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Abstract

The goal of neurofeedback training is to provide participants with relevant information on their ongoing brain processes in
order to enable them to change these processes in a meaningful way. Under the assumption of an intrinsic brain-behavior
link, neurofeedback can be a tool to guide a participant towards a desired behavioral state, such as a healthier state in the
case of patients. Current research in clinical neuroscience regarding the most robust indicators of pathological brain
processes in psychiatric and neurological disorders indicates that fMRI-based functional connectivity measures may be
among the most important biomarkers of disease. The present study therefore investigated the general potential of
providing fMRI neurofeedback based on functional correlations, computed from short-window time course data at the level
of single task periods. The ability to detect subtle changes in task performance with block-wise functional connectivity
measures was evaluated based on imaging data from healthy participants performing a simple motor task, which was
systematically varied along two task dimensions representing two different aspects of task difficulty. The results
demonstrate that fMRI-based functional connectivity measures may provide a better indicator for an increase in overall
(motor) task difficulty than activation level-based measures. Windowed functional correlations thus seem to provide
relevant and unique information regarding ongoing brain processes, which is not captured equally well by standard
activation level-based neurofeedback measures. Functional connectivity markers, therefore, may indeed provide a valuable
tool to enhance and monitor learning within an fMRI neurofeedback setup.
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Introduction

In neurofeedback training, participants are provided with online

feedback on their current individual brain processes. The rationale

is that feedback on current brain processing may provide a useful

tool for guiding participants towards a desired behavioral state, if

the tapped brain correlates are intrinsically linked to relevant

phenomena on the behavioral, cognitive and emotional level.

Neurofeedback training may thus provide a method for changing

brain activation and alleviating symptoms in patients with

pathological brain patterns. Preliminary evidence supports the

idea that neurofeedback training interventions based on functional

magnetic resonance imaging (fMRI) can induce specific changes in

behavior, emotion and cognition in healthy participants as well as

in patients with psychiatric and neurological disorders [1,2,3].

Importantly, previous research demonstrates that effective fMRI-

based neurofeedback training is dependent on feeding back the

information most relevant for the desired change, for example,

giving feedback from brain regions, which are modulated by task

performance [2]. However, up to now, different measures derived

from fMRI data have not been systematically compared regarding

their suitability to provide the most useful or effective feedback. As

a first step towards answering this question, the present study aims

at investigating whether fMRI-based functional connectivity and

activation-level based measures provide the same or different

information regarding relevant aspects of different versions of a

simple motor task in healthy participants.

The motivation for this study stems from the increased interest

in using functional connectivity analysis for investigating biological

markers of psychiatric and neurological disorders. It has been

claimed that brain connectivity biomarkers are among the most

robust indicators of clinical disorders [4]. Deviant functional

connectivity patterns in patients have been linked to behavioral,

cognitive and emotional symptoms in disorders as diverse as

attention deficit hyperactivity disorder [5], schizophrenia [6],

autism [7], anxiety [8], mood disorders [9], and movement

disorders [10]. For example, research on treatment effects has led

to the hypothesis that the most prominent change after successful

pharmacological treatment in attention deficit hyperactivity

disorder may be the normalization of abnormal task-relevant

functional connectivity patterns, while localized changes of brain

activation level seemed to be less indicative [11]. Similarly, a link

between a positive treatment response to antidepressant medica-

tion and the normalization of cingulate-amygdala connectivity has
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been drawn [12,13]. Consequently, the increasing focus on the

importance of dysfunctional connectivity networks in psychiatric

and neurological diseases during the last decade has also lead to an

increased interest in using functional connectivity measures as an

fMRI-based neurofeedback signal [1,2,14,15,16]. A recent study

on the feasibility of using effective connectivity measures within a

neurofeedback setup showed that participants are indeed able to

voluntarily control such a feedback signal [17]. However, to the

best of our knowledge, no systematic comparison regarding the

potential of using functional connectivity versus activation level-

based measures as a feedback signal in the context of neurofeed-

back training has been conducted so far.

Functional brain networks emerge when local brain regions

interact in order to integrate different task aspects. Two concepts

to measure this interaction have been defined in fMRI research:

the concept of ‘effective connectivity’, which aims at measuring

how much ‘‘influence one neural system exerts over another’’, and

the concept of ‘functional connectivity’: the mere ‘‘statistical

dependency among neurophysiological events’’ [18]. Windowed

fMRI correlation measures as implemented here estimate func-

tional connectivity by measuring the amount of common variance

in the activation-level changes of two or more circumscribed brain

regions during a short time interval. While functional connectivity

measures are essentially data-descriptive and not a direct

measurement of the underlying neural interactions [18], they

have been utilized as an indicator for the ongoing integration on

the neuronal level during task performance [19]. Different types of

connectivity measures have been categorized into more simple,

model-free methods (e.g., correlation) versus more complex

modeling methods (e.g., dynamic causal modelling), which may

provide more meaningful information (e.g., on the directionality of

neural processes), but are computationally more expensive [20].

For real-time data analysis, the feedback signal needs to be

computed within relatively short time windows, thus a method

providing robust estimates with a few data points may be

advantageous in this context. The modeling approach implement-

ed by Koush and colleagues (2013), a dynamic causal modelling

approach, required a sliding window with a length of 90 seconds

for stable model estimation while statistically stable correlations

can be computed based on shorter time windows. Importantly, a

systematic comparison regarding the sensitivity of different

connectivity methods showed that the correlation method has

good sensitivity, performing among the top four of twelve

investigated methods [21]. Another common division of functional

connectivity methods is the separation between hypothesis-driven

seed-based methods using a priori-selected regions of interest and

data-driven methods that partition the data into functional

networks based on statistical criteria, as for example independent

component analysis. A systematic comparison between these two

sorts of methods using simulations and offline analysis of imaging

data showed considerable convergence in the results, both

regarding the spatial layout of the functional networks as well as

regarding the estimation of connectivity strength [22]. While both

types of methods have been made available for real-time data

analysis (e.g., sliding window correlation analysis, [23]; sliding

window independent component analysis, [24]; single trial-based

multi-filter correlation analysis [25]), the hypothesis-driven seed-

based methods seem more suitable when the aim is to achieve high

spatial specificity within short-time windows. High dimensional

independent component analysis, for example, which partitions

the data into highly spatially differentiated components, also

requires rather long sliding windows. We therefore investigated the

potential of using a hypothesis-driven, computationally inexpen-

sive method: windowed seed-based correlation. An important

characteristic of this method is that correlation measures have

been shown to be susceptible to the influence of noise artifacts

[18,20]. We therefore employed noise regression, a method which

is suitable for real-time data analysis, to remove common noise

artifacts [26,27,28,29,30,31].

In order to investigate how well functional connectivity and

activation level-based measures may serve as an indicator of subtle

changes in task performance, we asked healthy participants to

perform a simple finger tapping task that was systematically

modulated along two dimensions, namely tapping speed and

demand on bimanual coordination, thus combining two aspects of

task difficulty (see figure 1). The implementation of the selected

task allowed computing individual block-wise performance mea-

sures based on both activation levels and functional connectivity,

in order to compute brain-behavior correlations. Finger tapping

tasks have been well studied regarding their associated effects on

functional connectivity, and their effects on the activation level. It

has long been known that the activation level within the whole

motor network increases with increasing finger tapping speed

[32,33], and there is some evidence that increasing demand on

bimanual coordination raises activation level as well [34].

Furthermore, the first study on the effects of finger tapping on

functional connectivity showed that the correlation between voxels

within the motor network was higher during task performance

than rest [35]. This result has been replicated several times (e.g.

[36,37,38,39]), and extended to show that the functional

connectivity between the motor and visual network was higher

Figure 1. Experimental Design. The participants performed four
different types of tapping sequences, which were selected to increase
demand on bimanual coordination gradually: 1) unimanual: moving
only the right index finger, 2) bimanual synchronous: moving both index
fingers in synchrony, 3) bimanual alternating: moving both index fingers
at the same pace in an alternating fashion, and 4) bimanual unbalanced:
moving the left index finger in synchrony with the right index finger,
but at half of the pace. Each of these tapping sequences was performed
at four different tapping speeds for the right index finger (1, 2, 3, and
4 Hz), which resulted in 16 different experimental conditions. Task
difficulty increased along both manipulated task dimensions.
doi:10.1371/journal.pone.0085929.g001
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during a visuo-motor task [40]. Also, a learning experiment on

finger tapping [41] has shown that functional connectivity

increased during early, as compared to later, learning stages, thus

being modulated by general task difficulty. Two other studies

provided evidence for a parametric modulation of the correlation

strength by finger tapping speed within the motor network [37],

and found that differing degrees of demand on bimanual

coordination influenced the strength of the functional connection

between the bilateral motor regions [36]. Interestingly, they

concluded (but did not test) that functional connectivity measures

may serve as a better indicator regarding the demand on bimanual

coordination than the activation-level based measures. While

several studies have thus shown task-dependent modulations of

functional connectivity as well as of activation level, none of these

studies reported individual brain-behavior correlations that would

be needed to evaluate its suitability for real-time analysis. In order

to investigate how sensitive and specific these brain activation

measures are for detecting the chosen task manipulations in short

time windows, we combined, replicated and extended the previous

studies by including several different bimanual task variations. All

Figure 2. Schematic representation of functional network. All fMRI-based measures were derived from a network of a priori selected regions
of interest (M1 = primary motor cortex, dPMC = dorsal premotor cortex, SMA = supplementary motor area, V5 = visual motion area), which are
depicted schematically in panel A. The time windows (grey boxes) used in the functional connectivity analysis are superimposed on the schematic
BOLD responses of the two regions of interest (solid and dotted line) in panel B.
doi:10.1371/journal.pone.0085929.g002

Figure 3. Behavioral results. The behavioral results showed a significant linear increase of tapping speed consistent with the experimental
manipulation for all participants. The actual tapping speed of the right index finger from all individuals (S01-05, mean 6 individual SE), as well as the
average (AVG) is plotted dependent on the required speed in panel A. Second, there was a significant linear increase of error rate with increasing
demand on bimanual coordination (from left to right) in all participants. In panel B the individual error rate (S01-05, mean 6 individual SE), and
average (AVG) is plotted for the four performed tapping sequences.
doi:10.1371/journal.pone.0085929.g003

fMRI-Based Functional Connectivity Neurofeedback
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Figure 4. Group-level functional network results. The task-dependent modulation of the group-level overall task connectivity (26-s full task
window, depicted on the left) and the steady-state task connectivity (12-s steady-state task window, shown on the right) are visualized schematically
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brain measures were derived from short-window time-course data

on single-trial level. We hypothesized that while activation-level

measures might be a stronger correlate of the individually

performed tapping speed, functional connectivity measures might

be more sensitive in detecting the demand on bimanual

coordination.

Methods

Participants and Ethics Statement
Five healthy volunteers participated in the study (mean age:

29.462.8 years). All participants were right-handed as evaluated

by the Edinburgh Handedness Inventory [42]. Participants gave

their written informed consent prior to the experiment that was

conducted in conformity with the Declaration of Helsinki and

approved by the local Ethics Committee of the Faculty of

Psychology and Neuroscience at Maastricht University.

Experimental Procedure
Before the scanning session, participants were trained for half an

hour outside the scanner to get familiarized with the motor task.

During the MRI session (approx. 2 h) a block design with 20-s task

blocks and alternating 20-s rest periods was employed. During task

blocks participants were guided by a visual metronome that

consisted of a flickering ‘R’ on the right side (indicating right index

finger pace) and a flickering ‘L’ on the left side (indicating left

index finger pace). This display was generated using the

Presentation software package (Version 16, Neurobehavioral

Systems Inc., Albany, CA, USA), and was projected onto a

mirror mounted in the scanner in front of the participant’s head.

During the task blocks of a localization run (11 min) participants

were instructed to tap at a medium speed of 2 Hz with their left

index finger or their right index finger only. During the following

eight experimental runs (11 min each) the participants performed

four different types of tapping sequences, which required an

increasing demand on bimanual coordination: 1) moving only the

right index finger (unimanual), 2) moving both index fingers in

synchrony (bimanual synchronous), 3) moving both index fingers at

the same pace in an alternating fashion (bimanual alternating), and 4)

moving the left index finger in synchrony with the right index

finger, but at half of the pace (bimanual unbalanced). Each of these

tapping sequences was performed at four different right-finger

tapping speeds (1, 2, 3, and 4 Hz), which resulted in 16 different

experimental conditions (figure 1). Eight repetitions per condition

were implemented for each participant (total of 128 task blocks),

with the order being counterbalanced across the session. All finger

movements during tapping were recorded using a button box, and

the software Presentation. The imaging session concluded with the

acquisition of the anatomical images.

MRI Data Acquisition
The images were acquired at Maastricht Brain Imaging Centre

(Maastricht University) on a 3T scanner, (Magnetom Allegra,

Siemens Healthcare, Germany), equipped with a standard

quadrature birdcage head coil. The participants were placed

comfortably in the scanner and their heads were fixed with foam

cushions to minimize task-related and other spontaneous motion.

All participants were instructed to avoid any movement other than

the finger tapping during scanning. Functional images were

acquired with a repeated single-shot echo-planar imaging (EPI)

sequence with a relatively short repetition time (TR = 1000 ms),

adjusted flip angle (FA = 62u), standard echo time (TE = 30 ms),

field of view (FOV = 2246224 mm), matrix size (64664), and 17

slices (thickness = 4 mm, 1 mm gap), resulting in a voxel size of

3.563.565 mm3, ensuring full coverage of the visual, parietal and

motor cortices with limited coverage of prefrontal cortex and the

cerebellum. Anatomical images were collected with a sequence

based on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

for the investigated functional network (M1 = primary motor cortex, dPMC = dorsal premotor cortex, SMA = supplementary motor area, V5 = visual
motion area). The upper row shows the significant difference in functional connectivity between unimanual and bimanual tapping. The second row
depicts the significant linear increase of functional connection with increasing demand on bimanual coordination during bimanual tapping. The third
row shows how connectivity significantly increased with increasing tapping speed. The bottom row depicts the significant interaction effects
between demand on bimanual coordination and tapping speed. While the effects were weaker during steady-state in comparison to overall task
connectivity, the task-dependent modulations were qualitatively very similar independent of the time window used. Only one connection, the
connection between the two primary motor cortices, showed all effects independent of the time window used. This connection also showed the
highest average correlation in the functional network (the thickness of the depicted connections equals the average correlation across all
experimental conditions).
doi:10.1371/journal.pone.0085929.g004

Table 1. Individual regions-of-interest.

left M1 right M1 left SMA right SMA left dPMC right dPMC left V5 right V5

x y z x y z x y z x y z x y z x y z x y z x y z

Participant 01 239 224 48 40 222 46 28 212 52 3 210 57 249 213 44 50 29 47 246 263 3 40 262 4

Participant 02 235 218 54 33 222 50 26 28 56 1 22 60 248 210 49 42 25 45 255 261 2 37 266 21

Participant 03 237 217 51 35 217 56 27 1 47 5 10 43 236 21 55 35 23 52 242 273 2 49 267 0

Participant 04 237 215 58 37 212 50 25 26 51 3 23 51 244 24 51 47 1 52 244 275 26 45 273 24

Participant 05 241 213 51 35 218 50 26 0 54 7 0 53 247 26 53 43 25 48 245 263 5 43 269 5

Group 238 217 52 36 218 50 26 25 52 4 21 53 245 27 50 43 24 49 246 267 1 43 267 1

Meta-analysis 238 226 50 36 222 54 24 28 52 47 1 50 242 266 4 44 266 22

The Talairach coordinates of the functionally defined regions of interest are listed for each individual participant. The Talairach coordinates for the group average and
coordinates reported by a meta-analysis of 38 finger tapping studies [44] are shown for comparison. M1 = primary motor cortex, SMA = supplementary motor area,
dPMC = dorsal premotor cortex, V5 = visual motion area.
doi:10.1371/journal.pone.0085929.t001
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Figure 5. Within-participant region-of-interest results. The individually selected regions of interest in the left and right primary motor cortices
(M1) of the five participants are projected onto an average of all participants’ anatomical brain images in panel A (z = 51, Talairach space), and onto
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(parameters: TR = 2250 ms, TE = 2.6 ms, FA = 9u, FOV

2566256 mm2, 2566256 matrix, 192 slices, slice thick-

ness = 1 mm, duration = 8:26 min).

Behavioral Data Analysis
The behavioral data were analyzed using custom code in

MATLAB (R2010a; The MATHWORKS Inc., Natick, MA,

USA) and SPSS Statistics (PASW Statistics 18; IBM Corporation,

Armonk, NY, USA). As the participants’ instruction was to

perform the required order of the left and right button presses as

accurately as possible, the following types of errors were defined: a)

unimanual tapping: a button press with the opposite index finger, b)

bimanual synchronous and bimanual unbalanced tapping: a button press

that was delayed more than 100 ms in reference to the button

press of the opposite index finger, c) bimanual alternating tapping:

each additional consecutive button press. Secondly, the actual

individual tapping speed during each of the 128 task blocks was

estimated by computing the inter-response intervals between the

responses made with the right index finger. Both sets of behavioral

measures were analyzed using a general linear model with linear

the individual anatomical brain images in panel B. In Panel C the BOLD responses from left M1 (averaged across all tasks) are depicted for all
participants (mean 6 individual SE). The time windows used to compute the block-wise correlations are superimposed on the BOLD responses. Panel
D displays the average activation level (group mean 6 group SE) during each of the sixteen experimental conditions (four different tapping
sequences performed at four different speeds) in right and left M1 (group mean 6 group SE), while panel E shows the results (group mean 6 group
SE) from the correlation analysis of the same regions of interest. From unimanual to bimanual finger tapping the average activation level increased, as
expected, in the right, but not left primary motor cortex (left M1: unimanual 1.4%, synchronous 1.3%, alternating 1.2%, unbalanced 1.2%; right M1:
unimanual 20.2%, synchronous 1.3%, alternating 1.2%, unbalanced 0.9%). This effect was reflected in the steady-state task and overall task
connectivity (26-s full task window: unimanual: 0.02, synchronous 0.75, alternating 0.73, unbalanced 0.73; 12-s steady-state task window: unimanual:
0.24, synchronous 0.42 alternating 0.47, unbalanced 0.47,), but not visible during rest connectivity (unimanual 0.40, synchronous 0.49 alternating 0.48,
unbalanced 0.48). Additionally, all task derived measures were modulated by finger tapping speed. For the activation level derived measures, this
effect was most pronounced when the performed tapping sequence was easy. During steady-state connectivity the modulation by finger tapping
was strongest during unimanual, alternating and unbalanced tapping, and for the overall task connectivity the modulation by finger tapping speed
was most pronounced as tapping sequences became most difficult (alternating and unbalanced tapping).
doi:10.1371/journal.pone.0085929.g005

Figure 6. Sensitivity and specificity in detecting bimanual tapping. The sensitivity and specificity in detecting if a task was uni- or bimanually
performed was computed using a simple threshold approach. The results for the block-wise activation-level measures from right M1 (panel A), and
the 26-s full task correlations (panel B), and the 12-s steady-state task correlations (panel C) are presented for two participants. Each dot represents
one block. Significant results are marked with an asterisk. Activation level based and overall task connectivity measures both performed well in
making this binary decision, while steady-state connectivity measures performed more poorly, but still above chance level (50%) in three of five
participants (see table 2).
doi:10.1371/journal.pone.0085929.g006
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contrasts to test for a linear increase along the dimensions of speed

and demand on bimanual coordination. Statistical tests for an

increase on demand of bimanual coordination were performed

across all tapping sequences, as well as across the three bimanual

sequences (testing for a linear increase from bimanual synchronous to

alternating to unbalanced). All tests were performed on group-level

(fixed effects, the individual block measures were concatenated

into one data set), as well as on single-subject level.

Figure 7. Correlation with finger tapping speed. The criterion validity for detecting performed tapping speed was calculated by correlating the
block-wise brain measures with the block-wise behavioral performance measures. The results from one representative participant are depicted for
bimanual synchronous tapping (upper row) and bimanual unbalanced tapping (lower row). The correlation between finger tapping speed and the
block-wise activation-level measures from left M1 (panel A), the 26-s full task block-wise correlations (panel B), and the 12-s steady-state task
correlations (panel C) are shown. Each dot represents one block, with the regression line indicating the average strength of the brain-behavior
correlation. Significant results are marked with an asterisk. The steady-state connectivity measures were modulated by finger tapping speed during
the most difficult unbalanced tapping task, but not during the easier synchronous tapping task. The same effect is visible but less pronounced for the
overall task connectivity measures, and much weaker for the activation-level based measures. The connectivity measures thus indicate overall task
difficulty best, showing the strongest increase from low to high overall task difficulty.
doi:10.1371/journal.pone.0085929.g007

Table 2. Sensitivity and specificity in detecting bimanual tapping.

Block activation-level
right M1

Block correlations 26-s full
task window

Block correlations 12-s
steady-state task window

Block correlations 12-s
rest window

Participant 01 86%/91%* 94%/88%* 67%/56% 68%/56%

Participant 02 86%/84%* 94%/97%* 79%/66%* 75%/47%*

Participant 03 83%/100%* 96%/97%* 63%/63%* 49%/47%

Participant 04 85%/94%* 88%/75%* 69%/53%* 54%/31%

Participant 05 90%/84%* 92%/97%* 64%/59% 66%/63%

Group 86%/91% 93%/91% 68%/59% 62%/49%

The sensitivity and specificity (sensitivity/specificity) in detecting if a task was performed with only the right index finger (unimanual), or with both index fingers
(bimanual) was computed for all participants using a simple threshold approach (bold with asterisk = significant results).
doi:10.1371/journal.pone.0085929.t002
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MRI Data Analysis
Functional and anatomical images were pre-processed and

analyzed using BrainVoyager QX (Version 2.3, Brain Innovation

B.V., Maastricht, The Netherlands), custom code in MATLAB,

and SPSS Statistics. The first five volumes of each functional run

were discarded due to T1 saturation effects. The data was pre-

processed using interscan slice-time correction, 3D rigid-body

motion correction, and temporal high-pass filtering with a general

linear model (GLM) Fourier basis set, and up-sampled to

36363 mm3. Noise artifacts were removed from the data using

a linear regression approach. Estimated head motion parameters

(three translational, three rotational) to model motion artifacts

[28,30], a localized estimate of the white matter signal to model

scanner artifacts [29], and the ventricular signal to model

physiological artifacts, were included in the noise model [26,27].

This combination of nuisance regressors has been recommended

to be efficient in increasing the specificity [27,28,30], as well as the

reliability of the results in functional connectivity analysis [31]. All

anatomical and functional data were spatially normalized to

Talairach space to enable a comparison between participants [43].

Group Level Functional Network Analysis
For the functional network analysis, eight a priori regions of

interest (ROIs) were selected based on the reviewed literature and

a meta-analysis on finger tapping [44]; left and right primary

motor cortex (M1), left and right supplementary motor area

(SMA), left and right dorsal premotor cortex (dPMC), left and

right visual motion area (V5) (figure 2A). All ROIs were defined

individually for each participant, based on the data from the

localization run, by computing a GLM with the nuisance

predictors and task predictors convolved with a standard two-

gamma hemodynamic response function. The ROIs were defined

by selecting the 20 most significant functional voxels from the

activation cluster closest to the respective coordinates reported in

the meta-analysis [44]. In a second step the average time courses

of these ROIs were extracted from the pre-processed and spatially

normalized data from the experimental runs. Pearson’s correlation

coefficients of the activation-level changes in the selected ROIs

were computed block-wise for the 128 experimental task blocks of

each individual. Three different sets of correlations were calculated

using three different time windows: 1) a wider task window that

Table 3. Correlation with finger tapping speed.

Block activation-level
left M1

Block correlations 26-s
full task window

Block correlations 12-s
steady-state task window

Block correlations 12-s
rest window

Bimanual synchronous

Participant 01 0.26 0.26 20.01 0.15

Participant 02 0.18 0.03 20.11 0.16

Participant 03 0.61* 0.01 0.11 0.30

Participant 04 0.31 0.20 20.09 20.14

Participant 05 0.40* 20.03 20.21 20.18

Group 0.35 0.09 20.06 0.06

Bimanual alternating

Participant 01 0.52* 0.24 20.21 0.30

Participant 02 0.05 0.03 0.07 0.06

Participant 03 0.62* 0.08 0.20 0.17

Participant 04 0.22 0.62* 0.43* 0.06

Participant 05 0.39* 0.47* 0.21 0.04

Group 0.36 0.29 0.14 0.13

Bimanual unbalanced

Participant 01 0.39* 0.14* 20.11 0.01

Participant 02 20.20 0.34 0.15 20.04

Participant 03 0.74* 0.33* 0.01 20.01

Participant 04 0.43* 0.42* 0.47* 0.12

Participant 05 0.12 0.46* 0.20 0.04

Group 0.30 0.34 0.14 0.03

Averaged across bimanual tapping tasks

Participant 01 0.34* 0.18 20.09 0.16

Participant 02 0.06 0.13 0.00 0.06

Participant 03 0.61* 0.17* 0.09 0.14

Participant 04 0.31* 0.38* 0.25* 0.00

Participant 05 0.30* 0.34* 0.06 20.02

Group 0.32 0.24 0.06 0.07

The criterion validity for detecting performed tapping speed was calculated by correlating the block-wise brain measures with the block-wise finger tapping speed.
These brain-behavior correlations are presented for all participants for each of the three different bimanual tapping tasks separately as well as averaged (bold with
asterisk = significant results).
doi:10.1371/journal.pone.0085929.t003
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included task on- and offset responses to measure the overall task

connectivity (26-s ‘‘full task’’ window, encompassing the rise and

decline of the positive BOLD response from 2 seconds after task

onset until 28 seconds after, when the decline is expected to level

off), 2) a narrow task window omitting task on- and offset responses

to compute the steady-state task connectivity during continuous

task performance (12-s ‘‘steady-state’’ task window, encompassing

only the plateau of the BOLD response from 10 seconds until 22

seconds after task onset, to exclude the initial onset and peak), and

3) a narrow rest window to measure rest connectivity (12-s ‘‘rest’’

window, starting 12s before task onset) (figure 2B). Fisher Z

transformation was applied to all correlation values to improve the

normality of the calculated correlation coefficients [45]. As a

preliminary step to the main analysis on single-subject level, we

submitted the block-wise correlations to the same group-level

statistical analyses (fixed effects) as the behavioral data.

Within-participant Region-of-interest Analysis
Based on the group-level analysis, the functional connection

showing the strongest task modulation was selected in order to

further investigate the feasibility of using functional connectivity

measures as a neurofeedback measure on a single-subject level.

Visual inspection of the single-block blood oxygenation level-

dependent (BOLD) responses from the selected ROIs confirmed

that the steady-state task- and rest-connectivity (12-s steady-state

task window and 12-s rest window) were not contaminated by the

task on- and offset responses. For the block-wise correlations the

same statistical analyses as performed at the group-level were

repeated at the single-subject level. Additionally, block-wise

activation level measures were computed for all 128 task blocks

(% signal change 12-s task vs. 12-s rest), and submitted to the same

statistical analysis. Furthermore, we investigated two different

types of brain-behavior link. First, to evaluate the sensitivity and

specificity of the computed brain measures to detect if a task was

performed uni- or bimanually, we set the intermediate value

between the means from both types of tasks as a threshold. We

then computed how well the actually performed task could be

detected based on the single-block brain measures using this

simple threshold approach (chance level being 50%). We tested for

significance through paired t-tests. Second, to estimate the

criterion validity of the brain measures for indicating which

tapping speed was performed, we correlated the block-wise brain

measures with the block-wise actual finger tapping speed. We

tested for the significance of this correlation through linear

regression. Finally, to directly test for differences between the

different sets of functional connectivity and activation level-based

measures statistically, we submitted them pairwise to a three-way

(measure 6 tapping speed 6 demand on bimanual coordination)

analysis of variance (ANOVA) for repeated measures on group

(fixed effects) and single-subject level.

Results

Behavioral Data
All participants completed the session as intended. The linear

modulation of actual tapping speed of the right index finger was

highly significant in all participants (Group: F(1,39) = 748,

p,0.001, Single Subject: F(1,7) .2850, p,0.0001), indicating

that there was a linear increase in performed tapping speed as

required (figure 3A). Also, as expected, a significant linear

increase in error rate was found in all participants when demand

on bimanual coordination increased across the four different types

of tapping sequences (Group: F(1,39) = 1997, p,0.001, Single

Subject: F(1,7) .545, p,0.0001), or across the three bimanual

tapping sequences (Group: F(1,39) = 1335, p,0.001, Single

Subject: F(1,7) .239, p,0.0001) (figure 3B). The modulation

of error rate by tapping speed was not linear. In four participants,

the results showed a significant quadratic effect of speed, with most

errors being made during the slowest and the fastest conditions

(Group: F(1,39) = 7.9, Single Subject: F(1,7) .9.2, p,0.019).

Finally, the behavioral data from these four participants showed a

significant interaction effect between demand on bimanual

coordination and actual tapping speed (Group: F(1,39) = 6.0,

Single Subject: F(1,7) .29.2, p,0.001), with a stronger modula-

tion of error rate by demand on bimanual coordination when the

tapping speed was higher.

Group-level Functional Network
In all participants the eight ROIs were functionally localized

based on the independent data from the localization run (table 1).

In the functional network derived from the rest periods

immediately preceding each task block (12-s rest window) only

one of the fifteen analyzed connections was significantly linearly

modulated by tapping speed in the preceding task period (left-right

SMA: F(1,39) = 8.2, p = 0.007, not depicted), and demand on

bimanual coordination (left-right SMA: F(1,39) = 9.5, p = 0.004,

not depicted). In the analysis of the functional connectivity

networks derived from the two task windows (26-s full task and 12-

s steady-state task window), a number of connections showed a

significant increase of functional connectivity with increasing

tapping speed (e.g., left-right M1 26-s full task window:

F(1,39) = 26.6, p,0.001, 12-s steady-state task window:

F(1,39) = 6.7, p = 0.01), and increasing demand on bimanual

coordination (e.g., left-right M1 unimanual vs. bimanual 26-s full

task window: F(1,39) = 523.5, p,0.0001, 12-s steady-state task

window: F(1,39) = 18.5, p,0.001; left-right M1 linear modulation

26-s full task window: F(1,39) = 462.0, p,0.0001, 12-s steady-state

task window: F(1,39) = 28.6, p,0.001) (figure 4A, 3B). In

general, the task effects in the steady-state task functional network

(12 s task window) were weaker but not qualitatively different from

the effects found in the overall task connectivity functional network

(26 s task window) (figure 4A, 3B). Finally, three connections of

the functional networks derived from the task data showed

significant interaction effects for both time windows (left M1 with

right M1, left M1 with right SMA, and left V5 with left dPMC).

For these three connections the functional connectivity was highest

when both tapping speed and demand on bimanual coordination

increased (e.g., left-right M1 26-s full task window: F(1,39) = 9.0,

p = 0.005, 12-s steady-state task window: F(1,39) = 5.3, p = 0.027).

A comparison between all functional connections showed that the

task-dependent effects were strongest for the left-right M1

connection. Further analyses were therefore restricted to this

functional connection.

Within-participant Region-of-interest
Figure 5 depicts the individually localized left and right primary

motor cortex, the measured BOLD responses from these regions

with the functional connectivity analysis time windows superim-

posed, as well as the group-average activation-level and correlation

values derived from this data. The statistical analysis of the

individual block-wise activation level measures showed that there

was a slight decrease in activation level in the left primary motor

cortex with increasing demand on bimanual coordination in four

out of five participants (Group: F(1,39) = 14.6, p,0.001, Single

Subject: F(1,7) .6.1, p,0.04). Furthermore, as expected, the

activation level of this region linearly increased when tapping

speed increased, reaching significance in four participants (Group:

F(1,39) = 37.2, p,0.001, Single Subject: F(1,7) .7.6, p,0.03;
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figure 5D). There was no significant interaction effect except in

one participant (Group: F(1,39) = 1.9, p = 0.17, Single Subject:

F(1,7) = 7.0, p = 0.03). In the right primary motor cortex, as

expected, there was a strong increase in activation level between

unimanual and bimanual tapping (Group: F(1,39) = 297, p,0.001,

Single Subject: F(1,7) .86, p,0.001, figure 5D, 6A), but

activation levels decreased with increasing demand on bimanual

coordination across the three bimanual tasks in four participants

(Group: F(1,39) = 297, p,0.001, Single Subject: F(1,7) = p,0.001,

figure 5D). In both regions of interest the highest activation levels

were thus found when finger tapping speed was high and an easier

tapping sequence was performed. The interaction effect in the

right primary motor cortex was significant in one participant

(Group: F(1,39) = 8.7, p = 0.005, Single: Subject: F(1,7) = 23.0,

p = 0.002). The individual analyses of the functional connectivity

measures on single-subject level confirmed the reported group

results, showing robust and consistent differences in task connec-

tivity between the unimanual vs. the bimanual tapping sequences

(26-s full task window: all participants, F(1,7) .54.4, p,0.001; 12-

s steady-state task window: three participants, F(1,7) .5.9,

p,0.04, 12-s rest window: one participant, F(1,7) = 20.6,

p = 0.003, table 2, figure 5E, 6). The average sensitivity and

specificity in detecting if a task was performed uni- or bimanually

was high when based on the activation-level measures from the

right primary motor cortex (86% sensitivity, 91% specificity), and

the overall task connectivity measures (93%, 91%), and moderate

when based on the steady-state task connectivity measures (68%,

59%) (table 2, figure 6). Second, as in the group-level analysis,

task connectivity also increased when tapping speed increased.

This linear effect was significant for both the 26-s full task window

(three participants, F(1,7) .6.1, p,0.04) and the 12-s steady-state

task window (two participants, F(1,7) .4.9, p,0.002), and non-

significant during rest (F(1,7) ,1.8, p.0.22). However, the

individual functional connectivity analyses showed an interaction

effects for four participants with the 26-s full task window (F(1,7)

.6.5, p,0.04), and three participants in the steady-state task

connectivity analysis (F(1,7) .6.3, p,0.04), being non-significant

during rest (F(1,7) ,0.4, p.0.55). The modulation of the task

connectivity by tapping speed was most pronounced when

demand on bimanual coordination was high, and overall task

difficulty was therefore increased. This effect was unique to the

two sets of task connectivity measures, as the modulation of the

activation level-based measures by tapping speed did not become

more pronounced with increasing demand on bimanual coordi-

nation in both left and right primary motor cortex (figure 5,

figure 7). Post hoc tests regarding the linear effect of tapping speed,

performed separately for the three bimanual tapping tasks,

confirmed this interaction effect (table 3, figure 7). The criterion

validity of the correlation measures regarding tapping speed

increases from synchronous tapping (steady-state = 20.06/over-

all = 0.09), to alternating tapping (steady-state = 0.14/overall = 0.29),

to bimanual unbalanced tapping (steady-state = 0.14/overall = 0.34),

while this effect was not found for the activation level-based

measures (synchronous: 0.35, alternating: 0.36, unbalanced 0.30,

table 3, figure 7). Overall, the task connectivity measures thus

differentiate best regarding overall task difficulty, showing the

strongest increase from low to high overall difficulty. A direct

statistical comparison between the different sets of measures

confirmed that both sets of activation level-based measures

differed statistically from both sets of task connectivity measures

(26-s full task window vs. right M1: interaction effect measur-

e*bimanual coordination: Group F(3,117) = 22.5, p,0.001, sig-

nificant in three participants, F(3,21) .9.7, p,0.001; 26-s full task

window vs. left M1: interaction effect measure*bimanual coordi-

nation: Group F(3,117) = 23.9, p,0.001, significant in four

participants, F(3,21) .15.8, p,0.001; 26-s full task window vs.

left M1: interaction effect measure*tapping speed: Group

F(3,117) = 7.7, p,0.001, significant in four participants, F(3,21)

.3.1, p,0.04); 12-s full task window vs. right M1: interaction

effect measure*bimanual coordination: Group F(3,117) = 77.5,

p,0.001, significant in all participants, F(3,21) .10.7, p,0.001;

12-s full task window vs. left M1: interaction effect measure*bi-

manual coordination: Group F(3,117) = 14.6, p,0.001, significant

in three participants, F(3,21) .15.8, p,0.008; 12-s full task

window vs. left M1: interaction effect measure*tapping speed:

Group F(3,117) = 7.7, p,0.001, significant in three participants,

F(3,21) .5.0, p,0.009)).

Discussion

The purpose of this study was to investigate whether windowed

functional connectivity measures in comparison with activation

level-based measures may be a good indicator of changes in task

performance during a well-controlled, simple behavioral (here

motor) task. This was assessed in a small number of subjects as a

proof-of principle study using variants of a simple bimanual motor

task at a single-trial level to investigate the feasibility of windowed

correlations as a (potential) neurofeedback signal. We observed

four main findings: first, windowed correlations computed based

on very short time windows did indeed provide valid information

on certain task aspects. Second, the obtained information was

unique, as task connectivity measures were more indicative of

overall task difficulty than activation level-based measures. Third,

the robustness of the steady-state task connectivity measures with

the chosen approach was relatively low, and fourth, the task

dependent modulation of functional connectivity was spatially

focused within the task-relevant network.

Two different sorts of task connectivity measures were

investigated: steady-state task connectivity as an index of

integration during continuous performance, and overall task

connectivity as a compound measure indexing both steady-state

performance and gross activation level changes. For both sets of

task connectivity measures significant brain-behavior relationships

were found, which were unique in comparison with activation-

level based measures. While we hypothesized that functional

connectivity measures may be more sensitive to bimanual

coordination demands, and less to finger tapping speed, we found

that they were most indicative of overall task difficulty. While

activation-level based measures increased with increasing finger

tapping speed, and decreased with increasing demand on

bimanual coordination, steady-state task connectivity increased

with increasing tapping speed, as well as with increasing demand

on bimanual coordination. The highest activation levels were thus

found for high speed tapping during an easy tapping sequence,

while steady-state connectivity was highest when overall task

difficulty was high. The full task window correlations, a compound

measure between activation level changes and steady-state,

showed a mix of those two effects. In general, the two sorts of

task connectivity measures thus indexed overall task difficulty

better than activation level-based measures. While these results

need to be interpreted with caution due to the small sample size,

and do not allow for population inference, they were consistent

across participants.

The findings are in line with previous studies showing that

increasing demand on bimanual coordination, or tapping speed

during finger tapping leads to higher functional connectivity

[36,37]. The presented findings furthermore corroborate previous

research showing that an increasing cognitive demand during the
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performance of working memory tasks also enhances functional

connectivity between task-relevant regions [46,47,48,49]. Finally,

the presented findings are consistent with previous imaging studies

showing that task-dependent enhanced interhemispheric coupling

is highest during early stages of motor skill learning, when task

difficulty is highest [41]. Three recent studies on motor learning

showed that the functional connectivity within the motor network

rapidly increased during an initial stage of learning, and then

decreased as learning slowed down and performance stabilized

[50,51,52]. The results from the presented study, as well as from

previous studies thus support the idea that functional connectivity

measures may be used as an indicator of overall task difficulty

during neurofeedback training. The presented study extends

previous findings by showing that short-window correlations can

capture this task aspect, and seem to be more indicative than

activation level-based measures.

A third finding of this study was the low robustness of the

steady-state task connectivity measures. While the steady-state

correlations seem to have potential for indexing task aspects,

which cannot be captured equally well by activation level-based

measures, their reliability was considerably lower. Effect sizes were

relatively small and the consistency of the results across

participants thus compromised. Further research into improving

the stability of steady-state connectivity measures thus seems

necessary to make a short-window connectivity-based neurofeed-

back training implementation feasible. To optimize the data

quality through dense sampling we used a relatively high temporal

resolution in comparison with standard imaging parameters,

compromising on spatial coverage in return. At the same time we

attempted to maximize the signal to noise ratio through the use of

relatively large functional voxels. However, further optimization of

the data quality seems crucial in order to provide robust measures.

Further future improvements could be achieved by further

reduction of spatial coverage, fundamentally improved hardware,

advanced imaging sequences [53,54], new methods for noise

reduction [55], or noise removal [56].

Finally, the network analysis performed on the group-level

showed that the task-dependent modulation of the functional

connectivity was clearly spatially focused within the analyzed task

network. Similar results have been reported by other studies,

showing that task-dependent modulations of brain connectivity

patterns are often spatially quite restricted [57,58]. Therefore, the

use of bivariate pairwise correlations as a measure of task-

dependent modulations in functional networks might be a

promising approach for a functional connectivity neurofeedback

implementation. The advantage of this approach might be that it

would allow for further optimization of the imaging sequence

parameters by limiting spatial coverage and increasing temporal

resolution. More research will be necessary to confirm if this

significantly improves the robustness and sensitivity of the

functional connectivity measures.

Overall, the presented results thus support the idea that

functional connectivity measures may be valuable indicators of

task difficulty for neurofeedback based learning. Functional

connectivity neurofeedback could provide relevant, and to a

certain extent unique information during neurofeedback training.

Windowed correlations may serve as an indicator of overall task

difficulty on an individual level, indicating how difficult a task is for

this individual at this moment in time. Overall, functional

connectivity measures may thus add an important estimate

regarding the individual learning process in comparison with the

activation level-based feedback measures as previously used in

neurofeedback patient training studies [59,60,61,62], and in

multivariate real-time approaches currently under investigation

[63]. Further research into the generalizability of the results to

other task paradigms and patient populations thus seems worth

pursuing.

Conclusions
The present study set out to investigate the general feasibility of

fMRI connectivity-based neurofeedback. Our results demonstrate

that task connectivity seems to provide unique information on task

difficulty. If functional connectivity measures can provide a valid

index of individual task difficulty during learning, this might be

extremely valuable for patients. During training, especially in a

patient setup, participants are often encouraged to adopt and

employ novel cognitive, behavioral and emotional strategies. An

individual index of task difficulty could encourage patients to

constantly perform at a high level of individual difficulty,

something that may necessary for mastering the novel cognitive,

behavioral and emotional skills, which patients are lacking. If the

results of this study could be generalized, windowed functional

connectivity neurofeedback may therefore indeed become a

valuable additional tool for neurofeedback training setups.
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