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the theory of visual attention (tvA) provides a formal framework for the assessment of visual at-
tention and related processes. its center is a mathematical model of visual encoding processes 
and discretely defined components of attention. Building on this model, tvA offers quantitative 
and process-related explanations for a variety of phenomena in the domain of visual attention. 
Because the theory relies on very general assumptions which might hold true for other domains of 
sensory processing, we tested its possible explanatory value for tactile processing in mice. reana-
lyzing published data of temporal-order judgments by mice, we show how a tvA-based analysis 
identifies the processes which drive observable behavior and that it comes to conclusions quite 
different from those of conventional analyses of temporal-order judgments. According to this anal-
ysis, despite the same overall capacity dedicated to the task, some mice assume attentional biases 
toward one side, possibly to optimize their overall performance. We suggest that tvA's concepts 
provide a powerful point of vantage to find explanations for observable behavior where conven-
tional analysis easily leads to dead ends.

corresponding author: Jan tünnermann, cognitive Psychology, Paderborn 

University, germany. 

email: jan.tuennermann@uni-paderborn.de

AbstrAct

Keywords

doi • 10.5709/acp-0237-0

IntroductIon

The theory of visual attention (TVA) was originally proposed by 

Bundesen (1990) and has by now been adopted by many theorists 

(e.g., Hung, Driver, & Walsh, 2005; Logan, 1996; Schneider, 2013). It 

provides a common, formal framework for the assessment of visual 

attention and related processes. In particular, TVA offers a mathemati-

cal model of visual encoding processes and discretely defined compo-

nents of attention, most prominently stimulus processing rates, visual 

short-term memory capacity, and a threshold time of perception. TVA 

thereby can provide a means to precisely talk and think about con-

cepts and explanations concerning visual attention. It thus may help to 

overcome difficulties in this field which arise from the dangers of loose 

terminological conventions, informal definitions, and weak theories 

(cf. Taagepera, 2008). 

So far, however, a major difficulty hinders TVA's application to 

many domains of interest in attention research. This difficulty arises 

from the fact that TVA mainly builds upon a single experimental 

paradigm, the letter report task: Most of the data from which TVA 

parameters are inferred come from experiments in which participants 

identify letters that are briefly presented on a screen and masked af-

ter a variable interval (it is not mandatory to use letters; any highly 

learned and sufficiently large set of categorizable stimuli would suffice, 

but letters serve the purpose most conveniently). More specifically, the 

growth of identification accuracy across increasing masking intervals 

provides the data from which the attention-related parameters are 

estimated. To facilitate research, specific ready-to-use versions of the 

experimental paradigm have been published (see, e.g., Vangkilde, 

Coull, & Bundesen, 2012). However, these ready-to-use versions, as 

well as the general approach, require that researchers can pose their 

questions in a way compatible with the letter-report paradigm. Clearly, 

not all interesting perception experiments can be transformed into a 

letter—or, speaking more generally, multiple-stimulus report experi-

ment. What if participants cannot read letters, for instance, because 

they are preliterate children, or even literate children for whom the task 

of naming letters is too challenging or too boring? Comparable dif-
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ficulties hamper studies with cognitively impaired persons or animals, 

such as lab mice, who, outside the TVA world, contribute substantially 

to the study of attention.

It is possible to adapt TVA models for particular experimental 

paradigms, as A. Petersen, Kyllingsbæk, and Bundesen (2012) dem-

onstrated for the attentional dwell-time paradigm. Not all researchers, 

however, have the possibility to do the extensive mathematical and 

modeling work which is necessary for this. Thus, it would be a con-

siderable benefit if more generally applicable experimental paradigms 

would become available for them. 

During the past years, we have been working on one such method: 

estimating TVA parameters from temporal-order judgments (TOJs). 

The method has first been proposed by Tünnermann, Petersen, and 

Scharlau (2015) and subsequently been applied to different problems. 

These include quantification of visual salience (Krüger, Tünnermann, 

& Scharlau, 2016, 2017), the influence of peripheral visual cues on 

processing speed (Tünnermann & Scharlau, 2016), and the estima-

tion of processing speed in natural images (Tünnermann, Krüger, 

& Scharlau, 2017). What is new in our approach is that virtually any 

stimulus material can be used, as long as two asynchronous stimuli 

can be presented. In the present paper, we demonstrate that this TVA-

based TOJ method can even go a step farther: It enables the estimation 

of TVA's processing rates from lab animals. 

Reporting which of two events appeared first is one of the simplest 

tasks involving stimuli distributed in space and time. Unless only very 

small temporal intervals are used, humans do not need much train-

ing or instruction for deciding which of two stimuli—the left or the 

right, the green or the red, or whatever is convenient—has been shown 

first. This makes the task suitable for very different participants, in-

cluding children or cognitively impaired people. Partly for that reason, 

TOJs are popular in measuring the timing of information processing 

and the distribution of processing resources. To give a few examples 

of their widespread and long-ranging use, TOJs have been applied to 

study visual (e.g., Rutschmann, 1966), auditory (e.g., Hirsh, 1959), and 

tactile (e.g., Hirsh & Sherrick, 1961; Miyazaki, Yamamoto, Uchida, & 

Kitazawa, 2006) processing, the integration of these modalities (e.g., 

Zampini, Shore, & Spence, 2003), the influence of attention within 

(e.g., Scharlau, Ansorge, & Horstmann, 2006) and across modalities 

(e.g., Zampini, Shore, & Spence, 2005), the control of attention (e.g., 

Born, Kerzel, & Pratt, 2015), the processing of emotion (e.g., Lake, 

2016; Schofield, Yousef, & Denson, 2017), pain (e.g., Vanden Bulcke, 

Crombez, Burnez, & Van Damme, 2015), causality (e.g., Bechlivanidis 

& Lagnado, 2016), and many more.

TOJs can also be gained from animals. Wada, Moizumi, and 

Kitazawa (2005) and Wada, Higo, Moizumi, and Kitazawa (2010) 

showed that mice can perform tactile TOJs, though after extended 

training. Short air puffs were delivered to the left and right whiskers of 

the mice (see Figure 1). After an additional go signal, the mice poked 

their heads into a response hole to indicate which air puff, left or right, 

had been delivered first or second, depending on the condition. Based 

on the idea that ordering of stimuli is vital for animals, the authors 

aimed at building a model for animal TOJs. Their data is the basis for 

the present study, and we will treat it in a TVA-based framework—that 

is, we will derive TVA parameters from their order responses. To mo-

tivate this approach, we will first show which problems conventional 

analysis runs into when building models of TOJs. We then explain how 

our TOJ-based extension of TVA solves these problems and why TVA's 

model might be a reasonable choice for modeling animal tactile data. 

Reanalysis of Wada et al.’s (2005) data finally shows which substantive 

conclusions can be drawn from this approach. We finally detail short-

comings and advantages of the approach. Our goal is to show that the 

TVA approach is promising not only within the field of visual atten-

tion, and that it is worth the effort to expand it beyond this field.

To fully appreciate the advantages of this approach, we first turn 

to the traditional method of analyzing TOJ data, which Wada et al. 

(2005), and many other studies, used. Temporal-order judgment ex-

Figure 1.

illustration of Wada, Moizumi, and Kitazawa’s (2005) tactile 
mouse temporal-order judgment task.

Figure 2.

exemplary temporal-order judgment (toJ) psychometric 
functions. Precision of the judgments is derived from their 
slope, indexed by the width of an interval between two 
percentiles. the difference limen (dl) marked in the illus-
tration is half the distance between the .25-level and the 
.75-level intersection. the green and the blue curves, dif-
fering in precision, converge to zero and one, the red curve 
to different values, which happens in the presence of ran-
dom errors. the point of subjective simultaneity (Pss) is the 
intersection with .5. soA = stimulus onset Asynchrony.
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periments typically yield s-shaped distributions of judgment frequency 

across temporal intervals (see Figure 2). Wada et al. fitted a psychomet-

ric function to the TOJ data and estimated its parameters, a common 

procedure both historically (Finney, 1971; Guilford, 1954; Woodworth 

& Schlosberg, 1961) and today (e.g., Vibell, Klinge, Zampini, Nobre, & 

Spence, 2017).

Old Methods Reaching Limits
Analyses of this type describe the s-shaped psychometric functions 

with two parameters, the point of subjective equality and a measure 

of temporal resolution (just notable difference, difference limen). In 

terms of the order judgment, the point of subjective equality is that 

objective interval at which the observers cannot decide which stimulus 

was first—that is, the interval at which the probability of each order 

judgment is .5. This is commonly interpreted as the point of subjective 

simultaneity (PSS, though see, for instance, Jaśkowski, 1993; Weiß & 

Scharlau, 2011). In Figure 2, this point can be seen as the intersection 

of the psychometric functions with the horizontal line at .5. The dif-

ference limen is an index of the mean slope in the inner quartile of 

the psychometric function and is typically understood as a measure 

of judgment precision—if the slope is steep (the green function in 

Figure 2), the observer can discriminate well between the two events; if 

it is shallow, the observer’s discrimination is poor (the blue function in 

Figure 2; markings indicate the difference limen).

In the mouse data, the asymptotes of the psychometric func-

tions reached neither zero nor one (similar to the red function in 

Figure 2). That is, even with the largest temporal separations used in 

the experiment (750 ms), the mice still made a substantial amount of 

errors—around 30%. To account for this, Wada et al. (2005) included 

parameters for the upper and lower asymptote of performance in their 

model. This made it necessary to adapt the calculation of the two pa-

rameters that are of central interest: Their PSS lies halfway between the 

asymptotes, and the width parameter captures the temporal resolution 

at 84% of the asymptote, serving the same purpose as the difference 

limen explained above.

Using this conventional analysis of whiskers-based TOJs, Wada et 

al. (2005) found that, even after extensive training, mice performed at 

weaker temporal resolution than humans in comparable tasks with 

air puffs to fingers of the right and left hand (difference limen of 160 

compared to 124 ms). Interindividual variability was, however, high, 

because at least one mouse seems to have performed at better resolu-

tion than the humans. More interestingly, with the mice, the PSS was 

strongly shifted by 133 ms, indicating that they had a tendency towards 

judging “left first” at short intervals or perceived tactile signals from 

the left faster than those from the right.

To explain this shift, Wada et al. (2005) suggested lateralization of 

TOJs to the right hemisphere, where the majority of left-whisker sig-

nals converge. Part of the shift could then be explained by interhemi-

spheric conduction delays of a few, approximately 10 ms (Nicholls, 

1996). Shuler, Krupa, and Nicolelis (2001) discuss interactions between 

signals in the primary sensory cortex as a further factor that could 

cause delays by suppressing responses to contralateral whiskers after 

stimulation at ipsilateral ones. Wada et al. speculate that this suppres-

sion could be especially pronounced at small temporal intervals, but 

they leave its strength unquantified. Both explanations are tentative, 

and it is unlikely that they can explain the large, 133 ms displacement 

of the PSS, as the authors concede (p. 174).

With respect to the weaker performance reflected in the asymptotes, 

Wada et al. (2005) suggest that it might result from underdeveloped—

compared to humans—cognitive processes involved in task execution 

or, alternatively, different signal convergence in the mouse primary 

sensory cortex. However, the data indicate that zero and one would not 

be reached if even longer intervals were included. Instead, it appears 

that the curves converge to values different from zero and one—values 

of .29 and .73. This is an intriguing finding: The mice seem to have a 

high base rate of errors. How is this to be explained?

The study of Wada et al. (2005) thus raises at least two questions: 

Does the PSS shift really indicate interhemispheric conduction delays 

and early interaction of sensory signals? What causes the high base 

rate of errors in the TOJ task? Conventional TOJ analysis cannot an-

swer these questions because PSS and difference limen have restricted 

informative value or explanatory power. In the first place, they are 

summary parameters that describe the observer’s performance but 

provide only a weak link to the internal processes that generate the 

judgment (see Tünnermann, 2016). Despite their ostensible connec-

tion to psychological processing (simultaneity perception, precision, 

bias), they are estimated by a model-free procedure—that is, without a 

formal model that would describe how cognitive processes are linked 

to judgment functions. Therefore, neither the functions (a cumulative 

Gaussian) nor the parameters themselves have a deeper meaning with 

respect to the processes which result in the temporal-order percep-

tion.

Furthermore, estimation of the descriptive parameters of con-

ventional TOJ analysis presupposes a certain data structure. If the 

observed judgment distributions are symmetric and converge to zero 

and one, the shift of subjective simultaneity away from zero can be 

understood as a relative difference in the encoding latencies of the 

two targets. However, if the judgment distributions are not symmetri-

cal, do not converge to zero or one (as in the mice data), are shifted 

vertically, contain central plateaus, or typically feature a combination 

of these distortions, the summary performance parameters lose even 

more of their sparse meaning. Such deviations from symmetry have 

been observed and are even expected on theoretical grounds (Allan, 

1975; Sternberg & Knoll, 1973). They can originate from a variety of 

relevant and interesting causes: differential processing speeds, atten-

tional lapses, response biases, or interactions with decision functions 

(see García-Pérez & Alcalá-Quintana, 2012). Importantly, the standard 

analysis pushes such influences into the latency difference (shifted 

PSS) and the judgment precision (difference limen), rendering a pos-

sibly distorted picture in these parameters’ interpretations. Wada et 

al. (2005) evade some of these problems by amending a cumulative 

Gaussian model with error parameters. This deals with the asymmetry 

at a formal level. However, the parameters of this model describe the 

observed data, without describing the underlying processes, and other 

descriptions are well possible.
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Methods

The Theory of Visual Attention 
as a Model of Visual-Attentional 
Processing 

The computational model we use to reanalyze Wada et al.’s (2005) data 

is based on Bundesen's (1990) TVA. The remainder of this section 

provides a brief introduction to the concepts of TVA, their mathemati-

cal formulation, and how they are applied to create a model of TOJs, 

followed by a justification of the transfer of TVA to domains outside 

human visual attention.

Theory of visual attention is a race model. This means that stimuli 

take part in a (metaphorical) race in which each stimulus progresses 

independently of the others. Stimuli race for a slot in visual short-term 

memory (VSTM), which only provides a limited number of (meta-

phorical) slots. Only stimuli which reach VSTM before it is filled up 

are represented at a level at which they become relevant for behavior. 

Arrival in VSTM is a precondition for reporting stimulus features 

(Bundesen, 1990). The order in which stimuli arrive in VSTM deter-

mines perceived order (Tünnermann, 2016; a similar idea is spelled out 

by Alcalá-Quintana & García-Pérez, 2013). 

Table 1 provides an overview of TVA's main parameters, their sym-

bols, meanings, and units. It also indicates whether the parameters can 

be estimated with the TOJ task. 

The rates at which stimuli are processed are represented by ν(x, i) = η(x, i)βiw
∗

x
,. 

These are the rates with which stimuli x are encoded as members of the 

category i. As will become clear below, we can often neglect the i in the 

term and call the rates νx =
�

i∈R

ν(x, i)., which can be thought of as the speed with 

which stimulus x is processed. This parameter is central for explain-

ing TOJs: The faster a stimulus is processed, the earlier it enters VSTM 

and thus will be reportable. A comparable stimulus which is processed 

more slowly will be represented later and thus has a disadvantage in 

temporal-order perception. 

The overall processing rate, or capacity, C represents the available 

processing resources for the task. It is the sum of the rates at which 

individual stimuli are processed. In the TOJ task, C is the sum of the 

two v values for the two stimuli.

Parameter w∗

x
=

wx�
z∈S

wz

 is the relative attentional weight of stimulus x. It 

determines how much of the available resources C are spent on stimu-

lus x, in effect determining its rate νx =
�

i∈R

ν(x, i).. The leftward bias Wada et al. 

(2005) speculated about might be a higher relative w∗

x
=

wx�
z∈S

wz

 for a stimulus 

on the left compared to one on the right side, which would show up in 

a higher νx =
�

i∈R

ν(x, i).. Again, this is a parameter of high relevance for explaining 

temporal-order perception.

Parameter K is the VSTM limit, the number of elements that can 

be represented there. It is important for, and can be measured with, the 

whole report task. The VSTM capacity needs to be taken into account 

in situations with more elements than the typical VSTM limit. With 

two targets, as in the present study, the capacity likely plays no role.

The TVA parameter t0 is the maximum ineffective exposure dura-

tion. If a stimulus is shown for a duration shorter than t0, it has no 

chance of being encoded at all. Typically, t0 is considered equal for the 

equal stimuli in a TOJ, canceling out in the VSTM arrival times (cf. 

Tünnermann, 2016, pp. 75–77), and it can therefore be ignored in the 

present study.

With these parameters and their relations in mind, the reader can 

follow the analysis conducted in this study and may skip to the results 

and discussion without loss of continuity. For readers interested in 

TVA's encoding model and how it can explain TOJs, we present its 

mathematical details and further low-level parameters (listed in Table 

2) below. Before that, we will turn to the question whether the TVA 

framework can be meaningfully applied to other modalities.

The Theory of Visual Attention as a 
Model for Tactile Processing 
TVA is a theory of visual attention. For the time being, we ignore this 

fact and use it as TWA, a theory of whiskers’ attention. This is maybe 

not too far-fetched. The only assumption strictly required for the ap-

plication of TVA's mathematical modeling is that the categorization 

latencies are exponentially distributed. Such distributions were already 

used to model modalities other than vision, for example, auditory sig-

nals (Alcalá-Quintana & García-Pérez, 2013), and they are common as 

arrival time distributions (Colonius & Diederich, 2011; Heath, 1984). 

Alcalá-Quintana and García-Pérez (2013) point out that exponential 

distributions have the crucial features of being probabilistic, but de-

tAble 1.  
important high-level Parameters of  the theory of visual 
Attention (tvA) Which Are directly estimated From data

Parameter Meaning Unit Task

 Rate at which stimulus x 
is encoded in category i Hz WR, TOJ

w∗

x
=

wx�
z∈S

wz

Relative attentional weight 
of stimulus x WR, TOJ

C Overall processing rate Hz WR, TOJ

K VSTM storage capacity Items WR

t0

Maximum ineffective 
exposure duration ms WR

tAble 2.  
low-level Parameters of the theory of visual Attention 
(tvA) Which can Be inferred From high-level Parameters 
and the experimental design

Parameter Meaning Unit

η(x, i) (Objective) sensory evidence for x 
belonging to category k (Hz)

πj

(Subjective) pertinence of sensory 
category j

 βi

(Subjective) bias for making reports of 
category i

Note:  These are fundamental TVA parameters that can be measured with 
Whole Reports (WR) or Temporal-Order Judgment (TOJ) Tasks.VSTM 
=Visual Short-Term Memory.

ν(x, i) = η(x, i)βiw
∗

x
,

http://www.ac-psych.org


AdvAnces in cognitive PsychologyreseArch Article

http://www.ac-psych.org2018 • volume 14(2) • 39-5043

spite being probabilistic, no arrivals can occur before the actual onset 

of the stimulus.

As has been shown above, TVA dissolves attention into several dif-

ferent parameters (e.g., νx =
�

i∈R

ν(x, i)., wy =
�

j∈R

η(y, j)πj., C, K, t0). All these parameters contribute 

to attention, but none in itself is attention. From this follows another 

argument why it is justified to understand TVA as an example of a ge-

neric model which captures processing in several modalities: A model-

based approach is instructive even if the details of the order judgment 

function in tactile mouse TOJs may differ from those in human visual 

attention. The way in which TVA derives an order judgment function 

from low-level visual processing and attention components can act as 

a template for how specialists in rodent tactile processing could derive 

a more specific model—that is, if they disagree with some detail of the 

model proposed here.

There are at least two more substantive reasons why the attempt to 

transfer or expand TVA analysis to tactile processing in mice might be 

useful in the long run. Firstly, tactile processing serves similar func-

tions in rodents as vision does in humans. Rats and mice use their 

snout whiskers to build spatial representations of their environment, to 

locate objects, and to explore textures (C. C. Petersen, 2007). Rodents 

use whiskers actively to establish somatotopic maps in the primary 

somatosensory cortex (Mitchinson, 2016). Therefore there are, on an 

abstract level, parallels between the whisker system and the human 

visual system, which forms similar maps via similar active sensing. 

Secondly, synchrony perception in rats is consistent enough with those 

of humans and other species to lead Schormans et al. (2017) to sug-

gest that rats provide a proper general model for audiovisual temporal 

synchrony at both the neuronal and perceptual level.

Therefore, we feel that it is justified to skip the visual attention-

related interpretation and naming of the parameters and test the use 

of TVA as TWA.

Theory of Visual Attention 
Modeling in More Detail 
According to TVA, the encoding duration of a single stimulus is de-

scribed by a shifted exponential distribution. The probability that a 

stimulus x is encoded until time t (relative to the presentation) is

F (t) =

�

1− e−νx(t−t0) if t > t0

0 otherwise,                            (1)

where νx =
�

i∈R

ν(x, i). is the rate at which stimuli of type x are encoded. Even a 

single stimulus competes for multiple possible categorizations of the 

form “stimulus x belongs to category i”. Therefore, the rate νx =
�

i∈R

ν(x, i). is the 

sum of the individual categorization rates v(x, i):

νx =
�

i∈R

ν(x, i).                                           (2)

These rates can be further dissected:

ν(x, i) = η(x, i)βiw
∗

x
,                                     (3)

where η(x, i) is the sensory evidence that stimulus x is a member of 

report category i. The component βi is a bias for the tendency to report 

categorizations i independently of the stimulation. In the case of Wada 

et al.’s (2005) study, for instance, the training increased the mice’s β for 

categorizing air puffs as targets. The βi for other categories are effec-

tively zero for the task. We thus can use νx =
�

i∈R

ν(x, i). to mean “the rate at which 

stimulus x is encoded in the relevant category.” 

The attentional weights w∗

x
=

wx�
z∈S

wz

 reflect the distribution of attention and 

result from normalizing absolute weights by the sum of all stimulus 

weights in the visual field S, w∗

x
=

wx�
z∈S

wz

. These weights consist 

of further low-level parameters:

wy =
�

j∈R

η(y, j)πj.                                      (4)

Above, in Equation 3, η reflected the evidence that a stimulus belongs 

to a report category. Here in Equation 4, η reflects a different kind of 

evidence: η(y, j) is the sensory evidence that stimulus y is a member of 

filter category j. The term πj reflects the pertinence of a filter category. 

In Wada et al.'s (2005) mouse TOJs, left and right can be understood as 

such filter categories, and one could be more relevant (higher π value) 

than the other. However, from the experimenter’s point of view, the 

pertinence value πleft and πright should be equal because the mice were 

not trained to prefer one of the categories.

Now we have reduced TVA's encoding equations to components 

that describe the stimulation and task set. How are these components 

experimentally assessed? The low-level components, such as sensory 

evidence and pertinence, cannot be directly estimated and are thus 

kept constant in the experiments. What is estimated are the process-

ing rates v of different stimuli. These are derived from TOJ data that 

are present as the frequency of judgments, in the mouse experiments 

the frequency of “left air puff occurred first” responses over various 

stimulus onset asynchronies (SOAs; Left is an arbitrary choice so that 

the following could be equally put in terms of “right first” judgments). 

The SOAs are the intervals between the left air puff L and the right air 

puff R. At negative SOAs, L is presented first, at positive SOAs, R leads 

(again an arbitrary choice). The TVA processing rates can be estimated 

from such data with the following equations (cf. Tünnermann et al., 

2017):

 The probability PL1st of encoding the left air puff L before right air 

puff R is a function of their processing rates, νL/(νL + νR) and νL/(νL + νR) and the SOA. 

For negative SOAs: 

PL1st(νL, νR, SOA) = 1− e−νL|SOA| + e−νL|SOA|

�

νL

νL + νR

�

forSOA < 0 , (5)

where (according to Equation 1) 1− e
−νL|SOA|  is the probability 

that the air puff L is encoded before R’s encoding even starts. With 

probability e−νL|SOA| , L was not yet encoded when R is presented. 

Therefore, they race against each other with this probability. Following 

Luce’s choice axiom (e.g., see Luce, 1977), L then wins the race with 

probability νL/(νL + νR).

If the SOA is positive instead, PL1st is calculated as

0   otherwise,

for
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the present experiment, a weight of C · w
∗

L
= νL = 0.5 was expected, these priors 

again reflect a very conservative choice. Finally, the priors on lapse 

error parameters μϵ (mean) and σϵ (standard deviation) were set to 

uniform distributions over [0 . . . 0.5], which includes everything from 

no response errors to only response errors. All subject-level parameters 

come from normal distributions with the abovementioned means and 

SDs from the group level (cf. Tünnermann et al., 2017). The following 

provides an overview of the probabilistic model.

Priors
The priors on the subject level were defined as follows:

C ∼ Normal(µC , σC)
ω∗

L
∼ Normal(µω∗

L
, σω∗

L
)T (0, 1)

� ∼ Normal(µ�, σ�)T (0, 1)

GrouP-level Priors
The parameters of the priors above were themselves drawn from 

“hyper-prior” distributions, which represent the group level. That is, 

the prior decisions described in the text above were implemented here 

as group-level distributions.

µC ∼ Uniform(0, 100), σC ∼ Uniform(0, 50)
µω∗

L
∼ Uniform(0.01, 0.99), σω∗

L
∼ Uniform(0, 0.2)

µ� ∼ Uniform(0, 0.5), σ� ∼ Uniform(0, 0.5)

Deterministic transformations
The following deterministic transformations were implemented to 

generate posterior distributions for the parameters of interest. How νL/(νL + νR) 

and νL/(νL + νR) were calculated from the probabilistic variables follows from 

TVA.
νL = C · ω∗

L

νR = C · (1− ω∗

L
)

µνL = mean(νL)
µνR = mean(νR)
µ� = mean(�)
ν∆ = νL − νR
µν∆

= mean(ν∆)

likelihooD
The likelihood which links the model to the observed “left first” 

counts y is based on binomial distributions at each SOA. The number 

of repetitions N is part of the data and the success probability p [first 

parameter of Binomial(p, N)] was calculated via the TVA-based TOJ 

model as, PL
1st
lapses

(νL, νR, �, SOA) (see Equations 1 to 7):

y ∼ Binomial(PL
1st
lapses

(νL, νR, �, SOA), N)

A TVA-Based Analysis of Mouse 
Data TOJs
In the following, we will test whether a TOJ analysis based on TVA 

which considers the encoding processes can provide insights into the 

causes of the mouse TOJ data pattern. Wada et al. (2005) kindly pro-

vided their raw data so that we could fit it with the TVA-based model.

 
PL1st(νL, νR, SOA) = e−νR|SOA|

�

νL

νL + νR

�

forSOA ≥ 0,            (6)

Probability e−νR|SOA|  models that air puff R was not encoded before 

L is presented. With this probability, again both stimuli race each other, 

leading to “left first” judgments with 
νL

νL + νR

.

The model described so far is based only on TVA's equations (and 

concepts) of encoding the stimuli into an early short-term storage at 

which the arrival order judgment is assumed to take place. For the 

present use in mice, the model was extended by a parameter ϵ for 

response errors, for instance, errors caused by lapses or in response 

execution. This was done because, as already mentioned, Wada et al. 

(2005) observed that the psychometric functions in their analysis did 

not reach their usual asymptotes. Alcalá-Quintana and García-Pérez 

(2013) suggested including error parameters in such cases, which we 

implemented analogously to their description. The parameter ϵ cap-

tures a possible mismatch between the internal order perceptions and 

the observed judgments caused, for instance, by response execution 

errors:

PL
1st
lapses

(νL, νR, �, SOA) = (1− �) · PL1st + � · (1− PL1st).          (7)

The Bayesian Estimation Procedure 
To fit the experimental data with the model described above, we em-

ployed a Bayesian hierarchical approach (see Kruschke & Vanpaemel, 

2015), which is highly suitable for inferences based on a formal model. 

It yields subject-level and group-level estimates of the individual 

processing rates νL/(νL + νR) and νL/(νL + νR) and the error parameter ϵ. At its core, the 

model is based on the equations described above that link the observa-

tions to the parameters.

In the Bayesian statistical framework, prior beliefs about the param-

eter values are updated using the data and the model. Because we do not 

have specific prior information about the performance of mice in TOJs, 

we decided to use prior distributions which are only weakly informed. 

The group-level priors were parametrized as overall processing rate C, 

attentional weight C · w
∗

L
= νL, and error parameter ϵ. Note that C · w

∗

L
= νL 

and C · (1− w
∗

L
) = νR . The following group-level distributions were 

used: The prior for the group mean of C, μC, is uniformly distributed 

within [0 . . . 100 Hz] and its standard deviation, σC, uniformly in [0 . . 

. 50 Hz]. This means individual rates could be anywhere from almost 

zero up to the higher range of human visual processing rates, which 

typically are around 60 Hz (Tünnermann, 2016, p. 154). From Wada 

et al.’s (2005) PSS-based results we know that the performance of mice 

is much weaker, hence, these priors are quite conservative choices. The 

attentional weight priors were µw
∗

L
 (mean) uniformly within [0.01 . . . 

0.99] and σw
∗

L
 (standard deviation) in [0 . . . 0.2], which again allows for 

a large range of values with up to 99% of processing resources focused 

on one side. Even strong attention manipulations typically do not ex-

ceed 80%, and, given the fact that with no attention manipulation in 

C ∼ Normal(µC , σC)
ω∗

L
∼ Normal(µω∗

L
, σω∗

L
)T (0, 1)

� ∼ Normal(µ�, σ�)T (0, 1)

w∗

L
∼ Normal(µw

∗

L
, σw

∗

L
)T (0, 1)

µC ∼ Uniform(0, 100), σC ∼ Uniform(0, 50)
µω∗

L
∼ Uniform(0.01, 0.99), σω∗

L
∼ Uniform(0, 0.2)

µ� ∼ Uniform(0, 0.5), σ� ∼ Uniform(0, 0.5)

µC ∼ Uniform(0, 100), σC ∼ Uniform(0, 50)
µω∗

L
∼ Uniform(0.01, 0.99), σω∗

L
∼ Uniform(0, 0.2)

µ� ∼ Uniform(0, 0.5), σ� ∼ Uniform(0, 0.5)

µw
∗

L
∼ Uniform(0.01, 0.99), σw

∗

L
∼ Uniform(0, 0.2),

νL = C · w
∗

L

νR = C · (1− w
∗

L
)

νL = C · ω∗

L

νR = C · (1− ω∗

L
)

µνL = mean(νL)
µνR = mean(νR)
µ� = mean(�)
ν∆ = νL − νR
µν∆

= mean(ν∆)

νL = C · ω∗

L

νR = C · (1− ω∗

L
)

µνL = mean(νL)
µνR = mean(νR)
µ� = mean(�)
ν∆ = νL − νR
µν∆

= mean(ν∆)

νL = C · ω∗

L

νR = C · (1− ω∗

L
)

µνL = mean(νL)
µνR = mean(νR)
µ� = mean(�)
ν∆ = νL − νR
µν∆

= mean(ν∆)

for

http://www.ac-psych.org


AdvAnces in cognitive PsychologyreseArch Article

http://www.ac-psych.org2018 • volume 14(2) • 39-5045

results
The result of the estimation (using MCMC sampling via JAGS, 

see Plummer, 2003) is a set of posterior probability distributions of 

parameter values, as shown in Figure 4. Their peaks can be taken as the 

best guesses for a single parameter value. Furthermore, the shape of the 

distribution is informative: The 95% highest density interval (HDI) is 

the parameter value range with the 95% most likely values. The smaller 

the interval, the more certain is the estimate, which is often important 

information. This interval furthermore allows making a decision com-

parable to conventional statistical testing. For instance, if the posterior 

distribution of the processing rate difference vΔ (= νL/(νL + νR) − νL/(νL + νR)) does not 

include zero, the rates can be considered different. A more in-depth 

explanation of Bayesian statistics, especially of the hierarchical ver-

sion which we apply here, can be found in Kruschke and Vanpaemel 

(2015).

On the group level (see Figure 3), the TVA-based estimates showed 

a processing speed advantage for the left stimulus (νL/(νL + νR) = 7.15 Hz) com-

pared to the right stimulus (νL/(νL + νR) = 4.47 Hz). The lower boundary of the 

95% HDI on μvΔ (group mean of νL/(νL + νR) − νL/(νL + νR)) is at 0.35 Hz—that is, the 

HDI excluded zero. This agrees with Wada et al.’s (2005) interpretation 

that mice have a leftward bias when performing TOJs. In TVA terms, 

they process tactile stimuli on the left faster than those on the right. 

The difference is approximately 3 Hz. In absolute values, the mice proc-

ess the left-side tactile stimuli almost at double speed compared to the 

right-side ones.

These values can be converted into estimates of the signal arrival 

times. The latter are calculated as the expected values of the exponen-

tial distribution: Ex = 1/νx =
�

i∈R

ν(x, i).). The difference in arrival times turned out 

to be ER − EL = (1/4.47 Hz) − (1/7.14 Hz) = 84 ms. This difference is 

smaller than Wada et al.’s (2005) PSS-based estimate of 133 ms, but 

still large compared to the few milliseconds expected on the basis of 

an interhemispheric conduction delay or sensory interaction. On the 

subject level, it would be even larger than 400 ms for those mice that 

showed a strong leftward bias (see below and Figure 4).

The low discrimination performance was reflected in the TVA 

estimates, too (see Figure 3). The overall capacity of the system C was 

estimated as the sum of the two v values. The group-level estimate of μC 

= 11.16 Hz corresponded to a performance roughly five to eight times 

lower than human performance in simple visual TOJs (e.g., see Krüger 

et al., 2016; Tünnermann et al., 2017). The group-level error parameter 

μϵ was estimated at 0.18.

The subject-level analysis showed two interesting features (see 

Figure 4). Strikingly, the overall processing rate C of approximately 12 

Hz is highly similar in all mice (except for Mouse 7, which shows poor 

performance indicated by peaks at very low processing rates in the 

posterior density). This is true even when comparing mice that showed 

a strong leftward bias of the processing rate to mice with no bias (e.g., 

Mouse 2 to Mouse 5). This similarity in overall resources would not 

have shown up in conventional TOJ analysis.

The second interesting feature was that the strong leftward bias, 

indicated by a much higher estimate for the processing rate of the left 

stimulus, was only present in Mice 2, 3, and 6. According to our analy-

sis, these three mice drive the bias observed on the group-level. By 

contrast, Wada et al. (2005) reported a leftward bias varying between 

PSS values of 112 to 200 ms.

We already mentioned that most of these biases are too large to be 

accounted for by the interhemispheric conduction delay and sensory 

interactions which Wada et al. (2005) referred to. How, then, can the 

difference between the results be explained, and can the TVA param-

eters provide a clue to an explanation?

Taken together, the TVA-based observations indeed provided a ba-

sis for a possible explanation of the leftward bias. The overall amount 

of available processing resources, captured in TVA parameter C, was 

similar in all mice. Some mice, however, may have learned a strategy in 

which they devoted as many resources as possible to the left stimulus. 

In TVA terms, they adjusted their pertinence for stimuli on the left side 

πleft in favor of that location. Normally, for instance, in typical TOJs in 

humans, such a strategy is disadvantageous, and in principle, it is dis-

advantageous for the mice too. However, they already performed very 

poorly, which rendered the disadvantage rather unimportant. Consider 

Mouse 3 (see Figure 4) that employed the leftward-bias strategy.

It responds correctly in only 57% of the trials. If the mouse would 

have distributed its processing resources equally (the optimal strategy), 

the performance would have only increased to 61%. If now the bias-

ing strategy led to a reduction of lapses or response errors, it would 

have even been beneficial. Reducing ϵ to 0.05 for Mouse 3 would have 

increased its performance to 77% correct. Are the mice poking left to 

Figure 3.

group-level attention parameter estimates for mouse temporal-order judgments, data taken from Wada et al. (2005). μϵ = lapse-
error parameter; μνL = left-side processing rate (dark shaded curves); μνR = right-side processing rate (bright shaded curves); μC = 
overall processing rate. the psychometric function is a posterior-predictive simulation at fine-grained stimulus onset. 
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be right? According to this explanation, mice reduce their lapse errors 

by focusing on the left side, which effectively maximizes their correct 

responses. At least two of the three biased mice (2 and 6) showed 

comparably small error parameters, suggesting that this strategy may 

indeed have decreased lapses or response errors.

This attentional bias strategy may explain the large size of the PSS 

shift, but not why the bias is toward the left side. It must be kept in 

mind, however, that, as our analysis revealed, only three mice in the 

seven mice sample drive this effect. They could have acquired the left-

ward bias by chance. The above explanation, for one, works equally 

well with a rightward bias.

Alternatively, the small interhemispheric conduction delay dis-

cussed by Wada et al. (2005), which leads to a small leftward bias, 

could have indeed been the reason for the biased performance. This 

small bias could have tipped the system away from the neutral resource 

distribution, a local maximum, toward the leftward bias strategy, which 

is another local maximum because of the reduction of response errors. 

This theory could be tested by experimentally inducing an opposite 

Figure 4.

subject-level attention parameter estimates for mice temporal-order judgments (toJs) from Wada et al. (2005). ϵ = lapse–error 
parameter; νL/(νL + νR) = left-side processing rate (dark shaded curves); νL/(νL + νR) = right-side processing rate (bright shaded curves); C = over-
all processing rate (sum of νL/(νL + νR) and νL/(νL + νR)). Psychometric functions are posterior predictive simulations at fine-grained stimulus 
onset asynchronies (soAs) with 100 repetitions.
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PSS shift that would be strong enough to counteract the interhemi-

spheric delay and tip the system to the local maximum associated with 

a strong rightward bias strategy. In general, according to this explana-

tion, gradual attention manipulations of different strengths will not 

lead to gradual changes in processing rates (or the PSS). Instead, the 

system would be pushed into one of the strategic local maxima.

Of course, this explanation is post hoc and would have to be tested 

on new data. Note that the point we want to make is not that this expla-

nation is the correct one; what we want to show is that the TVA-based 

TOJ paradigm provides a means to shed light on the processing basis 

of perception and attention phenomena which may not be uncovered 

using more widespread analyses.

conclusIon of the tVA-bAsed  
AnAlysIs

To sum up, the above reanalysis of data by Wada et al. (2005) shows 

that TVA or, more precisely, the TVA-based TOJ model can be ap-

plied to data gained from mice, data, moreover, that were difficult to 

understand by conventional TOJ analysis. Most importantly, the TVA-

based explanation shows that all mice process the stimuli with the 

same overall capacity. Contrary to what Wada et al. report, we found 

the leftward bias only in some mice, possibly because in our analysis, 

the process-based parameters, whose uncertainties are respected in 

the Bayesian framework, better capture the individual differences in 

processing speed, lateral biases, and response execution errors. We 

therefore speculated that it is the result of a learned strategy in which 

the mice, despite their overall weak temporal discrimination, tried 

to avoid mistakes and were tipped away from a neutral distribution 

of their processing resources to both stimuli by the interhemispheric 

conduction delay. Whether this explanation is indeed correct cannot 

be decided on the basis of the present data, but we sketched how it 

might be tested.

Is the processing speed difference an attentional effect, or could a 

response bias have caused it? Importantly, TVA is a theory that some-

what explains away the traditional unitary concept of attention and 

decomposes it into discrete components of visual processing. Some of 

them are perceptual and control biases. According to the model we 

present, the difference in processing speeds originated from TVA's per-

tinence parameter π. If one wants to put a label on the effect, “attention-

al” would be appropriate because TVA's π is the component observers 

adjust to guide their attention to elements with a particular feature or 

to a certain location (Nordfang, Staugaard, & Bundesen, 2017).

While labeling the effect is a matter of terminology, it remains pos-

sible that the mouse behavior originated from a decision-level response 

bias that is not included in the model and would have remained unde-

tected. The mice could have processed the stimuli at equal (or at any) 

rates and decided which side to poke independently of the stimulation. 

Note that Wada et al. (2005) carefully designed their training so that the 

mice did not acquire a response bias, so we consider this explanation 

very unlikely. However, process-based TOJ models can be extended 

to cover such biases. To this end, Alcalá-Quintana and García-Pérez 

(2013) added two further parameters to their model. They lead to cen-

tral plateaus in the psychometric functions at elevations different from 

0.5. However, distinguishing such decision-level effects from alternative 

processing speed effects requires vastly more data than available from 

the mouse experiment (see Tünnermann, 2016, pp. 78–80). Hence, we 

prefer the simpler model and follow Wada et al.’s (2005) assumption 

that the effect originates from latency differences.

A full explanation of the mice data is not the focus of the present 

paper. What we wanted to show is that the TVA-based TOJ method 

can be applied to the study of animal attention and allows conclusions 

or at least questions that tap into the very processes which lead to the 

observed behavior. That is, although the above interpretations are 

speculative, as a proof of concept, the analysis shows that TVA-based 

TOJ analysis can be applied to data from animal experiments. Because 

mice can perform other simple tasks that assess visual attention (e.g., 

see Bushnell & Strupp, 2009), it should be possible to train them to 

perform visual TOJs, similarly to how Wada et al. (2005) trained mice 

for whisker-based tactile TOJs. Then, their visual attention parameters 

could be directly compared to those obtained for humans or other 

animals.

Aside from this central goal, the present paper demonstrates how 

substantive process-based models can be combined with hierarchi-

cal Bayesian analysis. This type of analysis allows for group-level and 

subject-level inferences in one coherent framework. Subject-level 

estimates inform each other via shrinkage toward the group-level es-

timates (e.g., Kruschke & Vanpaemel, 2015). This enables consistent 

subject-level fits even for such highly noisy data. In the present case, 

the subject level suggested that some animals used special response 

strategies. Such patterns would have been obscured when fitting data 

averaged over subjects, as is often done.

We hope the approach presented here motivates researchers of 

animal visual behavior to consider TOJs as an informative task. We be-

lieve they are powerful tools, especially when the data is analyzed with 

substantive process-based models—that is, models which describe the 

processes that lead to the TOJ curves instead of those which merely de-

scribe the shape of the curves or the judgment performance. Whether 

TVA provides a tenable basis for this, as assumed in the present study, 

remains to be seen. If not, it may still serve as a blueprint for the general 

characteristics of such models. There is some recent effort to model a 

typical animal paradigm of rodent attention with TVA. Fitzpatrick et 

al. (2017) modeled the five-choice continuous performance task with 

TVA and presented estimates of visual processing parameters in mice. 

In the future, it may be fruitful to compare results from this domain 

with TOJ-based analysis. Comparing parameters estimated from TOJs 

and the five-choice continuous performance task will help to under-

stand how well current TVA captures rodent sensory processing.

Finally, we want to draw attention to the fact that TVA is not the 

only model-based approach in the study of temporal-order percep-

tion or attention. Alternatives are independent-channels models with 

specified encoding processes or drift diffusion models. These models, 

too, infer process-related parameters from behavior, and thus can be 

directly meaningful for psychological understanding.
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The independent-channels model was originally proposed by 

Sternberg and Knoll (1973) and was used to test statistical assump-

tions about processing and the decision mechanism. In its original 

form, it lacks a mechanistic model of the underlying processes. Some 

researchers extended this, as for instance, García-Pérez and Alcalá-

Quintana (2012). The TVA-based model is such an extension, too. 

It should be noted that in the TOJ context, García-Pérez and Alcalá-

Quintana’s model and the TVA-based model we use are, at their cores, 

mathematically equal. This is the case because some components of 

the former were not relevant here and lapse parameters were added to 

the latter. Consequently, there is no point in comparing the two ver-

sions (in other contexts, they can be distinguished, but very precise 

data is required, see, e.g., Tünnermann, 2016, pp. 78–91; Tünnermann 

& Scharlau, 2018).

Drift diffusion models can describe TOJs, including the encoding 

processes, on a similar level of abstraction as TVA, but with differ-

ent underlying concepts (e.g., Miller & Schwarz, 2006). Intriguingly, 

again, if applied to TOJs, their parameters can be interpreted in a very 

similar manner to those of the TVA-based TOJ model. For instance, if 

the model is set up in a certain way, the drift rate is similar to TVA's 

processing rate, not in terms of the absolute values, but in terms of 

parameter meaning. Therefore, predictions of the drift diffusion model 

and the TVA-based approach would be very similar. Again, highly 

accurate data would be required to distinguish the models—not only 

more accurate than the mouse data at hand, but also more accurate than 

data from typical experiments with humans (see, e.g., Tünnermann, 

2016, pp. 125–129). While drift diffusion and independent-channels 

models may be able to fit the mouse data similarly well, they lack con-

cepts deeper than the processing rates. By contrast, TVA offers a very 

fine-grained description of what makes up the processing rates on a 

conceptual level (which we have explained in the Methods section) 

and how they are implemented on a neural level (Bundesen, Habekost, 

& Kyllingsbæk, 2005). Moreover, as we explained in the Introduction, 

TVA parameters and mechanisms carry meaning beyond a specific 

experimental paradigm, beyond specific data models, beyond specific 

subfields of Cognitive Psychology, beyond a specific discipline, and 

perhaps—this is the idea behind this study—beyond specific modali-

ties and species.

We cannot provide anything close to final conclusions on the value 

and appropriateness of these models, let alone a formal comparison. 

Neither was this the goal of the present paper. Differentiating and de-

ciding between these models would have required both very precise 

data and a breadth of different findings related to the processes speci-

fied in the models. This is what further studies could aim at.
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