanishi M, Noguchi T, et al. Impact of Cardiac Rehabilitation on Renal Function in Patients With and Without Chronic Kidney Disease After Acute Myocardial Infarction. Circulation Journal. 2014; 78(2):377–84. <u>https://doi.org/10.1253/circj.CJ-13-0779</u> PubMed PMID: WOS:000330422300019. PMID: 24225305
- Bergamaschi CT, Boim MA, Moura LA, Picarro IC, Schor N. Effects of long-term training on the progression of chronic renal failure in rats. Medicine and Science in Sports and Exercise. 1997; 29(2):169–74. https:// doi.org/10.1097/00005768-199702000-00001 PubMed PMID: WOS:A1997WH75500001. PMID: 9044218
- Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005; 46(4):667–75. Epub 2005/09/15. https://doi.org/10.1161/01.HYP.0000184225.05629.51 PMID: 16157788.
- Futrakul N, Siriviriyakul P, Deekajorndej T, Futrakul P. Hemodynamic maladjustment and disease progression in nephrosis with FSGS. Renal failure. 2004; 26(3):231–6. PMID: 15354970
- Futrakul N, Butthep P, Laohareungpanya N, Chaisuriya P, Ratanabanangkoon K. A defective angiogenesis in chronic kidney disease. Renal failure. 2008; 30(2):215–7. Epub 2008/02/27. https://doi.org/10. 1080/08860220701813335 PMID: 18300124.
- 47. Maia RCA, Sousa LE, Santos RAS, Silva ME, Lima WG, Campagnole-Santos MJ, et al. Time-course effects of aerobic exercise training on cardiovascular and renal parameters in 2K1C renovascular hypertensive rats. Brazilian Journal of Medical and Biological Research. 2015; 48:1010–22. https://doi.org/10.1590/1414-431X20154499 PMID: 26270472
- 48. de Souza PS, Costa da Rocha LG, Tromm CB, Scheffer DL, Victor EG, Lock da Silveira PC, et al. Therapeutic action of physical exercise on markers of oxidative stress induced by chronic kidney disease. Life Sciences. 2012; 91(3–4):132–6. https://doi.org/10.1016/j.lfs.2012.06.028 PubMed PMID: WOS:000312522500009. PMID: 22771699
- 49. Lash JM, Reilly T, Thomas M, Bohlen HG. Adrenergic and pressure-dependent vascular regulation in sedentary and trained rats. The American journal of physiology. 1993; 265(4 Pt 2):H1064–73. Epub 1993/10/01. https://doi.org/10.1152/ajpheart.1993.265.4.H1064 PMID: 7902001.
- Moraes RD, Gioseffi G, Nóbrega ACL, Tibiriçá E. Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits. Journal of Applied Physiology. 2004; 97(2):683–8. <u>https://doi.org/10.1152/japplphysiol.00923.2003</u> PMID: 15090484

- 51. DJ P.E., K H.A., W J.J. Klinische Nefrologie. 4th ed. Amsterdam: Reed Business bv; 2014. 498 p.
- 52. Van Craenenbroeck AH, Van Craenenbroeck EM, Kouidi E, Vrints CJ, Couttenye MM, Conraads VM. Vascular Effects of Exercise Training in CKD: Current Evidence and Pathophysiological Mechanisms. Clinical Journal of the American Society of Nephrology. 2014; 9(7):1305–18. <u>https://doi.org/10.2215/CJN.13031213</u> PMID: 24832091
- Locatelli F, Marcelli D Fau—Comelli M, Comelli M Fau—Alberti D, Alberti D Fau—Graziani G, Graziani G Fau—Buccianti G, Buccianti G Fau—Redaelli B, et al. Proteinuria and blood pressure as causal components of progression to end-stage renal failure. Northern Italian Cooperative Study Group. (0931–0509 (Print)).
- Lawlor DA, Kim L, Morris R, Amuzu A, Whincup P, Ebrahim S. Survival with Treated and Well-Controlled Blood Pressure: Findings from a Prospective Cohort Study. PLOS ONE. 2011; 6(4):e17792. https://doi.org/10.1371/journal.pone.0017792 PMID: 21533232
- Okazaki K, Kamijo Y-I, Takeno Y, Okumoto T, Masuki S, Nose H. Effects of exercise training on thermoregulatory responses and blood volume in older men. Journal of Applied Physiology. 2002; 93(5):1630– 7. https://doi.org/10.1152/japplphysiol.00222.2002 PMID: 12381747
- Zappe DH, Bell GW, Swartzentruber H, Wideman RF, Kenney WL. Age and regulation of fluid and electrolyte balance during repeated exercise sessions. The American journal of physiology. 1996; 270(1 Pt 2):R71–9. Epub 1996/01/01. https://doi.org/10.1152/ajpregu.1996.270.1.R71 PMID: 8769786.
- Ramos LF, Shintani A, Ikizler TA, Himmelfarb J. Oxidative stress and inflammation are associated with adiposity in moderate to severe CKD. Journal of the American Society of Nephrology: JASN. 2008; 19 (3):593–9. Epub 2008/02/08. https://doi.org/10.1681/ASN.2007030355 PMID: 18256365; PubMed Central PMCID: PMCPMC2391046.
- Burballa C, Crespo M, Redondo-Pachon D, Perez-Saez MJ, Mir M, Arias-Cabrales C, et al. MDRD or CKD-EPI for glomerular filtration rate estimation in living kidney donors. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia. 2018; 38(2):207–12. Epub 2017/04/17. https://doi.org/10.1016/j. nefro.2017.02.007 PMID: 28411971.
- IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Medical Research Methodology. 2014; 14(1):25. <u>https://doi.org/10.1186/1471-2288-14-25 PMID: 24548571</u>