
Theranostics 2019, Vol. 9, Issue 24 
 

 
http://www.thno.org 

7251 

Theranostics 
2019; 9(24): 7251-7267. doi: 10.7150/thno.31155 

Research Paper 

DNA methylation-driven genes for constructing 
diagnostic, prognostic, and recurrence models for 
hepatocellular carcinoma 
Junyu Long1,#, Peipei Chen2,#, Jianzhen Lin1,#, Yi Bai1, Xu Yang1, Jin Bian1, Yu Lin3, Dongxu Wang1, Xiaobo 
Yang1, Yongchang Zheng1,, Xinting Sang1,, Haitao Zhao1, 

1. Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 
China 

2. Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 
China. 

3. Shenzhen Withsum Technology Limited, Shenzhen, China 

#These authors contributed equally to this work  

 Corresponding authors: Haitao Zhao, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking 
Union Medical College, Beijing, China; Tel: +86 10 69156042; Fax: +86 10 69156043; Email: zhaoht@pumch.cn. Xinting Sang, Department of Liver Surgery, Peking 
Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Tel: +86 10 69156042; Fax: +86 10 
69156043; Email: sangxt@pumch.cn. Yongchang Zheng, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical 
Sciences & Peking Union Medical College, Beijing, China; Tel: +86 10 69156042; Fax: +86 10 69156043; Email: zhangyongchang@pumch.cn 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2018.11.01; Accepted: 2019.08.05; Published: 2019.09.25 

Abstract 

In this study, we performed a comprehensively analysis of gene expression and DNA methylation data to 
establish diagnostic, prognostic, and recurrence models for hepatocellular carcinoma (HCC). 
Methods: We collected gene expression and DNA methylation datasets for over 1,200 clinical samples. 
Integrated analyses of RNA-sequencing and DNA methylation data were performed to identify DNA 
methylation-driven genes. These genes were utilized in univariate, least absolute shrinkage and selection 
operator (LASSO), and multivariate Cox regression analyses to build a prognostic model. Recurrence 
and diagnostic models for HCC were also constructed using the same genes. 
Results: A total of 123 DNA methylation-driven genes were identified. Two of these genes (SPP1 and 
LCAT) were chosen to construct the prognostic model. The high-risk group showed a markedly 
unfavorable prognosis compared to the low-risk group in both training (HR = 2.81; P < 0.001) and 
validation (HR = 3.06; P < 0.001) datasets. Multivariate Cox regression analysis indicated the prognostic 
model to be an independent predictor of prognosis (P < 0.05). Also, the recurrence model successfully 
distinguished the HCC recurrence rate between the high-risk and low-risk groups in both training (HR = 
2.22; P < 0.001) and validation (HR = 2; P < 0.01) datasets. The two diagnostic models provided high 
accuracy for distinguishing HCC from normal samples and dysplastic nodules in the training and validation 
datasets, respectively. 
Conclusions: We identified and validated prognostic, recurrence, and diagnostic models that were 
constructed using two DNA methylation-driven genes in HCC. The results obtained by integrating 
multidimensional genomic data offer novel research directions for HCC biomarkers and new possibilities 
for individualized treatment of patients with HCC. 
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Introduction 
Hepatocellular carcinoma (HCC) is the most 

common type of liver cancer, the third leading cause 
of cancer-related deaths, and a major aggressive 
malignancy worldwide [1, 2]. HCC is a multistep and 
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complex illness involving a series of genetic and 
epigenetic alterations that include genomic deletion, 
amplification, mutation, and/or insertion [3]. Early 
diagnosis and interventional therapy, together with 
the development of treatment and surgical methods, 
have led to significant progress for treating this 
cancer. However, the vast majority of patients with 
HCC are diagnosed at an advanced stage with 
unfavorable overall survival [4, 5]. Hence, a better 
understanding of HCC functional pathways and 
molecular mechanisms, as well as the development of 
crucial novel biomarkers for early diagnosis and 
prediction of prognosis and recurrence, is urgently 
needed [6].  

Epigenetic alterations are universally recognized 
as inherited modifications that affect gene expression, 
DNA methylation, noncoding DNA, and histone 
acetylation [7]. DNA methylation serves as a major 
epigenetic modification that is involved in the 
transcriptional regulation of genes and maintains the 
stability of the genome. Various cancers have a special 
deregulation signature characterized by aberrant 
DNA methylation [8], which regulates expression of 
many tumor-associated genes and is critical for tumor 
development. Methylation changes, which include 
oncogene hypomethylation and tumor suppressor 
gene hypermethylation, are considered crucial events 
in carcinogenesis, including HCC [9-11]. Therefore, 
detecting DNA methylation-driven genes and 
understanding the molecular details associated with 
these genes might help elucidate the pathogenesis and 
molecular mechanisms of HCC. In recent years, 
several efforts to detect cancer methylation using 
genome-wide techniques have shown that a large 
number of genes exhibit abnormal DNA methylation 
profiles in cancer [12, 13]. Furthermore, these changes 
can be utilized to classify cancer subtypes and predict 
cancer outcomes [13, 14]. Overall, identification of 
genes that act as a “driver” through gene silencing 
mediated by DNA methylation in the initiation, 
maintenance, and development of cancers as well as 
those that act as a “passenger” only during 
tumorigenic processes may be highly beneficial for 
developing optimal targeted epigenetic therapies [15]. 
Nevertheless, distinguishing driver and passenger 
genes has proven to be quite difficult because of the 
numerous genes differentially methylated in human 
cancers [16]. 

Previously, analysis of profiling arrays has 
demonstrated that HCC pathogenesis is a complex 
biological process that involves genetic and epigenetic 
changes [17], and DNA hypermethylation is an early 
event in the development of HCC [18]. One 
meta-analysis offered empirical evidence that 
abnormal promoter methylation of suppressor of 

cytokine signaling 1 (SOCS1) might lead to HCC 
pathogenesis [19]. It has also been reported that 
retinol metabolism genes and serine 
hydroxymethyltransferase 1 are epigenetically 
regulated via promoter DNA methylation in 
alcohol-related HCC [20]. However, most studies 
have focused mainly on either methylation or gene 
expression data and have not conducted combined 
analyses. In general, the lack of a comprehensive 
understanding of the cellular and molecular 
mechanisms driving HCC restricts treatment 
strategies. However, combining methylation 
microarray and gene expression data will allow for 
methylation and expression to be detected 
simultaneously, enabling more accurate identification 
of the biological characteristics of cancers [21]. In the 
present study, transcriptomic and DNA methylation 
profiles were utilized to identify DNA 
methylation-driven genes and to generate three 
prediction models for HCC. Our findings will help 
further improve molecular diagnoses and 
individualized therapies for HCC. 

Methods 
Patients and samples 

A total of 421 RNA-sequencing profiles (371 
HCC samples and 50 nontumor samples), 430 DNA 
methylation profiles (380 HCC samples and 50 
nontumor samples) and the corresponding clinical 
information of HCC patients were acquired from The 
Cancer Genome Atlas (TCGA) (up to September 1, 
2018) (Table S1). Among 380 HCC samples for which 
DNA methylation data were available, 371 HCC 
samples included both RNA-sequencing data and 
paired DNA methylation data (Table S1). Among 371 
TCGA HCC samples, 365 included overall survival 
time and survival statuses, and 317 included 
disease-free survival time and recurrence statuses. 
HCC gene expression data from TCGA were acquired 
with the Illumina HiSeq 2000 RNA Sequencing 
platform, and DNA methylation data were obtained 
with the Illumina Infinium Human Methylation 450 
platform. The average DNA methylation value for all 
CpG sites in the promoters (transcription start sites 
(TSS) 1500 and TSS200) of a gene was calculated as the 
DNA methylation value for that gene. The GSE14520 
microarray dataset including gene expression profiles 
(225 HCC samples and 220 nontumor samples) and 
the associated clinical characteristics, the GSE6764 
microarray dataset including gene expression profiles 
(35 HCC samples and 17 dysplastic nodules samples), 
the GSE89377 microarray dataset including gene 
expression profiles (40 HCC samples and 22 
dysplastic nodules samples), GSE56588 microarray 
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dataset including DNA methylation profiles (214 
HCC samples), and GSE63898 microarray dataset 
including gene expression profiles (214 HCC samples) 
analyzed in current research were acquired from the 
Gene Expression Omnibus (GEO) database [22]. 
Among 225 HCC samples in the GSE14520 dataset, 
221 included overall survival (OS) time and survival 
statuses, and 221 included disease-free survival time 
and recurrence statuses. Data were utilized according 
to the data access policy of GEO and TCGA. All 
analyses were conducted in accordance with relevant 
regulations and guidelines. 

Screening for differentially expressed genes 
(DEGs) in HCC 

To search for genes for critical HCC 
development, we identified DEGs between 371 HCC 
samples and 50 nontumor samples from TCGA 
utilizing the “edgeR” R package [23]. To select genes 
for further analysis, the false discovery rate (FDR) < 
0.05 and |log2 fold change (FC)| > 1 were utilized as 
cutoff criteria. 

Comprehensive analysis of gene expression 
and DNA methylation  

In the current research, the MethylMix package 
in R was utilized for analysis that integrated DNA 
methylation data for 371 HCC samples and 50 
nontumor samples and paired gene expression data 
for 371 HCC samples to identify DNA methylation 
events that significantly affect the expression of the 
corresponding gene, indicating that the gene is a DNA 
methylation-driven gene [24]. The MethylMix 
analysis included three parts. First, the correlation 
between the methylation data and paired gene 
expression data of DEGs for 371 HCC samples was 
determined to identify DNA methylation events that 
lead to changes in gene expression, and only genes 
that passed the correlation filter were chosen for 
further analysis. Second, a beta mixture model was 
utilized to define a methylation state across a large 
number of patients, precluding the need for an 
arbitrary threshold. Third, the Wilcoxon rank sum test 
was utilized to compare DNA methylation states 
between the 371 HCC samples and 50 corresponding 
nontumor samples [24]. Multiple testing was 
performed with a q value of 0.05 as the cutoff.  

Generation and validation of the predictive 
model 

Univariate, least absolute shrinkage and 
selection operator (LASSO) and multivariate Cox 
regression analyses were utilized to evaluate 
relationships between the expression of the DNA 
methylation-driven gene and prognosis and to 

identify independent DNA methylation-driven genes 
that were significantly associated with prognosis for 
the dataset from TCGA. A DNA methylation-driven 
gene-based risk score prediction model was 
established through linear combination of the 
expression levels of independent DNA 
methylation-driven genes using coefficients from 
multivariate Cox regression as the weights. Based on 
the DNA methylation-driven gene-based risk score 
prediction model, HCC patients were stratified into 
low-risk and high-risk groups with the optimal risk 
score as the cutoff point. We used X-tile software to 
find the optimal cutoff value. The threshold for the 
risk score that was output from the prediction model, 
which was utilized for separating patients into 
high-risk and low-risk groups, was defined as the risk 
score that generated the largest value of χ² in the 
Mantel-Cox test. Survival differences between 
high-risk patients and low-risk patients were 
evaluated by Kaplan-Meier survival plots and then 
compared utilizing the log-rank test. Time-dependent 
receiver operating characteristic (ROC) curves were 
employed to measure predictive performance, and the 
GSE14520 dataset from the GEO database was used to 
validate the prognostic model. 

Independence of the predictive model score 
from clinicopathological features 

Univariate and multivariate Cox regression 
analyses were performed to determine whether the 
predictive power of the predictive model may be 
independent of other clinical features (including 
alpha-fetoprotein (AFP), age, weight, sex, histologic 
grade, inflammation, pathologic stage, vascular tumor 
invasion, and family history) of HCC patients. 

Building and validating the nomogram 
We included each independent predictive factor 

selected by the multivariate Cox regression analysis to 
generate a nomogram using the “rms” package. 
Validation steps, which included calibration and 
discrimination, were then carried out. A concordance 
index (C-index) was utilized to calculate the 
nomogram discrimination via a bootstrap method 
with 1000 resamples, and calibration curves were 
graphically evaluated by plotting the observed rates 
against the probabilities predicted by the nomogram, 
whereby the 45° line represented the best prediction.  

External validation of gene expression levels of 
DNA methylation-driven genes 

We also attempted to verify the expression 
pattern of DNA methylation-driven genes in TCGA; 
hence, the expression of these genes based on the 
GSE14520 dataset was obtained for further analysis. 
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Differential expression patterns of the DNA 
methylation-driven genes between the HCC and 
nontumor samples were analyzed using the Wilcoxon 
signed-rank test. A p-value of less than 0.05 was 
considered significant, and all statistical tests were 
two-sided. 

Cell culture 
The HCC cell line HepG2 was purchased from 

ATCC (ATCC® HB-8065™) and maintained in 
Minimum Essential Medium (Gibco, Cat No. 
11095-080) at 37 °C supplemented with 10% fetal calf 
serum (Hyclone, Cat No. SH30084.03) in a humidified 
atmosphere containing 5% CO2. 

Treatment with 5-aza-2’-deoxycytidine (DAC) 
HepG2 cells in culture were treated with 5 μM/L 

5-aza-2’-deoxycytidine (DAC) (Sigma-Aldrich, Cat 
No. A3656-5MG) for 120 h, and the medium was 
changed every day due to DAC instability. For 
experiments involving DAC treatment, dimethyl 
sulfoxide (DMSO) was utilized as the control 
treatment. The cells were harvested for extraction of 
genomic DNA and total RNA for analysis of DNA 
methylation and gene expression.  

DNA extraction and analysis of DNA 
methylation 

Sequencing primers were designed to include 
fragments with CpG sites within 0.5 kb of the 
transcription start site (Table S2). Methylation levels 
equal to or lower than 15% were considered 
indistinguishable from background, and a 
methylation level of 15% or higher was considered 
positive for methylation. We extracted genomic DNA 
from cancer cells using E.Z.N.A.®Tissue DNA Kit 
(Omega, Cat No. D3396-01) and treated the DNA 
samples with sodium bisulfite using EZ DNA 
Methylation-Gold™ Kit (ZYMO, Cat no. D5006). 
Bisulfite pyrosequencing was carried out to verify 
bioinformatics results for tissue samples. For 
pyrosequencing, the treated DNA samples were 
amplified by PCR and fragmented. The processed 
samples were then precipitated, suspended, and 
genotyped using the Pyro Mark Q96 system (Qiagen, 
Hilden, Germany, Cat no. 979002).  

Validation of mRNAs using quantitative 
real-time polymerase chain reaction 
(qRT-PCR) 

Table S3 shows the primers used for qRT-PCR. 
Total RNA was extracted from cultured cancer cells 
using the Trizol reagent (Thermofisher, Cat 
No.15596026) in accordance with the manufacturer’s 
instructions. The cDNA reverse transcription kit 
(TOYOBO, Cat No. FSQ-101) was used to reverse 

transcribe RNA, and the SYBR Green PCR kit 
(Applied Biosystems, Cat. No. 4368708) was utilized 
to amplify the resulting cDNA. The samples were 
detected with QuantStudio 5 Real-Time PCR System 
(Applied Biosystems; Thermo Fisher Scientific). Each 
experiment was conducted at least three times. The 
2-ΔΔCt method was adopted to calculate expression of 
genes relative to the housekeeping gene GAPDH. 

Results 
Identification of DEGs in HCC 

mRNA expression profiles (level 3 data) in HCC 
tissues (n=371) and nontumor tissues (n=50) were 
obtained from TCGA (Table S1). Using the threshold 
of FDR < 0.05 and |log2 FC| > 1, a total of 9,219 DEGs 
(7,734 upregulated and 1,485 downregulated) were 
selected for subsequent analysis. 

Identification of DNA methylation-driven 
genes in HCC 

To identify DNA methylation-driven genes in 
HCC, gene expression and DNA methylation data for 
9,219 DEGs from 792 clinical samples (DNA 
methylation data of 371 HCC samples and 50 
nontumor samples and the paired gene expression 
data for 371 HCC samples) from TCGA were included 
in the MethylMix analysis. A total of 123 DNA 
methylation-driven genes were screened. Of these 
genes, 77 were hypermethylated and 46 
hypomethylated (Figures 1A and 2A) (Table S4). The 
inclusion criteria were an FDR < 0.05 between the 
hyper- and hypomethylation groups and the 
correlation between DNA methylation and gene 
expression of less than -0.3. We then investigated the 
relationship between expression of 123 DNA 
methylation-driven genes and prognosis employing 
univariate Cox proportional hazard regression 
analysis using 365 HCC samples with OS time and 
survival status. Among the 123 DNA 
methylation-driven genes included in the analysis, 51 
were statistically significant (P < 0.05). LASSO is a 
penalized regression method that uses an L1 penalty 
to shrink regression coefficients toward zero, thereby 
eliminating a number of variables based on the 
principle that fewer predictors are selected when the 
penalty is larger [25]. Thus, seed genes with nonzero 
coefficients were regarded as potential prognostic 
predictors. Based on 1000 iterations of Cox LASSO 
regression with 10-fold cross-validation using the R 
package glmnet, the seed genes were shrunk into 
multiple-gene sets. Genes with nonzero coefficients 
were considered potential prognostic genes. The 
higher the nonzero coefficients that occurred in 1000 
iterations of Cox LASSO regression, the stronger was 
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the ability of this gene to predict prognosis [26]. The 
51 selected DNA methylation-driven genes were 
analyzed by 1000 iterations of Cox LASSO regression 
to reduce the number further.  

Applying LASSO analysis, in which the selected 
genes were required to appear 1000 times out of 1000 
repetitions, two DNA methylation-driven genes, 
secreted phosphoprotein 1 (SPP1) and 
lecithin-cholesterol acyltransferase (LCAT), were 
selected as prognostic genes (Table S5). Correlation 
analyses showed that gene expression had a 
significantly negative correlation with DNA 
methylation of SPP1 and LCAT (Figures 1B and 2B). 
We also explored which specific CpGs in the 
promoters may drive expression of both genes. Our 
results showed a significantly negative correlation 
between all CpGs in the SPP1 promoter and SPP1 
mRNA expression, whereas 9 of 13 CpGs in the LCAT 
promoter were significantly negatively corelated with 
LCAT mRNA expression (Figures 1C and 2C) (Table 
S6). We then performed survival and recurrence 
analyses using the DNA methylation and gene 
expression data for SPP1 and LCAT in the training 
dataset from TCGA. High gene expression and DNA 
hypomethylation of SPP1 were significantly 

associated with a poor prognosis and high recurrence 
rate, and low gene expression and DNA 
hypermethylation of LCAT had a significant 
association with a poor prognosis and low recurrence 
rate, further demonstrating a negative regulatory 
relationship between DNA methylation and gene 
expression (Figure 3). 

Generation and validation of the prognostic 
model based on DNA methylation-driven 
genes 

We established a prognostic model utilizing the 
regression coefficient from a multivariate Cox 
proportional hazard model. The risk score was 
calculated according to the formula, 0.0862 × SPP1 
expression level - 0.1719 × LCAT expression level. The 
patients were stratified into high-risk and low-risk 
groups relative to the optimum cutoff point. High-risk 
patients showed markedly worse OS (hazard ratio, 
HR = 2.81, 95% confidence interval, 95% CI = 1.68-4.7, 
P < 0.001) than did low-risk patients (Figure 4A). 
Figure 4B displays gene expression and risk score 
distribution. We also conducted a ROC analysis to 
determine the specificity and sensitivity of the 
prognostic model. The time-dependent area under the 

 

 
Figure 1. Regression analysis between gene expression and DNA methylation of SPP1 in the training dataset from TCGA. (A) Mixture models for SPP1. The 
horizontal black bar indicates the distribution of methylation values in normal samples. The histogram illustrates the distribution of methylation in tumor samples (signified as 
beta values, where higher beta values denote greater methylation). (B) Regression analysis between gene expression and DNA methylation of SPP1. (C) Regression analysis 
between gene expression and DNA methylation of CpGs in the SPP1 promoter. The vertical axis represents methylation of the DNA methylation-driven gene, and the 
horizontal axis denotes mRNA expression of the DNA methylation-driven gene. The right and upper edges are histograms of DNA methylation and gene expression, 
respectively. 
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curves (AUCs) for 0.5-, 1-, 2-, 3-, and 5-year OS rates 
for HCC cases with the prognostic model were 0.7291, 
0.6885, 0.6753, 0.6562, and 0.6548, respectively (Figure 
4C). The predictive ability of the prognostic model 
was further tested using 221 HCC samples with OS 
time and survival status in the validation dataset 
(GSE14520). The patients were classified into low-risk 
and high-risk groups utilizing the formula mentioned 
earlier based on the optimal cutoff value in the 
validation dataset. Consistent with the above 
findings, patients in the high-risk group in the 
validation set had a markedly shorter median OS than 
those in the high-risk group (HR = 3.06, 95% CI = 
1.99-4.72, P < 0.001) (Figure 4D). Figure 4E shows the 
distribution of risk scores and gene expression. The 
time-dependent AUCs of 0.5-, 1-, 2-, 3-, and 5-year OS 
rates with the prognostic model for HCC cases were 
0.6496, 0.6397, 0.6959, 0.6643 and 0.5942, respectively 
(Figure 4F). 

Establishment of a prognostic nomogram for 
OS prediction in HCC 

To investigate whether the prognostic model is 
independent of the clinicopathological features, 
univariate and multivariate Cox regression analyses 
were conducted utilizing risk group, tumor stage, sex, 
and age as covariates. The analysis indicated that the 

prognostic model was a significant independent 
factor for OS (HR = 2.41, P = 0.019) (Figure 5A). To 
provide clinicians with a quantitative approach for 
predicting the individual probability of 1-, 3- and 
5-year survival times, we established a prognostic 
nomogram integrating clinicopathological- 
independent risk factors and the prognostic model 
(Figure 5B). The C-index for the nomogram was 
0.6963 (95% CI: 0.6193- 0.7733). Moreover, the 
calibration curves of the nomogram showed good 
agreement between the predicted 1-, 3-, and 5-year OS 
rates and actual observations (Figure 5C).  

Generation and validation of the recurrence 
model based on DNA methylation-driven 
genes 

We further constructed a recurrence model 
based on the two DNA methylation-driven genes 
utilizing regression coefficients from a multivariate 
Cox proportional hazards model of 317 HCC samples 
with disease-free survival time and recurrence status 
in the dataset from TCGA. The risk score was 
calculated as 0.0242 × SPP1 expression level - 0.1597 × 
LCAT expression level. High-risk patients showed a 
markedly higher recurrence rate (HR = 2.22, 95% CI = 
1.53-3.22, P < 0.001) than did low-risk patients (Figure 
6A). the gene expression and risk score distribution 

 

 
Figure 2. Regression analysis between gene expression and DNA methylation of LCAT in the training dataset from TCGA. (A) Mixture models for LCAT. The 
horizontal black bar indicates the distribution of methylation values in normal samples. The histogram illustrates the distribution of methylation in tumor samples (signified as beta 
values, where higher beta values denote greater methylation). (B) Regression analysis between gene expression and DNA methylation of LCAT. (C) Regression analysis between 
gene expression and DNA methylation of CpGs in the LCAT promoter. The vertical axis represents methylation of the DNA methylation-driven gene, and the horizontal axis 
denotes mRNA expression of the DNA methylation-driven gene. The right and upper edges are histograms of DNA methylation and gene expression, respectively. 
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are presented in Figure 6B. The recurrence model 
achieved an AUC of 0.6053, 0.6237, 0.6290, 0.6400, and 
0.6544 for 0.5-, 1-, 2-, 3-, and 5-year OS, respectively 
(Figure 6C). To determine the robustness of the 
recurrence model derived from the dataset from 
TCGA, we also assessed the performance of the 
recurrence model with 221 HCC samples with 
disease-free survival time and recurrence status in the 
validation dataset. Based on the Cox model-derived 
risk score, patients in the validation dataset were 
divided into high-risk and low-risk groups according 
to the optimal cutoff value (Figure 6D). Consistent 
with the results of the dataset from TCGA, high-risk 
patients exhibited a markedly higher recurrence rate 
than did low-risk patients (Figure 6E). Furthermore, 
the AUC at diverse cutoff times indicated that the 
predictive accuracy of the recurrence model was 
acceptable (Figure 6F). 

Construction of a recurrence nomogram 
based on the recurrence model 

Univariate and multivariate Cox regression 
analyses were performed to investigate whether the 
predictive ability of the recurrence model is 
independent of any other clinical factors. We 
observed that the recurrence model and pathology 
stage were significant in Cox regression analyses 
(Figure 7A). A recurrence nomogram was then 
formulated based on the two significantly 
independent factors (Figure 7B). The C-index was 

0.6518 (95% CI, 0.5891-0.7145), indicating a favorable 
discrimination performance. The bias-corrected 
line of the calibration plot was close to the ideal curve 
(45° line), showing good agreement between the 
observation and the prediction (Figure 7C). 

Generation and validation of the diagnostic 
model based on two DNA methylation-driven 
genes 

Adopting a logistic regression approach, we 
established a diagnostic model with two DNA 
methylation-driven genes to distinguish HCC from 
normal samples. Diagnostic scores were calculated 
using the following formula: logit (P = HCC) = 
85.8918 - (2.8215 × SPP1 expression level) - (34.6788 × 
LCAT expression level). Applying the diagnostic 
model generated 100% specificity and 83.558% 
sensitivity for HCC in the training dataset (TCGA) of 
50 normal samples and 371 HCC samples (Figure 8A) 
and 95.455% specificity and 95.111% sensitivity in the 
validation dataset (GSE14520) of 220 normal samples 
and 225 HCC samples (Figure 8B). We also showed 
that the model was capable of differentiating HCC 
from normal samples in both the training (AUC = 
0.978) and validation (AUC = 0.981) datasets (Figures 
8C and 8D). Unsupervised hierarchical clustering of 
these two DNA methylation-driven genes was 
capable of distinguishing HCC from normal samples 
with high sensitivity and specificity (Figures 8E and 
8F). 

 

 
Figure 3. Survival analysis and recurrence analysis for SPP1 and LCAT. (A) Survival analysis based on gene expression data for SPP1 and LCAT. The horizontal axis 
indicates the survival time, and the vertical axis indicates the survival rate. (B) Recurrence analysis based on expression data for SPP1 and LCAT. The horizontal axis indicates 
the disease-free survival time, and the vertical axis indicates the recurrence rate. (C) Survival analysis based on DNA methylation data for SPP1 and LCAT. (D) Recurrence 
analysis based on DNA methylation data for SPP1 and LCAT. 
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Figure 4. Survival analysis, risk score distribution, and evaluation of the prognostic model for the training (A-C) and validation (D-F) datasets. (A and D) 
Kaplan-Meier curve of the prognostic model. (B and E) Distribution of the expression of DNA methylation-driven genes (bottom) and risk score (upper). (C and F) Accuracy of 
the prognostic model in predicting survival time. 

 
Figure 5. Relationship between the prognostic model and clinicopathological characteristics. (A) Univariate and multivariate regression analyses for the prognostic 
model and clinical characteristics. Green represents statistical significance; red represents no statistical significance. (B) Nomogram for predicting the probability of 1-, 3-, and 
5-year survival times for patients with HCC. (C) Calibration plot of the nomogram for predicting the probability of survival at 1, 3, and 5 years. 
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The incidence of HCC is increasing in the United 
States and Europe [27]. In 30-60% of cases in the West, 
early HCC diagnosis is feasible as a result of screening 
programs, enabling the application of curative 
treatments [27, 28]. However, an increasing number of 
small nodules less than 2 cm are detected which are 
difficult to characterize by a pathological or 
radiological examination [29-31]. We examined 
whether the diagnostic model based upon the two 
DNA methylation-driven genes can correctly 
distinguish between HCC and dysplastic nodules. 
Adopting a logistic regression approach, we 
established a diagnostic model with two DNA 
methylation-driven genes in the training cohort 
(GSE6764) of 52 samples (35 HCC and 17 dysplastic 
nodules), which was then externally validated in an 
independent dataset (GSE89377) of 62 samples (40 
HCC and 22 dysplastic nodules). Diagnostic scores 
were calculated using the following formula: logit (P 
= HCC) = 22.9108 - (0.2558 × SPP1 expression level) - 
(2.5716 × LCAT expression level). The diagnostic 
model indicated an AUC of 0.938 for discriminating 
HCC from dysplastic nodules, with a sensitivity of 
88.571% (31/35) and specificity of 94.118% (16/17) for 
the training cohort (Figures 9A and 9C). In the 
validation cohort, the diagnostic model yielded an 
AUC of 0.868, with a sensitivity of 77.5% (31/40) and 

specificity of 86.364% (19/22) (Figures 9B and 9D). 
Unsupervised hierarchical clustering of the diagnostic 
model was capable of distinguishing HCC from 
dysplastic nodules with high sensitivity and 
specificity (Figures 9 E and 9F). 

Validation of the expression pattern of DNA 
methylation-driven genes 

In the training dataset of HCC from TCGA, 
significantly low DNA methylation and high 
expression levels were noted for SPP1 and high DNA 
methylation and low expression for LCAT (P < 0.0001) 
(Figures 10A and 10B). This was consistent with 
prognostic and relapse analyses, demonstrating that 
SPP1 is a risk gene and LCAT a protective gene 
(Figures 10A and 10B). To further validate the 
expression levels of the two DNA methylation-driven 
genes in another database, these genes were selected 
from the GSE14520 validation dataset. As shown in 
Figure 10C, SPP1 exhibited significantly higher 
expression in tumor samples than in adjacent normal 
samples, whereas LCAT exhibited significantly 
decreased expression in tumor samples (P < 0.0001). 
In summary, these results demonstrated the 
expression levels of two DNA methylation-driven 
genes were useful for constructing the diagnostic, 
prognostic, and recurrence models. 

 

 
Figure 6. Recurrence analysis, risk score distribution, and evaluation of the recurrence model for the training (A-C) and validation (D-F) datasets. (A and 
D) Kaplan-Meier curve of the recurrence model. (B and E) Distribution of the expression of DNA methylation-driven genes (bottom) and risk score (upper). (C and F) Accuracy 
of the prognostic model in predicting recurrence rate. 
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Figure 7. Relationship between the recurrence model and clinicopathological characteristics. (A) Univariate and multivariate regression analyses for the 
recurrence model and clinical characteristics. Green represents statistical significance, and red represents no statistical significance. (B) Nomogram for predicting the probability 
of 1-, 3-, and 5-year recurrence rates for patients with HCC. (C) Calibration plot of the nomogram for predicting the probability of recurrence at 1, 3, and 5 years. 

 
Figure 8. Two DNA methylation-driven genes for distinguishing HCC from normal samples. (A and B) Confusion matrices of binary results of the diagnostic 
prediction model for training (A) and validation (B) datasets. (C and D) ROC curves of the diagnostic prediction models with the two DNA methylation-driven genes for training 
(C) and validation (D) datasets. (E and F) Unsupervised hierarchical clustering of two DNA methylation-driven genes for the diagnostic prediction model in training (E) and 
validation (F) datasets. 

 

Validation of DNA methylation-driven genes in 
HCC 

In the training dataset from TCGA, the average 
DNA methylation of CpGs in promoters and DNA 
methylation of all individual CpGs in the SPP1 
promoter and 10 individual CpGs in the LCAT 
promoter were significantly negatively correlated 
with gene expression (Figures 1 and 2). To validate 
the regulatory relationships of DNA 
methylation-driven genes, an independent dataset 

containing a total of 214 HCC patients with gene 
expression profiling (GSE63898) and corresponding 
DNA methylation (GSE56588) downloaded from the 
GEO database was examined for further validation. 
Consistent with the results of the training dataset 
from TCGA, the average DNA methylation of CpGs 
in promoters and DNA methylation of all individual 
CpGs in the SPP1 promoter were significantly 
negatively correlated with gene expression (Figures 
11A and 11B). SPP1 exhibited significantly higher 
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expression in tumor samples than in corresponding 
normal samples (P < 0.0001) (Figure 11C). Also, the 
average DNA methylation of CpGs in promoters and 
DNA methylation of 9 of 10 (except cg00594148) 
individual CpGs in the LCAT promoter were 

significantly negatively correlated with gene 
expression (Figures 12A and 12B). LCAT exhibited 
significantly decreased expression in tumor tissues (P 
< 0.0001) (Figure 12C). 

 

 
Figure 9. Two DNA methylation-driven genes for distinguishing HCC from dysplastic nodules. (A and B) Confusion matrices of binary results of the diagnostic 
prediction model for training (A) and validation (B) datasets. (C and D) ROC curves of the diagnostic prediction models with the two DNA methylation-driven genes for training 
(C) and validation (D) datasets. (E and F) Unsupervised hierarchical clustering of two DNA methylation-driven genes in the diagnostic prediction model for training (E) and 
validation (F) datasets. 

 
Figure 10. Validation of expression of DNA methylation-driven genes. (A) Violin plots of the DNA methylation status of two DNA methylation-driven genes in the 
training dataset. (B) Scatter plots of mRNA expression patterns of two DNA methylation-driven genes in the training dataset. (C) Scatter plots of mRNA expression patterns of 
two DNA methylation-driven genes in the validation dataset. 
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Figure 11. Regression analysis between gene expression and DNA methylation of SPP1 in the GEO training dataset. (A) Regression analysis between gene 
expression and DNA methylation of SPP1. (B) Regression analysis between gene expression and methylation of CpGs in the SPP1 promoter. The vertical axis represents DNA 
methylation of the DNA methylation-driven gene, and the horizontal axis denotes the expression of the DNA methylation-driven gene. The right and upper edges are histograms 
of DNA methylation and gene expression, respectively. (A) Violin plots of SPP1gene expression. 

 

Expression of SPP1 and LCAT in HepG2 cells 
after DAC treatment 

As is evident from Figures 1C and 2C, 
cg15460348 and cg01817009 exhibited the strongest 
negative correlation with gene expression of SPP1 and 
LCAT, respectively (Figures 1C and 2C). We, 
therefore, analyzed changes in DNA methylation 
related to expression of SPP1 and LCAT after 
treatment of the HCC cell line HepG2 with the 
demethylation agent (DAC) to assess the functional 
relevance of SPP1 and LCAT DNA methylation in 
HCC. Our results indicated that DAC treatment 
reduced SPP1 and LCAT methylation and caused 
elevated SPP1 and LCAT expression in HepG2 cells 
(Figure S1). 

Discussion 
As one of the most common malignant cancers, 

HCC is a public health burden [1, 32]. Despite 
considerable progress in the treatment of early HCC, 
its 5-year survival rate has not improved significantly. 
Studies have shown that HCC, similar to other 
tumors, is caused by genetic changes as well as 
epigenetic abnormalities [5]. Therefore, it is necessary 
to identify specific DNA methylation-affected genes 

and develop demethylation drugs with fewer adverse 
reactions, thus optimizing early HCC diagnosis, 
improving the prognosis of HCC, and enhancing 
HCC treatment. 

The extensive use of high-throughput arrays has 
provided opportunities to find new genes involved in 
the epigenetic modulation of HCC [33]. We attempted 
to further elucidate the function and significance of 
methylation in HCC by utilizing a comprehensive 
analytical instrument. Although high-throughput 
screening data from TCGA demonstrated the 
significant diversity of genetic alterations in HCC, not 
all identified abnormalities had a biological effect and 
facilitated HCC development [7, 34]. For example, Fan 
et al. found no relationship by assessing the 
methylation status of promoters and RNA expression 
of 90 genes in 6 types of tissues [35].  

When utilizing a high-throughput methodology 
with 450,000 probes, it is necessary to distinguish 
between epigenetic changes that promote a malignant 
phenotype and alterations of “passenger” genes 
without any biological effect. Therefore, we utilized a 
model-based instrument (MethylMix) to identify 
genes with aberrant methylation and linked the 
information to RNA-sequencing data that reflected 
gene expression [24]. This integrative analysis has 
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been performed for most cancers except for HCC, and 
its reliability has been demonstrated [36]. Indeed, the 
combination of these complementary "omics" might 
help reveal clinically and biologically related 
information [37]. In this research, we performed a 
multiomics HCC data analysis using MethylMix to 
identify DNA aberrant DNA methylation-driven 
genes that affect their expression. Subsequently, Cox 
proportional hazards regression analysis was 
conducted using expression data for DNA 
methylation-driven genes to generate a prognostic 
model. We found that the prediction models 
consisting of two DNA methylation-driven genes 
(SPP1 and LCAT) could be utilized as a prognostic 
factor for patients with HCC in TCGA and GEO. A 
nomogram comprising a prognostic model might help 
clinicians better manage patients with HCC. 
Furthermore, the recurrence and diagnostic models 
with these two genes were good at predicting HCC 
recurrence and diagnosis. 

Previously, Baily et al. used 26 different 
bioinformatics tools to analyze the Multi-Center 

Mutation-Calling in Multiple Cancers (MC3) somatic 
mutation set and combined the results of manual 
curation to identify 299 cancer genes [38]. More than 
3400 predicted missense driver mutations supported 
by multiple lines of evidence were identified by 
sequence- and structure-based analyses. A total of 
60-85% of putative mutations were confirmed as 
possible drivers by experimental validation. This 
discovery represents the most comprehensive 
endeavor to date to identify cancer driver genes and 
will be a critical reference for future clinical and 
biological efforts. However, the limitation of the gene 
list is its focus on small indels and point mutations 
without regard to other factors such as methylation 
events [38], as abnormal DNA methylation can also 
serve as a major driver of cancer [39]. Global DNA 
methylation patterns are altered during 
tumorigenesis, causing hypermethylation of CpG 
islands and hypomethylation of non-CpG islands [40]. 
In most types of cancers, DNA hypermethylation can 
cause deregulated silencing of several tumor 
suppressor genes (TSGs) [41, 42]. DNA methylation, 

 

 
Figure 12. Regression analysis between gene expression and DNA methylation of LCAT in the GEO training dataset. (A) Regression analysis between gene 
expression and DNA methylation of LCAT. (B) Regression analysis between gene expression and DNA methylation of CpGs in the LCAT promoter. The vertical axis represents 
DNA methylation of the DNA methylation-driven gene, and the horizontal axis denotes expression of the DNA methylation-driven gene. The right and upper edges are 
histograms of DNA methylation and gene expression, respectively. (A) Violin plots of LCAT gene expression. 
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as an epigenetic process, can heritably alter gene 
expression without changing the DNA sequence [39].  

In this study, our research focused on 
abnormally methylated genes driving tumor 
development and is a powerful complement to Baily 
and colleagues’ research. Abnormal DNA 
methylation changes usually include two different 
states: hypermethylation and hypomethylation [8]. 
Tumor progression can be accelerated when 
demethylation occurs at normal methylation sites. In 
this study, SPP1 was hypomethylated and expressed 
at a higher level in HCC than in nontumor tissues. 
SPP1, located at 4q22.1, is overexpressed in different 
malignant neoplasms including medullary thyroid 
cancer, colorectal cancer, and HCC and plays a role in 
metastasis and tumorigenesis [43-45]. In colorectal 
cancer (CRC), the mRNA and protein expression of 
SPP1 are markedly higher in CRC tissues than in 
nontumor tissues [46]. Overexpression of SPP1 is 
closely related to CRC metastasis, invasion, and poor 
survival [46]. Furthermore, siRNA-SPP1 inhibits 
tumor growth, migration, proliferation, colony 
formation, and the cell cycle in vivo and enhances 
apoptosis in CRC cell lines [46]. Also, protein 
expression of vimentin was downregulated and of 
E-cadherin apparently upregulated in CRC cells after 
siRNA-SPP1 treatment [46]. SPP1 enhances CRC 
metastasis through activation of epithelial 
mesenchymal transition (EMT) [46]. SPP1 was also 
found to be an aberrantly methylated hub gene that 
might participate in the progression and development 
of thyroid cancer (THCA) [47]. SPP1 DNA 
methylation was significantly negatively correlated 
with SPP1 mRNA expression in THCA [47]; it was 
hypomethylated and highly expressed in THCA [47].  

Similarly, in our study, SPP1 was 
hypomethylated and highly expressed in HCC. 
Normally, SPP1 is expressed in stellate cells, Kupffer 
cells, and bile duct epithelium but is not expressed in 
liver cells [48]. It has been reported that patients with 
HCC have higher serum SPP1 expression than those 
with chronic hepatitis, liver cirrhosis, or with normal 
livers [49, 50]. Furthermore, extensive experimental 
and clinical evidence suggests that SPP1 is an 
attractive therapeutic target for the prevention of 
HCC metastasis and growth [51-57]. SPP1 
overexpression is related to early recurrence, 
intrahepatic metastasis, and unfavorable prognosis in 
HCC [58]. Zhao et al. reported that SPP1 is 
overexpressed in HCC cell lines with higher 
metastatic potential and may regulate HCC growth by 
activating the MAPK pathway. Moreover, induction 
of MMP-2 production/activation and NF-kappa B 
(p65) translocation may be critical mechanisms 
underlying SPP1-mediated metastasis of HCC [51].  

In summary, the in vivo and in vitro studies 
have demonstrated that SPP1 plays a critical role in 
the growth and metastasis of HCC. Zhao et al. found 
that silencing SPP1 leads to induction of 
mitochondria-mediated apoptosis, inhibits integrin 
expression, and blocks NF-κB activation, thereby 
suppressing the metastasis and growth of HCC [52]. 
Thus, RNA interference-mediated depletion of SPP1 
may be a promising strategy to treat HCC by 
sensitizing chemotherapeutic drugs. Yu et al. also 
found that SPP1 promotes HCC progression via 
PI3K/AKT/Twist signaling pathway [53]. These data 
indicate that SPP1 is a driver gene that controls the 
growth and metastasis of HCC and is likely a 
promising target. Chen et al. established an 
independent prognostic signature (including gene 
KPNA2, CDC20, SPP1, and TOP2A) for patients with 
HCC, and Long et al. developed a four-gene-based 
model (HOXD9, MAGEB6, SPP1, and CENPA) that 
accurately predicted prognosis [45, 59]. Deep mining 
of publicly available genomic data demonstrated that 
SPP1 is an important gene for HCC prognosis [45, 59]. 
In our study, SPP1 was found to be a risk factor for 
HCC prognosis and recurrence, and the SPP1 models 
could accurately predict the OS and recurrence of 
HCC patients. 

The CpG islands in the gene promoter regions 
are generally unmethylated under normal conditions 
[33]. Methylation of CpG islands often leads to 
transcriptional gene silencing, which causes 
functional loss of significant genes, such as DNA 
repair genes and tumor suppressor genes, leading to 
abnormal growth regulation and differentiation of 
normal cells. Formation of various tumors is closely 
associated with whether the DNA damage can be 
repaired in a timely manner [33]. Previous studies 
have demonstrated that LCAT gene expression was 
associated with DNA methylation. Zheng et al. 
established a four-gene-based prognostic model 
(SPINK1, TXNRD1, LCAT, and PZP) to predict OS in 
patients with HCC and found that the expression 
patterns of these four genes were closely associated 
with their methylation [60]. Hlady et al. performed 
integrative analysis of multiple epigenetic 
modifications in HCC to identify epigenetic driver 
loci and demonstrated that 5mC progressively 
increased at the LCAT promoter during disease 
progression, with a corresponding decrease in its 
expression [61]. In general, lower LCAT expression 
was related to poor prognosis [61]. LCAT 5mC data 
from the TSS200 region was also significantly related 
to prognosis [61]. In our study, LCAT was 
hypermethylated and downregulated in HCC 
compared with the nontumor tissue.  
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LCAT has been shown to generate cholesteryl 
esters (CEs) in the circulation of males from 
high-density lipoprotein (HDL) and transfer them to 
apolipoprotein (apo) B-containing lipoproteins with 
the help of lipid transfer protein (LTP) [62]. LCAT is 
produced by the liver and secreted into the circulation 
and its activity can be attenuated in patients with liver 
disease [62]. Additionally, the activity of plasma 
LCAT is reduced with HC damage progression, 
which is consistent with our data showing that LCAT 
is hypermethylated and minimally expressed in HCC. 
Given that methylation is potentially reversible, 
detection of aberrant oncogene and tumor suppressor 
gene DNA methylation in HCC might be useful for 
identifying therapeutic targets. These genes, 
especially SPP1 and LCAT, may become potential 
new molecular targets for the treatment of HCC, 
thereby preventing or even reversing the 
cancerization of cells by correcting abnormal DNA 
methylation. 

In our study, a diagnostic model consisting of 
SPP1 and LCAT accurately diagnosed HCC, with 
AUCs reaching 0.978 in the training dataset and 0.981 
in the validation dataset. Although our diagnostic 
model has not been evaluated using the sera of 
patients with HCC, the ability of serum detection of 
SPP1 and LCAT to diagnose HCC has been fully 
evaluated in previous studies [49]. Shang et al. found 
that serum SPP1 was more sensitive than AFP for the 
diagnosis of HCC [49]. Furthermore, a meta-analysis 
including 12 studies consisting of 1191 controls and 
1235 patients with HCC concluded that the sensitivity 
of SPP1 was higher than that of AFP and that SPP1 
was a comparable biomarker to AFP for the diagnosis 
of HCC and the combination of SPP1 and AFP could 
improve the sensitivity of early HCC diagnosis [63]. 
Zhao et al. conducted an investigation to evaluate the 
possibility of LCAT as a marker for HCC, particularly 
as a biomarker in serum [64]. Analysis of LCAT 
expression using qRT-PCR revealed that LCAT was 
expressed at lower levels in HCC specimens 
compared to adjacent normal tissues. At the protein 
level, LCAT showed a simultaneous reduction in 
HCC specimens as per Western blotting. In particular, 
LCAT could effectively distinguish between <2 cm 
HCC and healthy controls (AUC=0.9489). 
Furthermore, Western and dot-blot results showed a 
high correlation between LCAT expression in HCC 
tissues and matched serum samples. Although the 
diagnostic ability of LCAT has not been assessed in 
the sera of HCC patients, given the above results and 
the fact that it is a secretory protein, LCAT may serve 
as a promising noninvasive biomarker and improve 
the identification of HCC in patients with normal 
serum AFP.  

Our study lays a foundation for the possibility of 
using SPP1 and LCAT as diagnostic biomarkers for 
HCC in serum samples of patients. In the future, we 
plan first to compare the expression of the candidate 
biomarkers and their concordance in the tissues and 
sera of HCC patients to validate the diagnostic ability 
of the potential serum biomarkers. Subsequently, we 
will develop a sensitive technique to detect the 
presence of SPP1 and LCAT in cell-free circulating 
tumor DNA (ctDNA), which will not only benefit 
patients who undergo surgery but will also help to 
screen patients with HCC. 

Hepatocarcinogenesis is a multistep process that 
is characterized in most cirrhotic livers by progression 
from dysplastic nodules advancing to microscopic 
foci of HCC, which enlarge and replace the nodules 
developing into the initial stage of HCC and 
ultimately advanced HCC [65, 66]. The systematic 
monitoring of cirrhotic patients by ultrasound aims to 
identify HCC at a very early stage (<2 cm) to ensure 
the highest probability of long-term survival. 
However, an increasing number of nodules are 
identified simultaneously that are difficult to 
characterize [29-31]. Besides, morphological criteria 
for defining early stage HCC, such as stromal 
invasion, small cell dysplasia, CD34 expression, loss 
of reticulin, presence of pseudoglands, the thickness 
of liver cell plates, and cell density also exist in 
high-grade dysplastic nodules without a clear 
boundary between them [65]. Therefore, 
morphological criteria for distinguishing dysplastic 
nodules and well-differentiated HCC are difficult to 
define, and strict lines between malignant and 
premalignant lesions cannot be drawn by simple 
microscopic observation even by expert pathologists 
[67]. The inconsistency between the first pathological 
diagnosis and the final diagnosis obtained after the 
consensus of six pathologists was substantial, with 
moderate agreement using a weighted kappa 
coefficient [67]. Thus, the identification of objective 
classifier genes or molecular biomarkers is eagerly 
anticipated and will assist in standardizing the 
histological differential diagnosis of these nodules 
critical for appropriate therapy. The novelty of our 
study resides in the diagnostic model that is effective 
in patients with small nodules and enables an 
objective, simple, and accurate diagnosis of HCC for 
routine clinical application. 

In conclusion, four prediction models consisting 
of two DNA methylation-driven genes were 
developed and validated that have predictive value 
for HCC. Our findings support the notion that genes 
that are tightly controlled by DNA methylation are 
likely to be related to cancer outcomes. To the best of 
our knowledge, these are the first predictive models 



Theranostics 2019, Vol. 9, Issue 24 
 

 
http://www.thno.org 

7266 

that employed DNA methylation-driven genes. 
Importantly, for the first time, only two genes were 
used to build diagnostic, prognostic, and recurrence 
models. In clinical practice, measuring the expression 
levels of only two genes is a cost-effective application 
and can provide accurate HCC diagnosis, prognosis, 
and predict recurrence. Although specifically 
developed for HCC, this proof of concept has broad 
utilization in tumors beyond HCC.  
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