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Echo chambers and information 
transmission biases in homophilic 
and heterophilic networks
Fernando Diaz‑Diaz, Maxi San Miguel & Sandro Meloni*

We study how information transmission biases arise by the interplay between the structural properties 
of the network and the dynamics of the information in synthetic scale‑free homophilic/heterophilic 
networks. We provide simple mathematical tools to quantify these biases. Both Simple and Complex 
Contagion models are insufficient to predict significant biases. In contrast, a Hybrid Contagion 
model—in which both Simple and Complex Contagion occur—gives rise to three different homophily‑
dependent biases: emissivity and receptivity biases, and echo chambers. Simulations in an empirical 
network with high homophily confirm our findings. Our results shed light on the mechanisms that 
cause inequalities in the visibility of information sources, reduced access to information, and lack of 
communication among distinct groups.

Information transmission in the context of Information and Communication Technologies is a great opportunity 
to create a better-informed society, but in practice, these technologies are also promoting phenomena such as the 
viral spreading of fake  news1–3, echo  chambers4–6, perception biases like false consensus or majority  illusions7 
and social  polarization5,6,8. We understand by echo chambers situations in which the transmission of information 
among individuals belonging to the same opinion group is dominant, while transmission among individuals with 
different opinions is hindered. The real social impact of echo chambers and their causal link with misinforma-
tion cascades are debated  topics9–11, but data-driven and computational approaches confirm that the structural 
properties of social networks are tied to the emergence of echo  chambers4–6. In particular, the homophily of 
the network -that is, the tendency of nodes to be connected to other nodes of the same group-seems to be a key 
ingredient to generate echo  chambers5 and perception  biases7.

Among the phenomena associated with information transmission, echo chambers are presently the subject 
of intensive research, but they are only an aspect of a broader subject: the “information transmission biases” (in 
short, IT biases), which include all the possible alterations in the transmission of information that appear when 
changing the nature of the nodes that generate and receive such information. In addition to echo chambers, 
examples of IT biases include: (a) an enhanced/inhibited emission of information by a certain group (for example, 
how female opinions were wronged and overheard based on gender  stereotypes12), and (b) an enhanced/inhibited 
reception of information by a certain group. These biases in information transmission have been observed in 
real-world networks and are influenced by their structural  properties13. Let us remark that some studies regard-
ing IT biases focus on how distinct types of information have different transmission  probability14,15, while here 
we will focus on the differences in the transmission induced by intrinsic properties of the node that emits and/
or receives the information in the network.

Modeling processes of information transmission first requires the choice of a dynamical model. Often, the 
spreading of information is assumed to follow the same laws as the spreading of diseases. Because of this, 
epidemic models (also called Simple Contagion models)16 have been used for discussing the transmission of 
information. However, spreading of information, adoption of innovations, etc. are examples of social contagion 
phenomena in which individuals often require multiple exposures to a given piece of information to adopt  it17. 
These social mechanisms are included in models of Complex Contagion18–22 inspired in the Threshold Model by 
 Granovetter23,24 in which adoption requires a threshold number of neighboring agents that have already adopted 
it. In this sense, Complex Contagion, at variance with Simple Contagion, is a nonlinear process that requires 
group or many-agent interactions. Still, these group interactions are built from a combination of pairwise interac-
tions, while possible higher-order many-agent interactions would call for a different  approach25–28. Several works 
have addressed the question of the validation of Complex Contagion models against experimental  data29–31, as 
well as the comparison of Simple and Complex Contagion models in this empirical  context32–34. However, there 
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is also empirical evidence that many processes of information transmission involve both Simple and Complex 
Contagion, with some agents adopting in a single interaction and others requiring multiple  exposures35,36. As 
a consequence, different models of Hybrid Contagion combining Simple and Complex Contagion have been 
 proposed36–40. In this paper, we will compare predictions of Simple, Complex, and Hybrid Contagion models 
concerning IT biases.

A second ingredient in the modeling of information transmission is the choice of an underlying social net-
work. In this work, we do not construct networks that would a priori lead to IT biases (for example due to a com-
munity structure). Instead, we focus on how echo chambers and other IT biases can emerge from the interplay 
between the structural properties of the network and the dynamics of the information. An important issue in this 
problem is disentangling the effects of social influence, included in the dynamical models, and homophily. To 
this end, we choose here to consider Barabasi–Albert41 networks with tunable homophily, following the model 
proposed  in42 for social networks.

In this paper, we provide mathematical tools that can be used to define IT biases and to find out in which 
parameter regimes those IT biases exist. We show that the mechanism of Hybrid Contagion leads to the three 
IT biases mentioned before: emissivity bias, receptivity bias, and echo chambers. Importantly, the echo cham-
ber bias, which is not present in neither Simple nor Complex Contagion, arises for a wide range of homophily 
parameters for Hybrid Contagion. Moreover, simulations in an empirical network confirm the presence of echo 
chambers and the other biases.

Results
Homophilic and heterophilic networks. To accurately model the structure of social networks, we use 
the Barabasi–Albert-homophily model (BAh model) proposed by Karimi et al.7,42. This model is a generaliza-
tion of the classical Barabasi–Albert (BA)  model41 for scale-free networks. In this model, each node has a binary 
attribute, called the group of the node. We distinguish a majority and a minority group. The fraction of minority 
nodes in the network, i.e., the probability that a newly introduced node belongs to the minority group, is denoted 
by fa(< 0.5) . As in the classical BA model, one node i is added to the network and connected to m existing nodes 
in each time step (throughout the work we set m = 1 ). Unlike it, however, the probability of attachment with an 
existing node j, �ij , depends not only on the degree of the existing node, kj , but also on a homophily parameter h:

From Eq. (1), it is clear that setting h > 0.5 (h < 0.5) generates homophilic (heterophilic) networks. For h = 0.5 , 
one recovers the standard Barabasi–Albert model; while for h = 1 , the probability of connecting two nodes of 
different groups is zero; thus, the network fragments into two components corresponding to the two groups. 
Figure 1 shows examples of networks generated using this model, for different values of the homophily parameter 
h. A first insight we can take is that in the heterophilic regime (i.e., h < 0.5 ), the hubs are minority nodes, while 
in the homophilic regime (i.e., h > 0.5 ) they belong to the majority group. Additionally, for h < 0.5 the average 
degree of the hubs is higher than for h > 0.5 . This happens because, in heterophilic networks, the abundant 
majority nodes preferably attach to the rare minority ones, leading to larger degrees. In contrast, in homophilic 
networks, the probability of choosing one particular majority node to make a connection is smaller, due to their 
higher abundance. As will be shown below, this disparity in the hubs’ sizes influences the information transmis-
sion on the different networks.

Simple vs complex contagion. Definitions and description of the models. We want to study the differ-
ences in information transmission that arise when considering different emitters and receivers of information. 
We call source node the node that initiates the information transmission (i.e., the seed of the transmission pro-
cess). We also define the group to which it belongs as the source group. If the source node belongs to the majority, 
we talk about majority source, otherwise we call it minority source.

To quantify the spreading of information between groups, we define four information transmission observa-
bles (in short, IT observables) denoted by ITab . Each one represents the probability of successfully transmitting 
information from a source of a given group a to a target of a given group b, where a and b can be minority (m) 
or majority (M). For example, the probability of information transmission from a minority source to a minority 

(1)�ij ∝

{

hkj if Group(i) = Group(j)
(1− h)kj if Group(i) �= Group(j)

Figure 1.  Topology of the networks generated by the BAh model, for different values of the homophily 
parameter h. Blue nodes indicate a majority group, while red nodes indicate a minority group. Other 
parameters: number of nodes N = 70 , BAh parameter m = 1 , minority fraction fa = 0.2.
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target is represented by ITmm , the probability from a minority source to a majority target is represented by ITmM , 
and so on. In addition, please note that calculating one ITab is equivalent on average to finding the final density 
of informed nodes belonging to group b, when the seed of the contagion belongs to group a. The details of this 
equivalence and other aspects of the simulation procedure can be found in the “Methods” section.

To start modeling information transmission (IT) on homophilic and heterophilic networks, we first consider a 
Simple Contagion model used by Karimi et al.42.This is a modification of the SIR  dynamics16 in which each node 
can be in one of the following three possible states: susceptible, informed (also called adopter), and recovered. 
In this context, ”recovered” refers to nodes that know the information, but choose not to spread it. When a node 
becomes informed, it tries to propagate the information to each of its neighbors only once. In each of these trials, 
recovered nodes cannot become informed again, while susceptible nodes become informed with probability � . 
This parameter � is called the infectivity of the contagion process. Once an informed node has tried to inform all 
of its neighbors, it automatically becomes a recovered node. The main difference with the standard SIR model 
is that, in the considered model, each link has only one opportunity to transmit the information, while in the 
standard SIR model each node will continue to transmit the information until it transitions into the recovered 
state. Sketches of the transitions can be found in the left panels of Fig. 2.

We will compare the results of the Simple Contagion model with processes of Complex  Contagion18,19. For 
Complex Contagion we use the threshold model proposed by  Granovetter23 and later studied by  Watts24. In 
this model, in each time step, one node of the network is randomly selected. If the node is informed, it remains 
in that state. If the node is susceptible, it changes state if the fraction of informed nodes in its neighborhood 
exceeds a value T, called the threshold of the Complex Contagion. An illustration of this process can be found 
in the right panel of Fig. 2.

Complex Contagion gives rise to cascade processes that manifest themselves in first-order transitions, i.e., a 
discontinuous jump in the global maximum of the probability density function (pdf) of the density of informed 
nodes. In contrast, a Simple Contagion model exhibits a second-order transition, i.e, the maximum of the pdf 
changes continuously. Notice that the control parameters of both models have different meanings and opposite 
behavior: in Complex Contagion, a larger threshold T inhibits contagion; while in Simple Contagion, a larger 
infectivity � enhances it.

Capturing the impact of homophily in information spreading by using Complex Contagion. Let us use the defined 
IT observables to compare Simple and Complex Contagion. In Fig. 3, we show how the change of the homophily 
parameter h affects information transmission. For Simple Contagion, the dependency of our four observables 
on the homophily parameter is very weak (panel a). The strongest dependence appears for h = 1 , but it is trivial 
because the network is fragmented and there is no path connecting different groups. When zooming in (insets of 
panel a), slight dependencies in both the homophily parameter and the source and target groups can be noticed. 
These differences were discussed by Karimi et al.42. Changing the degrees of the source and target nodes does not 
cause novel behaviors, so they can be disregarded as control parameters (not shown). Importantly, this simplified 
model does not account for the observed strong biases in the presence of  homophily4,7.

On the other hand, for Complex Contagion, we observe a stronger dependency on the homophily parameter 
h (Fig. 3, panel b). In fact, we find a completely different behavior in the homophilic and heterophilic regimes. 
As long as h < 0.5 , increasing h improves information transmission. This is caused by the larger degree of the 
heterophilic hubs (Fig. 1), which prevents Complex  Contagion18,24. On the other hand, for h > 0.5 , the effect 
of homophily is much less pronounced, because the change in the hubs’ degree is much milder in the homo-
philic regime. Additionally, increasing the threshold decreases all IT observables, although the decrease is more 

Figure 2.  (I) Simple contagion: each informed node (I) tries to inform all of its susceptible (S) neighbors before 
becoming recovered (R). (a) Node i tries to inform node j, but fails because j is in a recovered state. (b) Then, 
node i tries to inform node k, with a probability of success � , failing in this case. (c) Finally, node i succeeds 
in informing node l. (d) After having tried to inform all of its neighbors, node i becomes recovered (R). (II) 
Complex Contagion (with threshold T =

1
3
 ). Upper panels: node i has only a fraction 1

4
 of informed neighbors, 

so it remains susceptible. Lower panels: node i has a fraction 1
2
 of informed nodes, so the threshold is surpassed 

and therefore it becomes informed.
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pronounced when h > 0.5 . There are also slight dependencies on the source group but not on the target group 
(except for h ≈ 1 ), suggesting some kind of bias in the transmission process.

Critical threshold for Complex Contagion. After analyzing the role of the homophily parameter, a question 
naturally arises: does h affect the nature of the transition? In other words, will we find a first-order transition with 
an “all-or-nothing” outcome, so that either every node or only a negligible fraction becomes informed?

To answer this question, we study how the probability density function (pdf) of the density of informed 
nodes changes when varying the threshold T, for two values of h (Fig. 4). The histograms confirm the existence 
of a first-order transition in both cases: the pdf shows two maxima at ρf = 0 and ρf = 1 , corresponding to no 
contagion and full contagion, respectively.

The histograms allow identifying the critical threshold Tc , which is defined as the point where the global 
maximum changes from ρf = 0 to ρf = 1 . Calculating the critical threshold for varying levels of homophily, we 
obtain the plot from Fig. 4b, where nontrivial dependencies on h arise. In the homophilic regime ( h > 0.5 ), Tc is 
almost constant, while in the heterophilic regime ( h < 0.5 ), Tc decays as the network becomes more heterophilic 
( h → 0 ). This means that information propagates less efficiently in heterophilic networks, in agreement with 
Fig. 3b. Moreover, for h = 1 , the threshold for minority sources increases significantly. This is a consequence of 
the fragmentation of the network: the minority group forms a separate network where the hubs have a smaller 
degree, thus favoring contagion. Finally, the critical threshold is slightly bigger for minority sources, suggesting 
again a bias in the information propagation. We conclude that the order of the transition is maintained, but the 
location of the transition point is strongly affected by h.

We have also analyzed the dependency of the critical threshold on the number of nodes. Figure 4b shows that 
the size of the network changes the height of the curve, but not its shape. This implies that the dependency on 
the homophily parameter is robust with respect to size. Furthermore, in Fig. 4c we also observe that, regardless 
of the homophily, Tc tends to zero as N → ∞ . This is a general phenomenon in scale-free  networks24, because 
the higher degree of the hubs inhibits the contagion process.

Hybrid Contagion. Even though for Complex Contagion we found that h strongly affects IT, the depend-
ency on the source and target groups was minimal and lacked the strong biases -like echo  chambers4- found in 
real-world networks. This discrepancy between model and data can be attributed to the “all-or-nothing” behav-
ior of the system. Motivated by this, we propose a Hybrid Contagion model (HC). In this new version, Simple 
Contagion represents a viral transmission of information among nodes with sympathy towards the source of 
the information—for example, spreading of information is easier between individuals belonging to the same 
group-, whereas Complex Contagion models skeptical individuals that require multiple exposures to become 
convinced—e.g. when information comes from an unreliable source. This creates a scenario where one group 
has more difficulties when trying to convince members of the opposite group, in alignment with situations in 
real-world social  networks35.

Figure 3.  Information transmission observables as a function of the homophily parameter h. The chosen 
dynamics are Simple Contagion in panel (a) and Complex Contagion in panel (b). Each column shows a 
different infectivity � or threshold T. The inset in panel a depicts the same IT observables as a function of the 
homophily parameter, but with a rescaled y-axis, so that variations among the curves are visible. To improve 
clarity, we have removed the values corresponding to h > 0.85 from the inset. In the legend, the subindexes 
indicate source and target groups respectively (for example, ITmM indicates that the source group is the minority 
and the target group is the majority). Parameters used: N = 1000 nodes, m = 1 , minority fraction fa = 0.2 , 
M = 1000 realizations (varying both the network structure and the location of the seed).
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Description of the model. Hybrid Contagion is the combination of Simple and Complex spreading into a uni-
fied model. In this way, nodes on the network can follow Simple or Complex Contagion depending on their 
group and the source of information. Nodes following Complex Contagion (called complex nodes) become 
informed when they have a fraction of informed neighbors bigger than the threshold, T. Nodes following Simple 
Contagion (simple nodes) can become informed with just one informed neighbor, with probability �.

To simplify the model, we will make the following three assumptions. Firstly, we assign to each group a con-
tagion type.; i.e, all majority nodes are simple and all minority nodes are complex, or vice versa. Secondly, we 
assume that the group that initiates the contagion process is always the group that follows Simple Contagion. 
This is justified by the fact that, usually, ideas generated inside a community spread more easily among the 
members of the community with the respect to other members that do not share the same views. Finally, for the 
same reason, we assume that the simple nodes always become informed whenever they have at least an informed 
neighbor; this is, we set the infectivity equal to one. � = 1 . With these simplifications, the only remaining control 
parameter of this model is the threshold T.

Information transmission with Hybrid Contagion. To investigate the predictions of this new model, we have 
calculated again the information transmission for all combinations of source and target (Fig. 5). This time, we 
observe not only a strong dependency on h, but also on the source and target groups (the latter only in the 
homophilic regime). In fact, the two possible source groups show opposite tendencies: IT from a minority source 
is enhanced in heterophilic networks, while IT from a majority source is enhanced in homophilic networks. 
These two opposite effects can be simultaneously explained in terms of one single observation: IT in Hybrid 
Contagion is favored when the network hubs follow Simple Contagion. The effects of the threshold T are also 
different depending on the source: increasing T causes a strong drop in the IT with a minority source, but the 
change is much weaker with a majority source. It is remarkable that, although T is a parameter that only controls 
the behavior of complex nodes, the information transmission to simple nodes is affected too; in fact, in the het-
erophilic regime, it is irrelevant whether the target node is simple or complex. This can be attributed to the high 
bipartivity of the network (most routes connecting two simple nodes cross a complex node).

Additionally, the source and target dependencies imply strong biases in the information transmission. In 
particular, IT from minority to majority becomes negligible for h > 0.5 : we have a lack of IT even when the 
network is connected. On the other hand, information transmission from majority to minority is nonzero. This 

Figure 4.  Critical threshold for Complex Contagion dynamics. (a) Histograms with the probability distribution 
of the final density of informed nodes, for a majority source and h = 0.2 (upper row) and h = 0.7 (lower row). 
The pdf is normalized so that the total area of each histogram equals one. Used parameters: N = 1000 nodes, 
m = 1 , M = 1000 realizations. (b) Critical threshold as a function of the homophily parameter, for minority 
and majority sources. Simulations were performed for two values of N: N = 500 (dashed line) and N = 1000 
(solid line). (c) Critical threshold as a function of the number of nodes, for minority and majority sources and 
two values of the homophily parameter: h = 0.2 (dashed line) and h = 0.7 (solid line). In all simulations, the 
minority size was fixed to fa = 0.2.
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asymmetry suggests the existence of some phenomenon similar to an echo chamber, which will be the main 
topic of the following sections.

Critical threshold for Hybrid Contagion. As happened for Complex Contagion, a system following Hybrid Con-
tagion shows a rich dynamics that is hard to understand by looking only at the IT. A simplified version of these 
rich dynamics is shown in Fig. 6, for a threshold T = 0.2 . One sees that a minority source produces a small 
cascade (panel a), consisting mainly of nodes of the same group. On the other hand, a majority source produces 
cascades with a wide size range, from 70% (panel b1) to 100% (panel b2) of the nodes. In some cases, clusters of 
simple nodes get shielded from contagion due to the presence of a complex node.

To investigate this behavior in more depth and to study the nature of the transition, we calculate the pdf of 
the density of informed nodes for different values of the threshold T (Fig. 7, panel a). As opposed to Complex 
Contagion, where differences between majority and minority source were minimal, now we see two different 
behaviors depending on the source group. In particular, for a minority source (upper panels of Fig. 7a), we obtain 
the “all-or-nothing” behavior typical of Complex Contagion. This is not the case when the source belongs to the 
majority, with a different form of the pdf that reflects the different behaviors of Fig. 6b. Moreover, the pdf does not 
change in shape for thresholds above T = 0.2 (compare, for example, the histograms corresponding to T = 0.2 
and T = 0.9 in the lower panels of Fig. 7a). Nevertheless, both histograms show a discontinuous jump in the 
global maximum. All these phenomena could be indicators of a hybrid  transition43,44, where one of the maxima 
of the pdf varies continuously but the global maximum changes discontinuously at a certain threshold value Tc.

When we plot the change of the critical threshold Tc as a function of h (Fig. 7b), we observe opposite tenden-
cies depending on the source groups: for minority sources, Tc decreases with h, while for majority sources, it 
increases. More interestingly, for a majority source, Tc diverges around h = 0.63 . Above this value, only the phase 
corresponding to information transmission exists. In short, for a majority source and sufficiently homophilic 
networks, the information is always able to propagate through the network, regardless of the threshold.

Echo chambers and other IT biases. Measuring echo chambers and IT biases. As discussed in the pre-
vious section, the Hybrid Contagion model shows a rich behavior that cannot be easily understood by simply 

Figure 5.  Information transmission observables as a function of the homophily parameter h, for Hybrid 
Contagion dynamics. Each column shows a different threshold T. The first subindex of each element of the 
legend indicates the source group, while the second subindex indicates the target group. Parameters used: 
N = 1000 nodes, m = 1 , minority fraction fa = 0.2 , M = 1000 realizations.

Figure 6.  Examples of Hybrid Contagion on BAh networks. Each network shows the final state of one 
simulation, where green nodes are susceptible and yellow ones are informed. The orange node is the source 
of the information. Simple nodes are denoted by circles and complex nodes by squares. (a) When the source 
node belongs to the minority, Hybrid Contagion is limited. (b) However, when the source node belongs to the 
majority, a wide range of cascade sizes is obtained for the same parameters. Parameters used: N = 50 , h = 0.7 , 
fa = 0.2 , T = 0.2.
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measuring the four IT observables. In particular, Hybrid Contagion exhibits information transmission biases (IT 
biases), which can be defined as dependencies of information transmission on the source and target groups. To 
be able to classify these biases, as well as to determine their strength, we propose the following set of bias vari‑
ables: 

Notice that, since 0 < ITab < 1 , we have 0 < IT < 1 and −1 < BE ,BR,BEC < 1.
The previously used IT observables focused on specific groups, and as a consequence, they lacked informa-

tion about the information propagation on the network as a whole. In contrast, the bias variables are able to 
distinguish global aspects of the transmission process, e.g. the receptivity of the nodes towards certain types of 
information. The first one, IT  , is the mean information transmission over the four possible combinations of source 
and target. It is high whenever the network transmits information effectively regardless of who emits and who 
receives the information. Secondly, BE is the emissivity bias. If it is bigger than zero, it indicates that the informa-
tion that starts in the majority propagates more effectively than starting in the minority, regardless of the target. 
On the contrary, BE < 0 indicates that information starting in the minority propagates more effectively. Thirdly, 
BR is the receptivity bias. BR > 0(< 0) indicates that the majority has a bigger (smaller) probability of receiving 
information than the minority. Finally, we define BEC as the echo chamber bias. It estimates whether information 
propagates only between nodes of the same group or not. If it is close to one, information only propagates inside 
of each group; while if it is negative, it indicates the existence of an “anti echo chamber”: information only flows 
between nodes of the opposite groups.

Armed with these new variables, we can easily determine the biases of an information transmission process. 
One just needs to measure the IT parameters ITab from a given data set and substitute them into Eq. (2). Equa-
tion ( given data set and substit) also gives an objective definition of an echo chamber: a social network shows 
an echo chamber if the bias BEC of an information transmission process is larger than zero. Finally, one should 
also note that any bias in the information transmission between two groups can be expressed as a linear combi-
nation of the three biases (plus a possible contribution from IT  ). In other words, any bias can be decomposed 
into a mixture of BE ,BR and BEC.

As an example of the usefulness of this new framework, we will analyze the results of Simple and Complex 
Contagion—already analyzed in Fig. 3—in terms of these variables. As expected, Simple Contagion presents 
negligible biases BE ,BR,REC (not shown). A similar picture arises for Complex Contagion (Fig. 8): only IT  shows 
an important dependency on h; however, its behavior is the same that we saw in Fig. 3. Additionally, the other 
three bias variables show an almost neutral behavior. Only significantly high values of h lead to an increase in BEC 
and |BR| until h = 1 , where they reach their maximum due to the fragmentation of the network. These last results 
draw a clear picture: the transmission of information under Complex Contagion is sensitive to the homophily 
parameter and may be greatly inhibited, but it does not show strong biases.

(2a)IT =
1

4
(+ITmm + ITmM + ITMm + ITMM)

(2b)BE =
1

2
(−ITmm − ITmM + ITMm + ITMM)

(2c)BR =
1

2
(−ITmm + ITmM − ITMm + ITMM)

(2d)BEC =
1

2
(+ITmm − ITmM − ITMm + ITMM)

Figure 7.  Critical threshold for Hybrid Contagion dynamics. (a) Histograms with the probability distribution 
of the final density of informed nodes, for a minority source (green histograms) and a majority source (orange 
histograms). The pdf is normalized so that the total area of each histogram equals one. The homophily 
parameter is h = 0.6 . (b) Critical threshold as a function of the homophily parameter, for minority and majority 
sources. Other parameters used: N = 1000 nodes, m = 1 , M = 1000 realizations, fa = 0.2.
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Echo chambers and other biases in Hybrid Contagion. Unlike Complex Contagion, Hybrid Contagion shows 
important dependencies on both the source and target groups. The most relevant was the impossibility of trans-
mitting information from minority to majority for h > 0.5 . To quantify these dependencies, we plot the four bias 
variables for Hybrid Contagion in Fig. 9.

Importantly, IT  is smaller than one and practically constant with respect to T and h, although it is minimum 
in the heterophilic regime. Additionally, the system has a strong emissivity bias, negative in the heterophilic 
regime and positive in the homophilic one. Increasing the threshold reduces the absolute value of the emissiv-
ity in the heterophilic regime, with a limited effect in the homophilic one. The receptivity bias becomes also 
appreciable for h > 0.9 and large thresholds. However, the most relevant observation is that the echo chamber 
variable is different from zero throughout all the homophilic regime ( h > 0.5 ), especially for higher thresholds 
and for high homophily parameters.

Summing up, the combination of Simple and Complex Contagion (Hybrid Contagion) leads not only to strong 
emissivity biases for a wide range of h, but also to the emergence of echo chambers in the homophilic regime. 
Nevertheless, the average information transmission remains almost constant and is minimum in the heterophilic 
regime. This highlights the independence between the quantity and the lack of biases of transferred information: 
neither the presence of echo chambers and other biases implies that information transmission is hindered, nor 
does a strong transmission of information guarantee that the information is bias-free.

Echo chambers in real‑world networks. To put our results on more solid ground, we test our results on a real 
collaboration network. We simulate Hybrid Contagion in a network of scientific citations between papers pub-
lished in the journals of the American Physical Society (Fig. 10) . This network was already used to study percep-
tion biases  in7. In particular, we focus on papers devoted to statistical mechanics, where majority and minority 
groups have been identified with Quantum Statistical Mechanics and Classical Statistical Mechanics, respec-
tively. The network is highly homophilic, with a homophily parameter h = 0.92.

Repeating our analysis regarding the IT observables and the bias variables, we obtain results that are fully 
consistent with the prediction in synthetic networks (Fig. 5). Indeed, the four IT observables show the same 
behavior as the synthetic curves for high homophily parameters ( ITMM > ITmm > ITMm > ITmM in panel 10a. 
Surprisingly, we find high values of the echo chamber bias ( BEC ≈ 0.5 ), even higher than in synthetic networks 
with the same parameter h (Fig. 10b). A possible explanation is that real-world networks have a higher cluster-
ing than our synthetic networks. This could favor intragroup contagion and enhance the echo chamber bias.

The remaining bias variables are also in agreement with our predictions in synthetic networks: the emissiv-
ity is positive and information transmission remains high even for large thresholds. In summary, our results 
contribute to the understanding of the emergence of echo chamber biases in information transmission between 
different groups.

Figure 8.  Bias variables IT ,BE , BR and BEC as a function of the homophily parameter h, for Complex Contagion 
dynamics. The simulation parameters are the same as in Fig. 3b.

Figure 9.  Bias variables IT ,BE , BR and BEC as a function of the homophily parameter h, for Hybrid Contagion 
dynamics. The simulations and parameters are the same as in Fig. 5.
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Discussion
In this work, we have explored how information transmission (IT) in homophilic/heterophilic scale-free networks 
can be modeled, focusing on alterations of information transmission such as the emergence of echo chambers. To 
achieve this, we have analyzed three different models and proposed a decomposition of information transmission 
that allowed a straightforward quantification of the presence of biases. Starting from a structural model able to 
generate networks with a tunable level of  homophily42, we analyzed Simple Contagion by employing a slightly 
modified version of the SIR dynamics; Complex Contagion, and finally a Hybrid model in which the spreading 
between two nodes changes depending on whether they belong to the same or different groups.

Our main conclusion is that the choice of the dynamical model greatly influences both the average infor-
mation transmission and the emerging biases. In particular, we find that Simple Contagion leads to negligible 
biases and a minimal dependency on the homophily parameter h, whereas Complex Contagion shows strong 
dependencies on h, with high average information transmission in the homophilic regime. These differences are 
also reflected in the Complex Contagion transition between the informed and uninformed regimes. In particular, 
the threshold for the transition is higher in the homophilic regime, leading to an enhancement of the informa-
tion transmission. The strong variability of the mean IT when changing h is not correlated with strong biases in 
information transmission. In fact, most biases only appear as the network becomes disconnected, except for a 
slight emissivity bias for a wider range of h.

A richer phenomenology is found in the Hybrid Contagion model, in which information transmission has 
an important dependency on h and follows opposite trends when changing the source of the information. In 
particular, information originating in a minority node spreads easily in the heterophilic regime, while in the 
homophilic regime the transmission is dominated by information originating in the majority. Thus, interchanging 
the source group affects not only the behavior of the transition—with a divergence of the majority-source criti-
cal threshold at h ≈ 0.63 , but also the qualitative behavior of the pdf, with hints of a possible hybrid transition. 
As opposed to Complex Contagion, the dependencies on the source and target groups cause the appearance of 
stronger IT biases, not only in the emissivity and receptivity of information but also in the emergence of echo 
chambers, where information starting in the minority fails to reach the majority groups. The echo chamber bias 
is different from zero for any h > 0.5 , which implies that intragroup communication is favored and intergroup 
communication is hindered in all the homophilic regime. Moreover, even though for h < 1 the network is still 
connected, the echo chamber bias reaches a significant value ( BEC ≈ 0.5 ).  When analyzing a citation network 
between papers of the APS, we find even stronger biases, highlighting the relevance of our results for real-world 
scenarios.

On a more general note, our study points out three important factors when analyzing information transmis-
sion. Firstly, that homophily and heterophily play a key role in how well information is transmitted and which 
biases appear. Secondly, the quantity of transmitted information is not necessarily correlated with lack of biases: 
our analysis showed that models with low average information transition can be free from biases (like Complex 
Contagion for high threshold parameters), whereas models with high mean information transmission can show 
strong biases (Hybrid Contagion). Thirdly, biases in information transmission are not limited to echo chambers. 
Other biases (such as different levels of emissivity) can play a comparable role and affect the transmission of 
knowledge in our  society10,12. In summary, we believe that our decomposition of information transmission into 
an average value plus three distinct biases can help clarify complicated information transmission patterns in 
real data.

Figure 10.  (a) Information transmission observables for Hybrid Contagion dynamics in a network of scientific 
citations between papers of the APS, for different thresholds T. The legend follows the same conventions as 
Fig. 5. Parameters of the network: h = 0.92 , fa = 0.3177 . (b) Bias variables corresponding to the IT observables 
of panel (a).
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All the presented models show an important limitation: our group category is binary. In general, splitting 
society’s complexity into just two groups is too reductive, one clear example being the aggregation of political 
viewpoints into “left” and “right” groups. In this sense, a generalization of the BAh model to a continuum of 
groups would be helpful to better understand how individuals can gradually transition between groups, and may 
cause unexpected behaviors in the bias magnitudes. Another variation of these models could also incorporate 
a coevolving network in which nodes rewire to maximize the number of neighbors with the same opinion. This 
rewiring is known to lead to network polarization, echo chambers, and ultimately  fragmentation8,45,46, but its 
influence on the other biases is unknown. Finally, the generalization of the model to multidimensional topic 
spaces could help in the understanding of how ideologies  form6.

In conclusion, we have shown that contagion models beyond Simple Contagion can exhibit information 
transmission biases, including echo chambers. We hope that this works provides awareness about information 
transmission biases and the simple mathematical tools able to quantify them, so that further research can better 
understand how they emerge and ultimately overcome them.

Methods
Measuring information transmission. As mentioned in the main text, the final density of informed 
nodes within a group gt , when taking the seed node within a group gs , coincides on average with the probability 
of information transmission from a source from gs to a target from gt . Here we present proof of this equivalence.

Let Ng be the number of nodes belonging to group g and let Ig the number of informed nodes of group g in 
the final (absorbing) state. We define the final density of informed nodes within group g as ρfg =

Ig
Ng

 . On the 
other hand, the average probability that information spreads from a given source to a given target, Ptr , when 
choosing source and target nodes randomly within the source and target groups, is:

Thus, we have shown that measuring the information transmission observables can be reduced to measuring 
the final density of informed nodes.

In the following, we describe the exact simulation procedure to measure ρfg : 

1. Set the source and target groups.
2. Generate a network with the Barabasi–Albert-homophily model.
3. Select a source node and a target node randomly, with the constraint that they belong to the source and target 

groups respectively.
4. Mark the source node as informed. Simulate a contagion process with the corresponding model (Simple, 

Complex, or Hybrid Contagion).
5. Once the absorbing state is reached, measure the number of nodes belonging to group g, Ng , and the number 

of informed nodes of group g, Ig , to get the final density of informed nodes of group g, ρfg.
6. Repeat steps 2–5 for several networks and source and target nodes and find the average final density of 

informed nodes ρfg.

Empirical network. To test the validity of our results in real networks, we performed a simulation in a net-
work with high homophily: a network of scientific citations of the  APS7,42. The nodes in the network correspond 
to individual scientific papers related to statistical mechanics, and each link corresponds to a citation between 
two of them. We disregard the directional nature of the links, since the BAh model is designed for undirected 
networks. To ensure that contagion is possible, we only take the largest component and disregard all the small 
components. We select the minority and majority groups based on identifiers from the Physics and Astronomy 
Classification Scheme (PACS). In particular, the minority group corresponds to papers devoted to Classical Sta-
tistical Mechanics (CSM) and the majority group to Quantum Statistical Mechanics (QSM).

Taking these considerations into account, we obtain a network with 1281 nodes and 3064 links. From these 
nodes, 407 belonged to the minority group and 874 to the majority. The minority fraction is thus fa = 0.32 and 
the homophily parameter is h = 0.92 . The homophily parameter was estimated using the procedure described 
 in42.

Data availability
The empirical citation network between papers published in APS journals has been made publicly available by 
the authors  of7,42 and can be found online at https:// github. com/ frbkrm/ NtwPe rcept ionBi as.

Received: 17 March 2022; Accepted: 23 May 2022

References
 1. Goel, S., Anderson, A., Hofman, J. & Watts, D. J. The structural virality of online diffusion. Manage. Sci.https:// doi. org/ 10. 1287/ 

mnsc. 2015. 2158 (2015).
 2. Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. Science 359, 1146–1151. https:// doi. org/ 10. 1126/ scien 

ce. aap95 59 (2018).
 3. Juul, J. L. & Ugander, J. Comparing information diffusion mechanisms by matching on cascade size. Proc. Natl. Acad. Sci. 118, 

e2100786118. https:// doi. org/ 10. 1073/ pnas. 21007 86118 (2021).

(3)

Ptr = Pr(target is informed | contagion starts at source) =
No. targets that are informed

No. of possible targets
=

Ig

Ng
= ρfg

https://github.com/frbkrm/NtwPerceptionBias
https://doi.org/10.1287/mnsc.2015.2158
https://doi.org/10.1287/mnsc.2015.2158
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1073/pnas.2100786118


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9350  | https://doi.org/10.1038/s41598-022-13343-6

www.nature.com/scientificreports/

 4. Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W. & Starnini, M. The echo chamber effect on social media. 
Proc. Natl. Acad. Sci. 118, e2023301118. https:// doi. org/ 10. 1073/ pnas. 20233 01118 (2021).

 5. Baumann, F., Lorenz-Spreen, P., Sokolov, I. M. & Starnini, M. Modeling echo chambers and polarization dynamics in social net-
works. Phys. Rev. Lett. 124, 048301. https:// doi. org/ 10. 1103/ PhysR evLett. 124. 048301 (2020).

 6. Baumann, F., Lorenz-Spreen, P., Sokolov, I. M. & Starnini, M. Emergence of polarized ideological opinions in multidimensional 
topic spaces. Phys. Rev. X 11, 011012. https:// doi. org/ 10. 1103/ PhysR evX. 11. 011012 (2021).

 7. Lee, E. et al. Homophily and minority-group size explain perception biases in social networks. Nat. Hum. Behav. 3, 1078–1087. 
https:// doi. org/ 10. 1038/ s41562- 019- 0677-4 (2019).

 8. Tokita, C. K., Guess, A. M. & Tarnita, C. E. Polarized information ecosystems can reorganize social networks via information 
cascades. Proc. Natl. Acad. Sci. 118, e2102147118. https:// doi. org/ 10. 1073/ pnas. 21021 47118 (2021).

 9. Dubois, E. & Blank, G. The echo chamber is overstated: The moderating effect of political interest and diverse media. Inf. Commun. 
Soc. 21, 729–745. https:// doi. org/ 10. 1080/ 13691 18X. 2018. 14286 56 (2018).

 10. Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A. & Bonneau, R. Tweeting from left to right: Is online political communication more 
than an echo chamber?. Psychol. Sci. 26, 1531–1542. https:// doi. org/ 10. 1177/ 09567 97615 594620 (2015).

 11. Törnberg, P. Echo chambers and viral misinformation: Modeling fake news as complex contagion. PLoS One 13, e0203958. https:// 
doi. org/ 10. 1371/ journ al. pone. 02039 58 (2018).

 12. Fricker, M. & Press, O. U. Epistemic Injustice: Power and the Ethics of Knowing. Oxford Scholarship Online (Clarendon Press, 2007).
 13. Mesoudi, A., Whiten, A. & Dunbar, R. A bias for social information in human cultural transmission. Br. J. Psychol. 97, 405–423. 

https:// doi. org/ 10. 1348/ 00071 2605X 85871 (2006).
 14. Altshteyn, I. Evidence for a warning bias in information transmission in social networks. Master’s thesis, University of California, Los 

Angeles (2014). ProQuest ID: Altshteyn_ucla_0031N_12675. Merritt ID: ark:/13030/m5n88t2w. Retrieved from https://escholar-
ship.org/uc/item/904684q4.

 15. Fay, N., Walker, B., Kashima, Y. & Perfors, A. Socially situated transmission: The bias to transmit negative information is moderated 
by the social context. Cogn. Sci.https:// doi. org/ 10. 1111/ cogs. 13033 (2021).

 16. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 
87, 925–979. https:// doi. org/ 10. 1103/ RevMo dPhys. 87. 925 (2015).

 17. Chang, H.-C.H. & Fu, F. Co-diffusion of social contagions. New J. Phys. 20, 095001. https:// doi. org/ 10. 1088/ 1367- 2630/ aadce7 
(2018).

 18. Centola, D., Eguíluz, V. M. & Macy, M. W. Cascade dynamics of complex propagation. Phys. A 374, 449–456. https:// doi. org/ 10. 
1016/j. physa. 2006. 06. 018 (2007).

 19. Centola, D. How Behavior Spreads: The Science of Complex Contagions (Princeton University Press, 2018).
 20. Gleeson, J. P. Cascades on correlated and modular random networks. Phys. Rev. E 77, 046117. https:// doi. org/ 10. 1103/ PhysR evE. 

77. 046117 (2008).
 21. Hackett, A., Melnik, S. & Gleeson, J. P. Cascades on a class of clustered random networks. Phys. Rev. E 83, 056107. https:// doi. org/ 

10. 1103/ PhysR evE. 83. 056107 (2011).
 22. Oh, S.-W. & Porter, M. A. Complex contagions with timers. Chaos Interdiscip. J. Nonlinear Sci. 28, 033101. https:// doi. org/ 10. 

1063/1. 49900 38 (2018).
 23. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).
 24. Watts, D. J. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 6, 25 (2002).
 25. Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485. https:// doi. org/ 10. 

1038/ s41467- 019- 10431-6 (2019).
 26. Battiston, F. et al. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 874, 1–92. https:// doi. org/ 10. 1016/j. 

physr ep. 2020. 05. 004 (2020).
 27. Sahasrabuddhe, R., Neuhäuser, L. & Lambiotte, R. Modelling non-linear consensus dynamics on hypergraphs. J. Phys. Complex. 

2, 025006. https:// doi. org/ 10. 1088/ 2632- 072X/ abcea3 (2021).
 28. de Arruda, G. F., Petri, G., Rodriguez, P. M. & Moreno, Y. Multistability, intermittency and hybrid transitions in social contagion 

models on hypergraphs. arXiv: 2112. 04273 (2021).
 29. Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197. https:// doi. org/ 10. 1126/ scien 

ce. 11852 31 (2010).
 30. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile 

animal groups allows prediction of complex behavioral contagion. Proc. Natl. Acad. Sci. 112, 4690–4695. https:// doi. org/ 10. 1073/ 
pnas. 14200 68112 (2015).

 31. Aral, S. & Nicolaides, C. Exercise contagion in a global social network. Nat. Commun. 8, 14753. https:// doi. org/ 10. 1038/ ncomm 
s14753 (2017).

 32. Lerman, K. Information is not a virus, and other consequences of human cognitive limits. Future Internet 8, 21. https:// doi. org/ 
10. 3390/ fi802 0021 (2016).

 33. Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of complex contagion of information in social media: An experi-
ment using Twitter bots. PLoS One 12, e0184148. https:// doi. org/ 10. 1371/ journ al. pone. 01841 48 (2017).

 34. Guilbeault, D. & Centola, D. Topological measures for identifying and predicting the spread of complex contagions. Nat. Commun. 
12, 4430. https:// doi. org/ 10. 1038/ s41467- 021- 24704-6 (2021).

 35. State, B. & Adamic, L. The diffusion of support in an online social movement: Evidence from the adoption of equal-sign profile 
pictures. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, 1741–1750. 
https:// doi. org/ 10. 1145/ 26751 33. 26752 90 (ACM, Vancouver BC Canada, 2015).

 36. Karsai, M., Iñiguez, G., Kikas, R., Kaski, K. & Kertész, J. Local cascades induced global contagion: How heterogeneous thresholds, 
exogenous effects, and unconcerned behaviour govern online adoption spreading. Sci. Rep. 6, 27178. https:// doi. org/ 10. 1038/ srep2 
7178 (2016).

 37. Dodds, P. S. & Watts, D. J. Universal behavior in a generalized model of contagion. Phys. Rev. Lett. 92, 218701. https:// doi. org/ 10. 
1103/ PhysR evLett. 92. 218701 (2004).

 38. Czaplicka, A., Toral, R. & San Miguel, M. Competition of simple and complex adoption on interdependent networks. Phys. Rev. 
E 94, 062301. https:// doi. org/ 10. 1103/ PhysR evE. 94. 062301 (2016).

 39. Min, B. & San Miguel, M. Competing contagion processes: Complex contagion triggered by simple contagion. Sci. Rep. 8, 10422. 
https:// doi. org/ 10. 1038/ s41598- 018- 28615-3 (2018).

 40. Kook, J., Choi, J. & Min, B. Double transitions and hysteresis in heterogeneous contagion processes. Phys. Rev. E 104, 044306. 
https:// doi. org/ 10. 1103/ PhysR evE. 104. 044306 (2021).

 41. Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 4 (1999).
 42. Karimi, F., Génois, M., Wagner, C., Singer, P. & Strohmaier, M. Homophily influences ranking of minorities in social networks. 

Sci. Rep. 8, 11077. https:// doi. org/ 10. 1038/ s41598- 018- 29405-7 (2018).
 43. Baxter, G. J., Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Heterogeneous k -core versus bootstrap percolation on complex 

networks. Phys. Rev. E 83, 051134. https:// doi. org/ 10. 1103/ PhysR evE. 83. 051134 (2011).
 44. Lee, D., Choi, S., Stippinger, M., Kertész, J. & Kahng, B. Hybrid phase transition into an absorbing state: Percolation and avalanches. 

Phys. Rev. E 93, 042109. https:// doi. org/ 10. 1103/ PhysR evE. 93. 042109 (2016).

https://doi.org/10.1073/pnas.2023301118
https://doi.org/10.1103/PhysRevLett.124.048301
https://doi.org/10.1103/PhysRevX.11.011012
https://doi.org/10.1038/s41562-019-0677-4
https://doi.org/10.1073/pnas.2102147118
https://doi.org/10.1080/1369118X.2018.1428656
https://doi.org/10.1177/0956797615594620
https://doi.org/10.1371/journal.pone.0203958
https://doi.org/10.1371/journal.pone.0203958
https://doi.org/10.1348/000712605X85871
https://doi.org/10.1111/cogs.13033
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1088/1367-2630/aadce7
https://doi.org/10.1016/j.physa.2006.06.018
https://doi.org/10.1016/j.physa.2006.06.018
https://doi.org/10.1103/PhysRevE.77.046117
https://doi.org/10.1103/PhysRevE.77.046117
https://doi.org/10.1103/PhysRevE.83.056107
https://doi.org/10.1103/PhysRevE.83.056107
https://doi.org/10.1063/1.4990038
https://doi.org/10.1063/1.4990038
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1016/j.physrep.2020.05.004
https://doi.org/10.1016/j.physrep.2020.05.004
https://doi.org/10.1088/2632-072X/abcea3
http://arxiv.org/abs/2112.04273
https://doi.org/10.1126/science.1185231
https://doi.org/10.1126/science.1185231
https://doi.org/10.1073/pnas.1420068112
https://doi.org/10.1073/pnas.1420068112
https://doi.org/10.1038/ncomms14753
https://doi.org/10.1038/ncomms14753
https://doi.org/10.3390/fi8020021
https://doi.org/10.3390/fi8020021
https://doi.org/10.1371/journal.pone.0184148
https://doi.org/10.1038/s41467-021-24704-6
https://doi.org/10.1145/2675133.2675290
https://doi.org/10.1038/srep27178
https://doi.org/10.1038/srep27178
https://doi.org/10.1103/PhysRevLett.92.218701
https://doi.org/10.1103/PhysRevLett.92.218701
https://doi.org/10.1103/PhysRevE.94.062301
https://doi.org/10.1038/s41598-018-28615-3
https://doi.org/10.1103/PhysRevE.104.044306
https://doi.org/10.1038/s41598-018-29405-7
https://doi.org/10.1103/PhysRevE.83.051134
https://doi.org/10.1103/PhysRevE.93.042109


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9350  | https://doi.org/10.1038/s41598-022-13343-6

www.nature.com/scientificreports/

 45. Vazquez, F., Eguíluz, V. M. & Miguel, M. S. Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100, 108702. 
https:// doi. org/ 10. 1103/ PhysR evLett. 100. 108702 (2008).

 46. Saeedian, M., San Miguel, M. & Toral, R. Absorbing-state transition in a coevolution model with node and link states in an adap-
tive network: Network fragmentation transition at criticality. New J. Phys. 22, 113001. https:// doi. org/ 10. 1088/ 1367- 2630/ abbfd0 
(2020).

Acknowledgements
FDD, MSM and SM acknowledge support from the Spanish Agency of Research (AEI) through Maria 
de Maeztu Program for units of Excellence in R &D (Grant MDM-2017-0711 funded by MCIN/
AEI/10.13039/501100011033). In particular, FDD thanks financial support MDM-2017-0711-20-2 and FSE 
invierte en tu futuro. SM acknowledges funding from the project PACSS RTI2018-093732-B-C22 of the MCIN/
AEI /10.13039/501100011033/ and by EU through FEDER funds (A way to make Europe).

Author contributions
F.D.D., M.S.M. and S.M. conceived the models. F.D.D. performed the numerical simulations and analyzed the 
data. M.S.M. and S.M. supervised the work. All authors contributed in the writing and revision of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1103/PhysRevLett.100.108702
https://doi.org/10.1088/1367-2630/abbfd0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Echo chambers and information transmission biases in homophilic and heterophilic networks
	Results
	Homophilic and heterophilic networks. 
	Simple vs complex contagion. 
	Definitions and description of the models. 
	Capturing the impact of homophily in information spreading by using Complex Contagion. 
	Critical threshold for Complex Contagion. 

	Hybrid Contagion. 
	Description of the model. 
	Information transmission with Hybrid Contagion. 
	Critical threshold for Hybrid Contagion. 

	Echo chambers and other IT biases. 
	Measuring echo chambers and IT biases. 
	Echo chambers and other biases in Hybrid Contagion. 
	Echo chambers in real-world networks. 


	Discussion
	Methods
	Measuring information transmission. 
	Empirical network. 

	References
	Acknowledgements


