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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) has harshly impacted Italy since its arrival in February 2020. In particular, 
provinces in Italy’s Central and Northern macroregions have dealt with disproportionately greater case preva-
lence and mortality rates than those in the South. In this paper, we compare the morbidity and mortality dy-
namics of 16th and 17th century Plague outbreaks with those of the ongoing COVID-19 pandemic across Italian 
regions. We also include data on infectious respiratory diseases which are presently endemic to Italy in order to 
analyze the regional differences between epidemic and endemic disease. A Growth Curve Analysis allowed for 
the estimation of time-related intercepts and slopes across the 16th and 17th centuries. Those statistical pa-
rameters were later incorporated as criterion variables in multiple General Linear Models. These statistical ex-
aminations determined that the Northern macroregion had a higher intercept than the Southern macroregion. 
This indicated that provinces located in Northern Italy had historically experienced higher plague mortalities 
than Southern polities. The analyses also revealed that this geographical differential in morbidity and mortality 
persists to this day, as the Northern macroregion has experienced a substantially higher COVID-19 mortality than 
the Southern macroregion. These results are consistent with previously published analyses. The only other stable 
and significant predictor of epidemic disease mortality was foreign urban potential, a measure of the degree of 
interconnectedness between 16th and 17th century Italian cities. Foreign urban potential was negatively asso-
ciated with plague slope and positively associated with plague intercept, COVID-19 mortality, GDP per capita, 
and immigration per capita. Its substantial contribution in predicting both past and present outcomes provides a 
temporal continuity not seen in any other measure tested here. Overall, this study provides compelling evidence 
that temporally stable geographical factors, impacting both historical and current foreign pathogen spread above 
and beyond other hypothesized predictors, underlie the disproportionate impact COVID-19 has had throughout 
Central and Northern Italian provinces.   

1. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
responsible for causing coronavirus disease 2019 (COVID-19), origi-
nated in Wuhan, China, in December 2019 (Zhu et al., 2020). Soon after, 
it spread to Northern Italy, where the nation’s first local case was re-
ported in February, marking the beginning of COVID-19’s rapid spread 
throughout the country (Gatto et al., 2020). The first wave of COVID-19 
infections in Italy dissipated by early June, with case counts and deaths 
remaining low until the second wave began in late October (WHO, 
2021). Although all of Italy has been severely affected by this pandemic, 

provinces located in its Central and Northern macroregions have expe-
rienced disproportionately higher case prevalences and mortalities than 
their Southern counterparts (Odone et al., 2020). 

In studying the differential and ongoing effects of COVID-19 
throughout Italy, it is worthwhile to consider patterns of disease 
spread beyond those of the current pandemic. One such focus is the 
impact of previous epidemic diseases on Italian regions prior to national 
unification. This comparison offers a unique model of disease mortality 
in genetically similar populations and allows for further analyses of the 
true effectiveness of interventions via national political mechanisms and 
modern communication tools in combatting the spread of epidemic 
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respiratory disease. We used data on multiple plague outbreaks which 
afflicted regions of present-day Italy during the 16th and 17th centuries 
for this historical comparison. 

Another focus of the present study is the dispersal of infectious dis-
eases which are endemic nationwide. Among these, infectious respira-
tory diseases that are able to be transmitted similarly to COVID-19, such 
as tuberculosis, influenza, and bacterial pneumonia, are commonly re-
ported by provinces throughout the country (ISTAT, 2017). In this 
paper, we utilize recent data on those endemic diseases to pursue the 
testing of hypotheses relevant to the variable effects of epidemics. This is 
particularly useful in the case of COVID-19 and its probable transition to 
endemicity, as work in historical epidemiology is yet to address differ-
ences between the mortality patterns of pre-transition epidemics with 
those occurring prior while controlling for contemporary endemic 
disease. 

In this paper, we specifically focus on mortality in relation to vari-
ables that may be predictive of its rate for both COVID-19 and other 
infectious diseases. Causes of death can vary based on population den-
sity, economic status, and subsequent access to higher qualities of care. 
In comparison with case prevalence, on the other hand, mortality is a 
dependable indicator of the severity of infectious disease in a region. It is 
also more reliably controlled via population-level variables, such as 
average age and wealth. One key aspect of studies on population age and 
infectious disease mortality is the difference between studying the age of 
an individual as the risk factor for mortality versus the mean age of a 
population. This is because, whereas older individuals do not single- 
handedly influence population-level spread, older populations do 
(Dowd et al., 2020; McKeown, 2009). Younger populations are more 
likely to be associated with higher frequencies of infectious disease 
spread, but not necessarily higher mortality rates (Dowd et al., 2020; 
McKeown, 2009). Older populations experience the same trend in the 
inverse (Dowd et al., 2020; McKeown, 2009). In the case of wealth, 
multiple studies appear to support the hypothesis that greater wealth (in 
terms of GDP per capita) lessens the risk of mortality, especially in 
developed countries (Wood et al., 2017). In this paper, we test both 
hypotheses based on average wealth and age in relation to infectious 
disease mortality in Italy. 

Moving beyond demographic indicators, other researchers have 
studied the effects of physical ecology on the morbidity and mortality of 
infectious diseases (Anderson, 2004). In particular, latitude and longi-
tude, altitude, temperature, humidity, and rainfall are often used in 
predicting the prevalence of infectious disease in a region (Anderson, 
2004). Additionally, regions that are associated with more tropical cli-
mates are predicted to host and facilitate increased spread of a more 
diverse range of infectious diseases (Anderson, 2004). Though other 
reasons help to explain the trend, this is largely hypothesized to be a 
result of the cold seasons occurring in temperate climates, which force 
common hosts of infectious diseases such as outdoor-living rodents and 
insects into burrowing or hibernation for multiple months each year 
(Grassly and Fraser, 2006). These hypotheses are considered in our 
analyses wherever both present and historical data are available. Tem-
perature, humidity, and rainfall could not be included because of 
insufficient historical data (for the provincial level) to compare the 
impacts of historical physical ecology on plague outbreaks with present 
physical ecology and COVID-19. Without these data, such hypotheses 
would require estimates which may be unreliable, especially at the 
provincial level. 

One benefit of studying past pandemics in comparison with the 
current COVID-19 outbreak is the identification of common trends of 
disease spread and mortality which persist despite substantial changes 
in technology, medicine, infrastructure, and population connectedness 
across Italy over multiple centuries. Such findings may benefit inquiries 
into the allocation of funding and resources for provincial, regional, and 
national healthcare organizations. In the case of Italy, this is especially 
necessary when considering the early prevention of future outbreaks, 
something which must be addressed if policymakers are to legislate on 

the severe healthcare strain—both in personnel and equipment—faced 
as a result of COVID-19 (Armocida et al., 2020). This has been partic-
ularly problematic in Northern Italy, where hospitals had already been 
receiving people from Southern Italy due to substantially higher levels of 
reported dissatisfaction with local hospital care in the South than in the 
North (Lo Scalzo et al., 2009). As a result, several nations contributed 
members of their healthcare personnel and supplies to Italy to combat 
the first wave of COVID-19. 

As we will discuss further, these trends do not appear to be a novel 
development in the history of infectious diseases in Italy. Long before 
COVID-19, numerous city-states which now comprise the Italian Re-
public were hit by multiple severe plague epidemics. Three types of 
plague collectively form the disease caused by Yersinia Pestis in the Black 
Death: Bubonic, Pneumonic, and Septicemic (Gage and Kosoy, 2005). 
Bubonic plague—the one most likely spread by ship rats—can only be 
spread horizontally through vectors such as fleas or rodents. Pneumonic 
plague can be spread via both horizontal and direct transmission such as 
the inhalation of aerosolized bacterium from infected people. Septice-
mic plague, which possesses the highest mortality rate of the three 
plague types but is the least commonly found, can also be spread via 
both horizontal and direct transmission. In this paper, we focus on the 
four major plague outbreaks in Italy during the 16th and 17th centuries. 
Reliable mortality data were available from these outbreaks. Other 
plague data from years prior to the 16th century and subsequent to the 
17th century are reported in Biraben (1976) but were not used in the 
present study because of concerns from ourselves and multiple other 
authors regarding their reliability (Alfani, 2013a, 2013b; Roosen and 
Curtis, 2018). Lastly, though we are aware of the microbiological and 
clinical distinctions necessary when addressing bacterial versus viral 
infection, we consider the similar respiratory transmission of both pla-
gue and COVID-19 as most relevant to our hypotheses. The likelihood of 
human-to-human transmission of medieval and early modern plague is, 
however, still debated in the historical epidemiology literature, largely 
due to the differences between the three types of plague discussed above 
(Whittles and Didelot, 2016). In this work, we are solely interested in 
studying the relative mortality differences across geography and be-
tween major epidemic events, emphasizing the similarities of epidemics 
preserved through substantial political and technological change. Thus, 
we do not consider there to be any serious disadvantages to such a 
comparison for this nuanced context, regardless of the discrepancies 
present. 

Two major plague pandemics have been recorded in human history. 
The one most relevant to this paper is the second, the so-called Black 
Death of the early 14th Century. Having originated in Central Asia, 
potentially at a plague reservoir in the Steppes, plague spread first to 
Italy and then throughout Eurasia and North Africa. Its arrival in Italy 
appears to be the result of a Mongol invasion targeting Genoese colo-
nists, of Caffa, in Crimea (Gottfried, 2010). Ship rats (R. rattus) appear to 
have further exacerbated the spread of plague through other trading 
sites contacted by those first merchant ships to encounter infection. This 
14th century pandemic was followed by several regional epidemics in 
subsequent centuries. Italy was struck by multiple plague outbreaks, 
including in 1575–77 in Palermo and Venice, 1624 in Sicily, 1629–31 
throughout Central and Northern Italy (also known as the Great Plague 
of Milan), and 1656–57 in Naples and several other Southern Italian 
regions (also known as the Great Plague of Naples). 

Regarding the prevalence and mortality rates of the plague during 
the Late Middle Ages, historical reconstructions evidence noticeable 
geographical differences across Italy. Per Aberth (2013), Florence 
reached a mortality of 55% of its population based on the frequency of 
tax-paying households. Likewise, based on the number of salt tax-payers 
in the city of San Gimignano, in Tuscany, this urban center suffered a 
mortality of 52% from 1332 to 1350. Although still impacted by the 
plague, other Tuscan contados featured lower mortality rates (Aberth, 
2013). From 1339 to 1352, Pratto had a mortality of 39%. Villages in 
Piedmont, from 1335 to 1356, also experienced a 40% demographic 
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reduction according to the tax-paying household data from that period 
(Aberth, 2013). 

In addition to tax-related information, military enrollments also offer 
a unique insight into the plague mortality rates of Medieval Italian 
polities. For instance, military registers of enrolling men between the 
ages of 18–69 in Bologna, Emilia Romagna, revealed a 35% population 
decline in the year 1349 alone (Aberth, 2013). Along similar lines, 
changes in the military enrollment of men between the ages of 16–70 in 
Siena, Tuscany, revealed a plague mortality of 51%. More recent esti-
mates indicate that Piedmont and Tuscany experienced mortality rates 
of approximately 60%. Parishes in Lucca featured a slightly higher rate 
of 64%. Cities such as San Gimignano suffered a loss of 60% of their 
population in the span of two years (from 1348 to 1350; Cesana et al., 
2017). Alternatively, other locations underwent a slightly less severe 
population contraction due to the plague. For example, the commune of 
Pratto lost around 44.5% of its citizens (Cesana et al., 2017). It is rele-
vant to mention that, despite these regional differences, the average 
plague mortality rate for Italy was consistent with that of other Euro-
pean countries, including England and France (Benedictow, 2021; 
Cesana et al., 2017). 

The case of Milan deserves special attention. Some scholars have 
argued that Milan was not considerably affected by the 1348 plague 
pandemic despite its northern geographical location (Byrne, 2012; 
Martin, 2007). According to the historian Agnolo di Tura, only three 
families in the city were afflicted by the disease (Byrne, 2012). Historical 
records suggest that the Milanese government adopted unusually strict 
measures to prevent spread of the plague. Guards were posted at every 
gate of the city to hinder the entrance of potentially infected visitors. 
Likewise, afflicted individuals were locked down in their homes (Byrne, 
2012). Other regulations under Bernabò Visconti, Lord of Milan, 
authorized the treasury to seize, without restitution, the goods and 
property of infected individuals carrying the disease from another place 
(Horrox, 2013). People attending to someone who died of the plague 
were told to wait for at least 10 days before returning to the city. Under 
penalty of death, parish priests were instructed to examine the sick to 
determine the nature of the affliction and notify any plague cases to the 
appropriate authorities (Horrox, 2013). The cumulative effect of these 
public policies resulted in Milan having relatively no contact with other 
nearby towns by 1399. Around 1374, Duke Giangaleazzo proposed even 
harsher measures to reduce the spread of the plague, such as relocating 
the diseased to plague houses, or mansiones, outside of the city (Byrne, 
2012). Furthermore, the ducal government also carried out frequent 
fumigations of infected households after relocating afflicted people and 
their families to extramural sites. Circa 1424–1452, the Milanese 
administration also created the Office of the Ducal Health Commis-
sioner, an institutional position in charge of maintaining a registry of the 
causes and number of deaths in the city (Necrologi; Carmichael, 1983; 
Cohn Jr and Alfani, 2007). Centuries ahead of their time, the Milanese 
also created an array of geographical charts featuring mortality patterns 
(Byrne, 2012). 

However, it is worth noting that chroniclers and historians disagree 
on the severity of the Black Death in Milan. Azarius (1730), a Milanese 
notary, for instance, argued that the disease ravaged Milan along with 
Pavia, Novara, and Como (Benedictow, 2021). Moreover, according to 
Azarius, Milanese refugees carried the disease to Parma. As reviewed by 
Benedictow (2021), Bazano (1729) also claimed that Milan was severely 
affected by the Black Death between the months of May and September. 
Based on this historical evidence, Benedictow (2021) questioned the 
notion that Milan was relatively spared by the disease. The author 
argued that with a population of 150,000 inhabitants, Milan was, at the 
time, the largest, or at least, second-largest city in Europe (claiming that 
the Milanese population was close to 180,000; Kelly, 2005). Per Bene-
dictow, the sheer size of the city made it susceptible to multiple conta-
gion events, even if the gates were zealously guarded. 

Moreover, even under such strict measures, the city required a 
minimum and constant influx of goods to maintain its sociopolitical 

stability; thus, farmers and merchants did enter the city, increasing the 
opportunities for disease spread (Benedictow, 2021). Although the au-
thors above did not question the historical veracity of Milan’s public 
health measures, they counter the notion that their implementation was 
sufficient to reduce the probability of infection events and the city’s 
plague mortality relative to other Italian polities. Consequently, addi-
tional historical studies are required to determine Milan’s morbidity and 
mortality rates during the Black Death with greater certitude. We do not 
know to what extent these measures were able to mitigate the effects of 
the plague. 

Subsequent plague outbreaks during the Renaissance generated 
additional demographic disruptions across Italy. According to Alfani 
(2013a, 2013b), the Plague of San Carlo (1575–1577) was particularly 
severe in cities such as Bresica (444 per 1000), Genoa (358 per 1000), 
Padua (344 per 1000), Venice (265 per 1000), Crema (220 per 1000), 
and Verona (200 per 1000). According to archaeoepidemiological re-
constructions, this plague originated in the cisalpine region and spread 
from Milan to Venice. It expanded to Pavia, Mantua, and according to 
some records, even Piedmont, Liguria, and Emilia (Alfani, 2013a, 
2013b). These historical reconstructions have also identified a notice-
able concentration of cases in cities, instead of the countryside (Alfani, 
2013a, 2013b). The difference in plague mortality rates between urban 
and rural centers, and the ongoing migration to the cities, facilitated the 
accelerated population recovery of cities in Veneto and Lombardy 
(Alfani, 2013a, 2013b). 

This rapid spread of plague elucidates the necessity for further study 
in comparison to COVID-19 and modern populations. One relevant 
aspect of population dynamics pertaining to the prevalence of infectious 
disease is the mobility of individuals from within and without a popu-
lation to and from it. Beyond frequent trade with outside merchants, a 
series of wars occasioned the movement of large numbers of Italian 
people and troops within contested regions of Northern Italy. In 
particular, the Italian Wars, lasting from 1494 to 1559, involved several 
invasions of troops from outside Italy. Combatants included the French, 
Spanish, British, Swiss, Papacy, and other members of the Holy Roman 
Empire (Shaw, 2019). This fighting continued until 1559 when Spain 
took control of Sicily and Naples in the South as well as Milan in the 
North. People in these regions were often displaced from their homes 
during the conflict or, when they were able, instead relocated to more 
peaceful regions elsewhere. This further increased the possibility of in-
fectious disease spread as both a direct and indirect result of the Italian 
Wars, especially in Northern regions. 

Beyond frequent warfare and its concordant movement of troops, 
many Northern cities were also hubs for laborers moving between Italian 
cities, as well as attractive destinations for merchants, students, and 
even artists from throughout Italy and neighboring countries. In the 
16th and 17th centuries especially, Northern Italy was the site of sub-
stantial increases in trade (Alfani, 2013a, 2013b). Even with early de-
fenses in place, such as communication regarding their health status 
between cities, defensive isolation following outbreaks, and a cordon 
sanitarie along much of both Italian coasts, the introduction of most of 
these plague epidemics can be traced to individuals entering Italy from 
other regions (Cliff et al., 2009). This continued, though guarded, 
movement of people to particularly open and popular cities could, 
therefore, have not only contributed to the introduction of plague to new 
areas but also exacerbated its spread once there. Additionally, Italian 
cities that were struck by famine, disease, or war casualties often needed 
to encourage movement to urban areas, sometimes, for example, offer-
ing labor incentives for workers in order to mitigate the effects of 
underpopulation following the crisis (Alfani, 2011). 

These observations render both population mobility and trans-
portation as potential explanations for the introduction and rapid 
epidemic spread of infectious respiratory diseases, including COVID-19. 
This also implies that the spread of infectious endemic diseases may be 
different from that of epidemics, fundamentally emphasizing the role of 
spread within the localities in which they are endemic, rather than from 
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people visiting or moving into those localities from elsewhere. In this 
paper, we chose to compare all three—historical plague outbreaks, 
currently endemic respiratory disease, and COVID-19—to approach 
these hypotheses empirically and discover whether or not outbreaks 
such as plague and COVID-19 are predicted by pathways of epidemic 
disease spread that are different from those of infectious endemic dis-
ease spread. In this case, more people moving to, or traveling through, a 
region are expected to increase the likelihood of infectious disease 
spread within that and surrounding regions. This is often discussed in 
the context of movement to nearby port cities, airports, or train stops, for 
tourism, employment, and other activities, something that is especially 
common in some of Italy’s wealthier Northern regions. These hypothe-
ses will be tested for immigration data covering all of modern Italy. 

Moving beyond plague, regions of both pre- and post-unification 
Italy were struck by a series of pandemics caused by the bacterium 
V. cholerae, popularly known as cholera. Six cholera pandemics have 
occurred and each has variously impacted Italy (Byrne, 2008). The first 
pandemic, for example, does not appear to have caused any major 
outbreaks within Italy. Many regions were, however, impacted by the 
second cholera pandemic, occurring from 1834 to 1837 and entering 
through Southern France (Hays, 1998). Later, in 1866, the fourth 
cholera pandemic reached Italy via the Adriatic port of Ancona. Late in 
the 19th century, the second wave of the fifth pandemic caused a severe 
outbreak in Napoli, resulting in over 5000 deaths and over 2 years of 
continuous spread throughout neighboring regions (Snowden, 2002). 
Lastly, the sixth cholera pandemic hit Italy in 1910, heavily impacting 
multiple Southern regions. Data on these historical cholera pandemics 
are non-existent at the provincial level in Italy. As a result, cholera was 
not able to be included in this paper’s analyses. 

A final variable of potential relevance to differences in COVID-19 
and historical plague mortality is the regional distribution of potential 
genetic predictors of disease. Recent research on C–C chemokine- 
receptor-5 (CCR5), and more specifically its 32 bp deletion variant 
(CCR5 Δ32), have found consistent negative associations for individual 
susceptibility to, and case severity of, COVID-19 infection in carriers of 
CCR5 Δ32 (Panda et al., 2020; Starčević Čizmarević et al., 2020; Cuesta- 
Llavona et al., 2021). Adequate data are not available to investigate 
CCR5 Δ32 at the macro-regional or provincial levels in Italy, however, 
future studies on COVID-19 should consider testing hypotheses for both 
genetic predictors, given the similarity of their reported associations in 
recent literature. Additionally, multiple researchers have hypothesized 
that the distribution of haplogroup R1b is positively associated with 
increased susceptibility to COVID-19 infection and subsequently mor-
tality risk (Delanghe et al., 2020). Haplogroup R1b is found throughout 
Western Europe and traces back to the Late Neolithic, allowing for 
reliable historical analyses utilizing data for its present distribution. In 
the case of Italy, R1b is predominantly found in Northern Italian pop-
ulations and, as a result, may underlie the previously discussed macro-
regional differences in COVID-19 prevalence and mortality. Unlike 
CCR5 Δ32, adequate macro regional data for R1b are available. This 
paper will be the first to test these population genetic hypotheses with 
regional data on the distribution of R1b throughout Italy. In addition, 
this will be the first analysis of R1b in relation to historical plague 
outbreaks and contemporary endemic disease mortality. 

The most novel characteristic of the present study resides in our 
having taken an explicitly social-biogeographic approach to the prob-
lem. As was explained most concisely in a recent book chapter on the 
subject (Figueredo et al., 2020): 

Social Biogeography is an emergent research program, still in its 
exploratory stages, wherein biogeographical data are used to predict 
patterns of human social behavior, both directly and indirectly. A 
complete model of Social Biogeography attempts to reconstruct the 
pathways of causal influence: (1) from the Physical to the Commu-
nity Ecology; (2) from the Community and Physical to the Social 
Ecology; (3) from the Social, Community, and Physical to the 

Cultural Ecology; and (4) from the Cultural, Social, Community, and 
Physical to the Cognitive Ecology. This is an ambitious task, and 
many attempts have been made in the past to reconstruct some of 
these pathways. Only recently have somewhat more comprehensive 
models been constructed, but even these remain rudimentary 
compared to the sheer magnitude of the problem (p. 400). 

Physical ecology pertains to geographical variables such as latitude, 
longitude, altitude, temperature, and precipitation, among others (Fer-
nandes et al., 2017; Figueredo et al., 2017). Alternatively, community 
ecology encompasses an array of biotic relations between organisms, 
including pathogens and hosts, as well as the demographic and genetic 
frequency of biocultural groups (Figueredo et al., 2017; Peñaherrera- 
Aguirre et al., 2019). Social ecology covers different dimensions of the 
social environment, from wealth and inequality to transportation and 
access to medical care (Figueredo et al., 2017; Figueredo et al., 2020). 
Lastly, cognitive ecology includes domains such as a polity’s average 
education level and its corresponding cognitive capital (Figueredo et al., 
2021). Overall, and as applied to the study of COVID-19 morbidity and 
mortality, this involved starting with such basic geographical predictors 
as latitude, longitude, and whether or not each particular province was 
landlocked or had access to the seas and waterways. We also considered 
the role of these geographical patterns on macrohistorical dynamics of 
the plague in Italian history. We then traced these effects through de-
mographic and biocultural variables including the frequency of the 
haplogroup R1b, immigration, and age structure, only then following 
the cascade through the prevalence of other respiratory diseases to their 
final COVID-19 mortality rate. Consequently, a macrohistorical and 
social biogeographical model considers the influence and interactions of 
the various types of ecology, in this case on COVID-19 mortality, while 
not limiting itself only to evaluating the impact of a particular variable 
over others. 

2. Methods 

2.1. Sample 

For the present study, we gathered data on the physical, social, and 
community ecologies of 109 Italian provinces. Data on historical plague 
mortalities (for 16th and 17th century Italy) were collected from Alfani 
and Percoco (2019). The authors’ data contained information on 55 
Italian cities. For the current purposes, these data were averaged across 
provinces. Of the 109 Italian provinces, 44 were associated with his-
torical data on various plague outbreaks between the 16th and 17th 
centuries. All provincial data on haplogroup R1b were collected from 
Hay (2017). Contemporary demographic information including the 
proportion of the population over 8 years of age, the interprovincial and 
international immigration, and the number of deaths attributable to 
influenza, pneumonia, and tuberculosis were collected from the ISTAT 
data repository. Information on provincial GDP per capita (Purchasing 
Power Parity; known as PPP) was obtained from the OECD website for 
tier 3 (regions). Alternatively, data on the number of railroad stations 
and airports were gathered from the Rette Ferroviaria Italiana and Great 
Circle Mapper websites. Average altitude was estimated based on the 
information collected from the Topographic Map online database. 
Lastly, COVID-19 mortality data were collected from the Ministero della 
Sallute webpage. 

2.2. Foreign urban potential scores 

Originally developed by de Vries (1984) and adapted by Bosker et al. 
(2008a), a city’s urban potential indicates the sum of a polity’s distance- 
weighted population relative to other nearby polities. According to de 
Vries (1984) and Bosker et al. (2008a), a city’s urban potential is 
computed with the following formula: 
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Ui =
∑n

j=1

Popj

wijDij 

In this case, Ui refers to the urban potential for the focal city (i.e., city 
i), Popj corresponds to city j’s population size, Dj represents the circular 
distance between cities i and j, and wij is a weighting term. The authors 
assigned each weight based on: (1) whether the cities i and j had major 
seaports (w = 0.5); (2) were connected through waterways (w = 0.75); 
(3) were located close to a Roman road (w = 0.8); (4) at least one of the 
cities was found near a major seaport (w = 0.95); and (5) if both cities 
were located near a coast but do not have major seaports (w = 0.975). 
Bosker and collaborators (2008a) further distinguish between the 
concept of urban potential and foreign urban potential. The difference 
between these two metrics rests in the following distinction: whereas the 
concept of urban potential focuses on the populations of cities imme-
diately surrounding the one being studied, foreign urban potential (FUP) 
focuses on a city’s relative accessibility, based on transport routes and 
physical geography, through exclusion of the focal city’s population 
size. Hence, FUP measures the density of a city’s surrounding urban 
subsystem and, as a result, does not even correlate with city size (Bosker 
et al., 2008a). This yields a variable that primarily captures a city’s 
strength of access to outside markets, offering a superb assessment of its 
interconnectedness and likelihood of encountering high volumes of 
contact from foreign exchange and transport. For the current purposes, 
FUP data were collected per city from Bosker et al. (2008b). We sub-
sequently estimated average FUP scores per province for the 16th and 
17th centuries. 

2.3. Unit-weighted factor scores 

We used a unit-weighted factor scoring procedure to estimate a 
Respiratory Disease Factor (comprised of prevalence rates for influenza, 
tuberculosis, and pneumonia) and a Transportation Factor (loading onto 
the number of train stations and airports per 100,000 individuals). Unit- 
weighted factor scores were estimated by standardizing the indicators 
and calculating an average across their z-scores. This approach was 
chosen instead of the traditional Principal Axis Factor Analysis or 
Principal Component Analysis due to the sample specificity of both these 
methods, especially with smaller sample sizes (Gorsuch, 1983). 

2.4. Growth curve model 

Before assessing the predicted differences among macroregions in 
historical plague mortality rates, we estimated the pertinent growth 
curve parameters, which consisted of intercept and slope parameters to 
be used in subsequent analyses. These parameters were estimated based 
on four successive Italian plague events: 1) 1575–1577; 2) 1624–1625; 
3) 1629–1630; and 4) 1656–1657. Before conducting the Growth Curve 
Analysis (GCA), the data were transposed into an array with each event 
assigned a timestamp from 1575 to 1656. Time was used as a predictor 
of the historical plague mortality (sorted by province) as part of a 
regression model. These estimations enabled the extraction of both 
historical plague intercepts and historical plague slopes from each 
regression model. This last procedure was performed using PROC REG in 
SAS v. 9.4. We also conduct a series of significance tests on these growth 
curve parameters, assessing whether or not the mean intercept, slope, 
and “error” (regression residual) terms were statistically different from 
zero. The number of observations per plague weighted these calcula-
tions. The SAS PROC UNIVARIATE statement facilitated these analyses. 

2.5. Sequential canonical analysis model 

Before conducting the SEQCA, all variables were residualized for 
macroregions, R1b, and regions within macroregions with the PROC 
GLM function (SS1) in SAS version 9.4. Subsequently, these residuals 
were imported to the statistical platform UniMult 2.0 for conducting a 

SEQCA. 
Because the present model assessed a multivariate chain of pre-

dictors hypothesized to both directly and indirectly influence each other 
following a theoretically-specified order, we employed a Sequential 
Canonical Analysis model (SEQCA, Figueredo et al., 2017). This pro-
cedure comprises a series of Hierarchical General Linear Models, 
wherein the analyses incorporate several criterion variables generating 
a sequence that follows a hypothesized causal direction. Given that the 
criterion variables are hypothesized to have causal influences on each 
other, they are sequentially added as criterion variables to the overall set 
of regressions. Each prior criterion variable in this sequence is included 
as the first predictor in each subsequent regression step, generating a 
hierarchical system of equations, following a reverse causal order. This 
approach statistically controls for any potential indirect effects between 
the predictor and the criterion variables. Consequently, the model an-
alyzes the direct influence of the predictor (X) upon the criterion vari-
able (Y) in accounting for the indirect influence of the model’s 
predictors through criterion variables tested in previous steps. This 
model is best represented by the following system of equations: 

Y3 = β31*X1+ β32*X2+ β33*X3 (1)  

Y4 = β41*Y3+ β42*X1+ β43*X2+ β44*X3 (2)  

Y5 = β51*Y4+ β52*Y3+ β53*X1+ β54*X2+ β55*X3 (3) 

The specifics of our SEQCA model are as follows. In the first step of 
the model, the provincial plague slope, FUP slope, plague intercept, FUP 
intercept, landlocked status, altitude, longitude predicted the provincial 
log GDP per capita. The second step analyzed the impact of log GDP per 
capita and the rest of the predictor variables on transportation per 
100,000 individuals. The third step calculated the influence of trans-
portation, log GDP per capita, and the rest of the predictor variables on 
immigration per capita. The fourth step evaluated the effects of immi-
gration per capita, transportation, log GDP per capita, and the rest of the 
predictor variables on the proportion of the population over 80 years of 
age. The fifth step explored the influence of the proportion of the pop-
ulation over 80, immigration per capita, transportation, log GDP per 
capita, and the rest of the predictor variables on the respiratory disease 
factor. The sixth and last step considered the effects of the respiratory 
disease factor, proportion of the population over 80, immigration per 
capita, transportation, log GDP per capita, and the rest of the predictor 
variables on COVID-19 mortality. 

3. Results 

3.1. Unit-weighted factor scores 

The unit-weighted Respiratory Disease Factor had significant and 
sizeable loadings on its indicators. This latent construct loaded posi-
tively onto the tuberculosis (r = 0.772, p = .0001), influenza (r = 0.714, 
p = .0001), and pneumonia (r = 0.783, p = .0001) prevalence rates. 
Similarly, the unit-weighted Transportation Factor loaded positively 
and significantly onto the number of airports per 100,000 (r = 0.726, p 
= .0001) and the number of train stations per 100,000 (r = 0.890, p =
.0001). These unit-weighted factor scores were subsequently included in 
the SEQCA. 

3.2. Growth curve analysis for between-group conflict and foreign urban 
potential 

We explored the underlying temporal and geographical autocorre-
lations among the residuals for both FUP and plagues. A conditional 
Linear Mixed Model (LMM) did not detect any significant temporal 
autocorrelations for either FUPs (ARH(1) = 0.000; σ2

(1) = 0.000) or 
plagues (ARH(1) = 0.000; σ2

(1) = 0.000), thus validating the growth 
curve parameter estimation by normal regression methods using 
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ordinary least squares (OLS) estimation. 
The GLM evaluating the impact of macroregions, regions within 

macroregions, provinces, and years on FUP was statistically significant 
(R2 = 0.986, F = 34.46, p < .0001). The analysis identified a significant 
effect of macroregions (semipartial η2 = 0.193, F = 6.53, p = .0072), 
regions within macroregions (sempartial η2 = 0.118, F = 29.94, p <
.0001), provinces within regions (semipartial η2 = 0.124, F = 13.51, p <
.0001), years (semipartial η2 = 0.511, F = 1553.34, p < .0001) on FUP. In 
addition, although the effects on FUP of the interactions of years with 
macroregions (semipartial η2 = 0.026, F = 26.66, p < .0001) and years 
with regions within macroregions (sempartial η2 = 0.009, F = 2.24, p =
.0257), were also statistically significant the semipartial η2 were negli-
gibly small in magnitude. Furthermore, the interaction of years with 
provinces within regions was not statistically significant (semipartial η2 

= 0.005, F = 0.49, p = .0001). These latter results indicate that the main 
effect of years applied fairly well across all of these polities at different 
levels of aggregation. Nevertheless, the GLMexploring the effect of 
macroregions, regions within macroregions, provinces, and years on 
plagues was not statistical significant (R2 = 0.313, F = 0.46, p = .9998). 

The univariate analyses determined that the historical mean FUP 
intercept (n = 44; mean = − 2.480; sd = 2.60; t = − 1.93; p = .0000), 
slope (n = 44; mean = 0.003; sd = 0.002; t = 23.52; p = .0000), and error 
(n = 44; mean = 0.068; sd = 0.054; t = 14.54; p = .0000) were found to 
be different from zero. A similar pattern was identified for mean plague 
intercept (n = 44; mean = − 23.806; sd = 14.00; t = − 2.26; p = .0292), 
slope (n = 44; mean = 0.015; sd = 0.086; t = 2.44; p = .0191), and error 
(n = 44; mean = 3.011; sd = 1.199; t = 33.32; p = .0000) were signifi-
cantly different from zero. Overall, these results strongly suggest the 
GCA parameters did generally change over time. These values were later 
included in the SEQCA Model. 

3.3. Bivariate correlations 

The provinces’ FUP intercept (a-FUP) had positive and significant 
correlations with the provinces’ plague intercept (a-plagues; r = 0.57, p 
= .0000), log GDP per capita (r = 0.70, p = .0000), contemporary 
immigration per capita (r = 0.74, p = .0000), and log COVID-19 mor-
tality rate (r = 0.62, p = .0000). The a-FUP growth curve parameters also 
had a negative and significant correlation with the plague slope pa-
rameters (b-plagues; r = − 0.57, p = .0000). Additionally, the bivariate 
analyses identified significant negative correlations between FUP slope 
(b-FUP) and a-plagues (r = − 0.53, p = .0002), log GDP per capita (r =
− 0.68, p = .0000), immigration per capita (r = − 0.69, p = .0000), and 
log COVID-19 mortality (r = − 0.57, p = .0000). The b-FUP growth curve 
parameters also had a positive and significant correlation with the b- 
plague growth curve parameters (r = 0.53, p = .0001). 

3.4. General linear models of macroregional differences and log COVID- 
19 mortality 

The results of all the GLMs evaluating the effects of macroregions, 
R1b, and regions within macroregions on all criterion variables are 
displayed in Table 1. A complete listing of the means and standard de-
viations of all criterion variables is displayed in Table 2. 

The GLM evaluating the influence of macroregions, R1b, and regions 
within macroregions on a-FUP reached statistical significance and 
explained 89% of the systematic variance. Both macroregions and re-
gions within macroregions were statistically significant. Macroregions, 
in particular, accounted for 70% of the models’ variance. More detailed 
examinations revealed that both Northern and Central provinces 
featured higher a-FUP values relative to Southern Provinces. 

A similar pattern was found for a-plagues. This GLM was also statis-
tically significant and explained 78% of the systematic variance. Both 
macroregions and regions within macroregions had a significant 
contribution to the model. Macroregions, for example, explained 48% of 
the models’ variance. R1b did not predict a-plagues. Subsequent 

Table 1 
General Linear Models evaluating the effects of macroregions, R1b, and regions 
within macroregions, on a-FUP, a-plagues, b-FUP, b-plagues, log GDP per capita, 
transportation per 100,000 people, immigration per capita, proportion of the 
population over 80 years old, the respiratory disease factor, and COVID-19 
mortality.  

Source NDF DDF SS η2 or R2 F- 
value 

Pr > F 

DV: a-FUP 
Macroregions 3 11 29.88 0.695 13.38 0.0005 
R1b 1 11 0.158 0.004 0.21 0.6543 
Regions 

(Macroregions) 
11 28 8.189 0.190 4.37 0.0008 

Model Multiple R2 15 28 38.226 0.889 14.95 <0.0001  

DV: a-Plagues 
Macroregions 3 11 2.604 0.479 5.92 0.0117 
R1b 1 11 0.164 0.004 0.14 0.7144 
Regions 

(Macroregions) 
11 28 12.752 0.297 3.42 0.0041 

Model Multiple R2 15 28 33.519 0.780 6.6 <0.0001  

DV: b-FUP 
Macroregions 3 11 28.478 0.662 1.93 0.0013 
R1b 1 11 0.037 0.001 0.04 0.8403 
Regions 

(Macroregions) 
11 28 9.554 0.222 4.93 0.0003 

Model Multiple R2 15 28 38.069 0.885 14.41 <0.0001  

DV: b-Plagues 
Macroregions 3 11 2.671 0.481 5.93 0.0117 
R1b 1 11 0.167 0.004 0.14 0.7119 
Regions 

(Macroregions) 
11 28 12.779 0.297 3.47 0.0038 

Model Multiple R2 15 28 33.617 0.782 6.69 <0.0001  

DV: Log GDP per capita 
Macroregions 3 11 3.908 0.719 23.25 <0.0001 
R1b 1 11 0.031 0.001 0.07 0.7952 
Regions 

(Macroregions) 
11 28 4.875 0.113 1.73 0.1186 

Model Multiple R2 15 28 35.814 0.829 9.3 <0.0001  

DV: Transportation per 100 k 
Macroregions 3 11 1.274 0.030 0.51 0.6806 
R1b 1 11 0.587 0.014 0.71 0.4171 
Regions 

(Macroregions) 
11 28 9.076 0.211 0.72 0.7098 

Model Multiple R2 15 28 1.936 0.254 0.64 0.8198  

DV: Immigration per capita 
Macroregions 3 11 31.388 0.730 34.47 <0.0001 
R1b 1 11 1.991 0.046 6.56 0.0265 
Regions 

(Macroregions) 
11 28 3.339 0.078 1.35 0.2488 

Model Multiple R2 15 28 36.718 0.854 1.91 <0.0001  

DV: Log prop. Eighty 
Macroregions 3 11 5.765 0.134 0.98 0.4369 
R1b 1 11 0.056 0.001 0.03 0.8688 
Regions 

(Macroregions) 
11 28 21.552 0.501 3.51 0.0035 

Model Multiple R2 15 28 27.373 0.637 3.27 0.0033  

DV: Respiratory Disease Factor 
Macroregions 3 11 11.743 0.273 2.65 0.1012 
R1b 1 11 1.005 0.023 0.68 0.4273 
Regions 

(Macroregions) 
11 28 16.276 0.379 2.96 0.0099 

Model Multiple R2 15 28 29.024 0.675 3.88 0.001  

DV: Log COVID-19 mortality 
Macroregions 3 11 3.513 0.710 36.16 <0.0001 
R1b 1 11 4.17 0.097 14.83 0.0027 
Regions 

(Macroregions) 
11 28 3.094 0.072 1.51 0.1839 

Model Multiple R2 15 28 37.778 0.879 13.5 <0.0001  
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examinations determined that the Northern provinces exhibited higher 
a-plagues values. 

The GLM with b-FUP as a criterion variable reached statistical sig-
nificance and accounted for 89% of the model’s variance. Whereas 
macroregions and regions within macroregions significantly influenced 
the criterion variable, the model determined that R1B did not contribute 
to the model. Relative to Southern provinces, Northern and Central 
provinces displayed smaller b-FUP values. 

Concerning b-plagues, the GLM was also statistically significant and 
explained 78% of the variance. In contrast to the previous models, only 
macroregions had a direct influence on this creation variable. Neither 
R1b nor regions within macroregions made a significant contribution to 
the model. The Northern provinces displayed smaller b-plague values 
compared to the Southern provinces. 

Regarding log GPD per capita, the GLM reached statistical signifi-
cance and accounted for 83% of the systematic variance. Macroregions 
had a significant effect on the criterion variable. Alternatively, neither 
R1b nor regions within macroregions had any influence on GDP per 
capita. Moreover, macroregions explained over 70% of the model’s 
variance. Additional examinations concluded that compared to South-
ern provinces, Northern and Central provinces had a higher GDP per 
capita. 

In contrast to the models mentioned above, the GLM evaluating the 
effects of macroregions, R1b, and regions within macroregions on 
transportation per 100,000 individuals did not reach statistical 
significance. 

The GLM with immigration per capita as a criterion variable reached 
statistical significance and accounted for 85% of the variance. Both 
macroregions and R1b had a significant effect on the criterion variable. 
Macroregions, in particular, explained 73% of the model’s variance. 
Additional examinations revealed that compared to the Southern prov-
inces, the Northern and Central provinces had a higher immigration per 
capita (Table 2). 

Concerning the GLM with log proportion of the population over 80 
years of age, the model attained statistical significance and explained 
64% of the variance. Neither macroregions nor R1b had a significant 
effect on this variable. Alternatively, regions within macroregions had a 
significant influence on this criterion. 

The model with the respiratory disease factor was statistically signif-
icant and accounted for 68% of the variance. Neither macroregions nor 
R1b had a significant effect on this variable. Alternatively, regions 
within macroregions had a significant influence on this criterion. 

Lastly, the GLM with log COVID-19 mortality, the model reached 
statistical significance and explained 88% of the variance. Macoregions 
and R1b had a significant influence on the creation variable. Alterna-
tively, regions within macroregions had no contribution to the model. 
Subsequent examinations determined that Northern provinces’ relative 
to the Southern province displayed a higher COVID-19 mortality rate 
(Table 2). Regarding the magnitude and direction of R1b on the criterion 
variable, a hierarchical GLM conducted with UniMult 2.0 determined 
that this genetic variable had a significant and positive influence on 
COVID-19 mortality above and beyond the effects of macroregions (sR 
= 0.31, 90% C.I. = 0.00, 0.57). 

3.5. Sequential canonical analysis with FUP factor, plague factor, and log 
COVID-19 mortality 

The complete tabulation of SEQCA results is presented in Appendix A 
(Table A1), as supplementary material, including all the hypothesis tests 
that were found to be statistically nonsignificant. This complete ac-
counting was done to preserve the details of the hierarchical model 
specification that was actually tested. The following summary describes 
only the statistically significant results of our SEQCA Model, as per APA 
style. The effect sizes are reported in parentheses as semipartial corre-
lation (sR) coefficients (Cohen & Cohen, 1983), followed by the asso-
ciated F-ratios with their corresponding degrees of freedom and p- 
values:  

1. Log GDP per capita was positively and significantly effected by a- 
plagues (sR = 0.29, F1, 35 = 4.80, p < .05), which explained 8% of the 
model’s variance. Alternatively, a-FUP had a negative effect on the 
criterion variable (sR = − 0.38, F1, 35 = 9.73, p < .05),  

2. Transportation per 100 k was significantly predicted by log longitude 
(sR = 0.41, F1, 34 = 8.63, p < .05), which accounted for 17% of the 
model’s variance.  

3. Immigration per capita was not significantly affected by any of the 
predictors in this model.  

4. Log proportion of the population over eighty was significantly effected 
by transportation per 100 k (sR = 0.49, F1, 32 = 16.84, p < .05), which 
accounted for 24% of the variance.  

5. The respiratory disease factor was not significantly affected by any of 
this model’s predictors.  

6. Log COVID-19 mortality was significantly predicted by immigration 
per capita (sR = 0.34, F1, 30 = 5.42, p < .05), which accounted for 
12% of this model’s variance. 

4. Discussion 

To our knowledge, this is the first paper to explore the nexus between 
macrohistorical plague dynamics, R1b haplogroup frequency, and 
contemporary COVID-19 mortality rate through the lens of social 
biogeography. This perspective provides a comprehensive scientific 
scaffold by considering the interacting influences of physical, social, 
community, and cognitive ecology upon a particular human phenotype, 
in this case, on COVID-19 mortalities. Thus, our study offers a novel 
perspective that considers the role of contemporary factors such as dif-
ferences in wealth, access to transportation, population structure, the 
prevalence of infectious respiratory disease, in comparison with the 
long-term effects of macrogreographical factors, and the impact of his-
torical plague mortality rates. 

In this paper, we have studied historically verifiable plague out-
breaks in relation to the ongoing COVID-19 pandemic to understand 
why both incidences, separated by hundreds of years of political and 
technological change, affected the various subnational polities 
comprising modern-day Italy so similarly. To elucidate the possible 
causes of foreign pathogens in disproportionately impacting Northern 
and Central Italian macroregions above Southern and Insular ones, we 
looked into hypothesized differences between epidemic and endemic 
diseases through the inclusion of currently endemic infectious diseases 
which are transmitted similarly to COVID-19: tuberculosis, influenza, 

Table 2 
Means and standard deviations for COVID-19 mortality rates, immigration per capita, GDP per capita, b-plagues, a-plagues, b-FUP, a-FUP.  

Macroregions COVID-19 mortality Immigration per capita GDP per capita b-Plagues b-FUP a-Plagues a-FUP 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

North 0.793 0.655 0.607 0.479 0.684 0.519 − 0.645 0.845 − 0.553 0.318 0.644 0.850 0.598 0.327 
Centre − 0.225 0.327 0.720 1.023 0.429 0.550 0.208 0.500 − 0.567 0.484 − 0.214 0.495 0.538 0.546 
South − 0.953 0.406 − 0.989 0.353 − 1.154 0.614 0.938 0.349 1.285 0.945 − 0.935 0.346 − 1.294 0.861 
Insular − 1.169 0.616 − 1.452 0.257 − 0.942 0.506 0.419 1.257 0.038 0.684 − 0.418 1.252 − 0.217 0.639  
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and bacterial pneumonia. 
To summarize, in evaluating hypotheses on the trends underlying the 

present COVID-19 pandemic in Italy, we collected reliable historical 
analogues to assess its similarity to other epidemics across time. For this, 
data on multiple plague epidemics were used. Data were examined for 
outbreaks spanning both the 16th and 17th centuries, including regional 
epidemics impacting Palermo and Venice from 1575 to 77, Sicily in 
1624, Milan and several other Central and Northern regions from 1629 
to 31, and Naples in 1656. These instances all occurred via the trans-
mission of plague from non-local merchants or soldiers to Italian people 
who later returned to the affected region (Cliff et al., 2009). This was 
especially the case in the early-to-mid 16th century, when the Italian 
Wars brought troops from throughout Western Europe to various regions 
of Northern Italy, verifiably spreading plague on multiple instances. Our 
present analysis considers this historical precedent by including poten-
tial contemporary forms of disease spread, such as transportation and 
immigration, in looking at the impacts of COVID-19. In attempting to 
explain these phenomena, we analyzed data for hypotheses on several 
relevant indicators, including (1) proportion of the population over 80 
years of age; (2) population mobility between provinces and nations; (3) 
transportation (in terms of the number of train stations and airports in a 
province); (4) landlocked or coastal positioning; (5) provincial GDP per 
capita; and (6) and physical ecology (using altitude and latitude). 

Previously published literature has reported that a polity’s level of 
interconnectedness (i.e., Urban Potential) is associated with various 
economic and demographic indicators ranging from the preponderance 
of mercantile exchanges to population movement (Bosker et al., 2008a). 
These analyses have also reported that the density of a polity’s urban 
system is associated with the severity of plague outbreaks in the past. 
Consequently, we explored the influence of historical FUP values 
(16th–17th centuries) upon historical plagues. Consistent with Bosker 
and colleagues’ assessment (2008a), the province’s FUPs had a clear 
influence upon these epidemics, with FUP intercepts positively pre-
dicting a-Plagues. Moreover, findings from the GLM exploring any 
regional or macroregional variations on the rate of change of FUP sug-
gest these values have persisted relatively unchanged over time. It fol-
lows then that, given this phenomenological persistence, contemporary 
outbreaks should follow a similar pattern. 

This study also assessed the persistent effect of geographical varia-
tion upon past and present infectious outbreaks in Italy. As predicted, 
the Northern macroregions displayed significantly higher plague inter-
cept values compared to the South. Moreover, the GLM results, exam-
ining the influence of various ecological factors upon the present 
COVID-19 mortality rate, strongly suggest that geography remains a 

significant factor. Similarly, endemic respiratory diseases did not 
significantly predict the COVID-19 death rates, indicating that once a 
pathogen transitions to endemicity within a country, regional mortality 
variations are attenuated. In contrast, during epidemics regional and 
macroregional variations are expected to persist due to underlying 
population vulnerabilities such as the polity’s degree of interconnec-
tedness. This result indicates that above and beyond the provinces’ FUP 
values, macroregional variation plays an essential role in the severity of 
both historical and contemporary epidemics. 

We also considered the alternative hypothesis that these macrore-
gional differences in outbreak mortality rates were due to population 
mobility. Although transportation had no significant effect, contempo-
rary immigration had a significant positive effect on this criterion var-
iable. We also examined the influence of population genetics on 
mortality. Previous publications have found a positive effect of R1b 
upon COVID-19 death rates. Consistent with these studies, the present 
study determined that this haplogroup predicted the criterion variable 
above and beyond the macroeregional differences. It is worth noting, 
however, that the percentage of the population carrying the R1b 
haplotype did not significantly predict either the plague intercepts or 
slopes. This indicates that the Y-chromosomal genetic structure of the 
Italian population plays little to no role in predicting historical epidemic 
mortality. The overall GLM results support the predicted temporal 
persistence of geographical factors, known to be associated with past 
historical outbreaks, upon present pandemics. Even though our models 
gave particular attention to indicators associated with community and 
social ecology (GDP per capita, immigration, the provinces’ de-
mographic structure, and mortality rates associated with endemic res-
piratory diseases), the lack of paleoclimatic data at the provincial level 
limited the present analyses. Future paleoclimatological and paleo-
epidemiological studies may consider exploring the influence of these 
indicators upon the reconstructed plague mortality rates among Italian 
provinces. 
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Appendix A 

Each subsection references a specified dependent (criterion) variable (DV) and displays the results of the hierarchical multiple regression models 
from the cascade. The effect sizes are represented as either single or multiple semipartial correlation (sR) coefficients (Cohen & Cohen, 1983). Each 
semipartial correlation is followed by its corresponding 90% confidence interval (C. I.). Additionally, the squared multiple correlation (R2) coefficients 
for each full model are displayed after each regression equation.  Table A1 
Sequential Canonical Analysis evaluating the influence of provincial prevalence of infectious respiratory disease, proportion of the population over 80 years of age, 
immigration, transportation, wealth, interdependency, plagues, and physical ecology on COVID-19 mortality.  

Model Effect size (E) C. I. F ratio df1, df2 p-value 

Overall (V = 1.648) 0.52 0.00, 1.00 1.66 48 / 210 .008  

DV: Res log GDP per capita 
Res b-plagues − 0.35 − 0.59,− 0.05 8.47 1/35 .0060 
Res b-FUP 0.13 − 0.18, 0.42 1.20 1/35 .2800 
Res a-plagues 0.26 − 0.05, 0.53 4.80 1/35 .0400 
Res a-FUP − 0.38 − 0.61,− 0.08 9.73 1/35 .0040 
Res log latitude − 0.33 − 0.58,− 0.02 7.33 1/35 .0100 
Res landlocked 0.14 − 0.18, 0.43 1.32 1/35 .2600 
Res log average altitude 0.10 − 0.21, 0.40 0.74 1/35 .4000 

(continued on next page) 
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Table A1 (continued ) 

Model Effect size (E) C. I. F ratio df1, df2 p-value 

Res log longitude 0.09 − 0.22, 0.39 0.55 1/35 .4600 
Multiple R (Xs only) 0.70 0.40, 1.00 4.27 8/35 .0010  

DV: Res transportation per 100,000 
Res log GDP per capita 0.20 − 0.12, 0.48 2.03 1/34 .1600 
X variables      

Res b-plagues 0.23 − 0.09, 0.50 2.71 1/34 .1100 
Res b-FUP − 0.06 − 0.36, 0.25 0.20 1/34 .6600 
Res a-plagues 0.11 − 0.21, 0.40 0.59 1/34 .4500 
Res a-FUP − 0.13 − 0.42, 0.19 0.84 1/34 .3700 
Res log latitude − 0.03 − 0.34, 0.28 0.06 1/34 .8000 
Res landlocked 0.23 − 0.08, 0.51 2.89 1/34 .1000 
Res log average altitude − 0.10 − 0.39, 0.21 0.52 1/34 .4800 
Res log longitude 0.41 0.11, 0.63 8.63 1/34 .0060 
Multiple R (Xs only) 0.56 0.00, 1.00 2.06 8/34 .0700  

DV: Res immigration per capita 
Res transportation per 100,000 0.14 − 0.18, 0.43 0.81 1/33 .3800 
Res log GDP per capita 0.02 − 0.29, 0.33 0.02 1/33 .8900 
X variables      

Res b-plagues − 0.04 − 0.35, 0.27 0.08 1/33 .7700 
Res b-FUP − 0.07 − 0.37, 0.24 0.20 1/33 .6500 
Res a-plagues − 0.04 − 0.35, 0.27 0.08 1/33 .7900 
Res a-FUP 0.13 − 0.19, 0.42 0.67 1/33 .4200 
Res log latitude − 0.21 − 0.49, 0.10 1.95 1/33 .1700 
Res landlocked 0.31 0.00, 0.56 4.05 1/33 .0500 
Res log average altitude − 0.07 − 0.37, 0.25 0.18 1/33 .6700 
Res log longitude 0.17 − 0.14, 0.46 1.28 1/33 .2700 

Multiple R (Xs only) 0.45 0.00, 1.00 1.06 8/33 .4100  

DV: Res log prop. of the pop. over 80 
Res immigration per capita 0.08 − 0.24, 0.38 0.41 1/32 .5200 
Res transportation per 100,000 0.49 0.21, 0.69 16.84 1/32 .0003 
Res log GDP per capita − 0.20 − 0.47, 0.12 2.72 1/32 .1100 
X variables      

Res b-plagues − 0.18 − 0.46, 0.14 2.28 1/32 .1400 
Res b-FUP − 0.16 − 0.44, 0.16 1.79 1/32 .1900 
Res a-plagues − 0.17 − 0.46, 0.14 2.14 1/32 .1500 
Res a-FUP − 0.12 − 0.42, 0.19 1.10 1/32 .3000 
Res log latitude − 0.39 − 0.62,− 0.09 1.85 1/32 .0020 
Res landlocked − 0.03 − 0.33, 0.28 0.05 1/32 .8300 
Res log average altitude − 0.02 − 0.33, 0.29 0.03 1/32 .8600 
Res log longitude − 0.11 − 0.41, 0.20 0.92 1/32 .3400 
Multiple R (Xs only) 0.52 0.08, 1.00 2.39 8/32 .0400  

DV: Res respiratory disease factor 
Res log proportion of the population over 80 0.22 − 0.10, 0.49 2.19 1/31 .1500 
Res immigration per capita 0.13 − 0.19, 0.42 0.74 1/31 .4000 
Res transportation per 100,000 − 0.19 − 0.47, 0.12 1.66 1/31 .2100 
Res log GDP per capita − 0.06 − 0.36, 0.26 0.14 1/31 .7100 
X variables      

Res b-plagues 0.16 − 0.16, 0.45 1.17 1/31 .2900 
Res b-FUP − 0.11 − 0.41, 0.20 0.59 1/31 .4500 
Res a-plagues − 0.30 − 0.55, 0.01 4.00 1/31 .0500 
Res a-FUP 0.02 − 0.29, 0.32 0.01 1/31 .9200 
Res log latitude − 0.10 − 0.39, 0.22 0.42 1/31 .5200 
Res landlocked 0.26 − 0.05, 0.53 3.09 1/31 .0900 
Res log average altitude 0.05 − 0.26, 0.35 0.13 1/31 .7300 
Res log longitude − 0.10 − 0.40, 0.21 0.46 1/31 .5000 
Multiple R (Xs only) 0.47 0.00, 1.00 1.23 8/31 .3100  

DV: Res log COVID-19 mortality rate 
Res respiratory disease factor − 0.18 − 0.47, 0.13 1.61 1/30 .2100 
Res log proportion of the population over 80 − 0.08 − 0.38, 0.23 0.33 1/30 .5700 
Res immigration per capita 0.34 0.03, 0.59 5.42 1/30 .0300 
Res transportation per 100,000 − 0.06 − 0.36, 0.25 0.19 1/30 .6600 
Res log GDP per capita − 0.23 − 0.51, 0.08 2.58 1/30 .1200 
X variables      

Res b-plagues 0.03 − 0.28, 0.33 0.03 1/30 .8600 
Res b-FUP − 0.15 − 0.44, 0.16 1.10 1/30 .3000 
Res a-plagues 0.02 − 0.29, 0.33 0.02 1/30 .9000 
Res a-FUP − 0.11 − 0.41, 0.20 0.62 1/30 .4400 
Res log latitude 0.20 − 0.12, 0.48 1.86 1/30 .1800 
Res landlocked − 0.24 − 0.51, 0.08 2.68 1/30 .1100 
Res log average altitude 0.06 − 0.25, 0.36 0.18 1/30 .6800 
Res log longitude − 0.13 − 0.42, 0.18 0.82 1/30 .3700 
Multiple R (Xs only) 0.39 0.00, 1.00 0.91 8/30 .5200  
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