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ABSTRACT

Brain functional connectivity (FC), as measured by blood oxygenation level-dependent
(BOLD) signal, fluctuates at the scale of 10s of seconds. It has recently been found that
whole-brain dynamic FC (dFC) patterns contain sufficient information to permit identification
of ongoing tasks. Here, we hypothesize that dFC patterns carry fine-grained information that
allows for tracking short-term task engagement levels (i.e., 10s of seconds long). To test this
hypothesis, 25 subjects were scanned continuously for 25 min while they performed and
transitioned between four different tasks: working memory, visual attention, math, and rest.
First, we estimated dFC patterns by using a sliding window approach. Next, we extracted two
engagement-specific FC patterns representing active engagement and passive engagement by
using k-means clustering. Then, we derived three metrics from whole-brain dFC patterns to
track engagement level, that is, dissimilarity between dFC patterns and engagement-specific
FC patterns, and the level of brainwide integration level. Finally, those engagement markers
were evaluated against windowed task performance by using a linear mixed effects model.
Significant relationships were observed between abovementioned metrics and windowed
task performance for the working memory task only. These findings partially confirm our
hypothesis and underscore the potential of whole-brain dFC to track short-term task
engagement levels.
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INTRODUCTION

Functional connectivity (FC) analyses of resting-state functional magnetic resonance imag-Functional connectivity:
Functional connectivity refers to
statistical dependency between
signals from spatially distributed
brain regions.

ing (fMRI) data have consistently revealed sets of spatially distributed and temporally cor-
related brain regions, which correspond to canonical functions such as vision, audition,
language, memory, and attention (Smith et al., 2009). Spontaneous fluctuations of FC during
rest over short timescales (e.g., seconds to minutes), commonly referred to as FC dynamics
(Hutchison et al., 2013), are believed to be primarily driven by neuronal phenomena, as
evidenced by studies using simultaneous fMRI and electrophysiological recordings (Chang
et al., 2013). Moreover, mounting evidence emphasizes the potential biological and cogni-
tive significance of blood oxygenation level-dependent (BOLD) fMRI FC dynamics evaluated
on the brain as a whole (e.g., considering all possible region-to-region connections). Along
those lines, Allen et al. (2014) proposed a pipeline to investigate whole-brain dynamic FC
(dFC) during rest, also called dynamic functional network connectivity (dFNC). The pipeline
studies the time-varying connectivity between pairs of timecourses coming from independent
networks/components, using a combination of spatial independent component analysis (ICA),Spatial independent

component analysis:
Spatial ICA decomposes
four-dimensional fMRI data into
spatially independent maps and time
courses.

and k-means clustering of sliding window correlation matrices. The identified FC states were

K-means clustering:
K-means clustering is an
unsupervised clustering method with
the aim to partition data into k
clusters so that each observation
belongs to the cluster with the
highest similarity, and the cluster
centroid serves as a prototype of the
cluster.

suggested to reflect shifts in ongoing cognition during rest. This approach has recently been
shown to be highly replicable (Abrol et al., 2017), predictive of mental illness (Rashid et al.,
2016), and correlate with multimodal imaging modalities (Allen, Eichele, Wu, & Calhoun,
2013).

Subsequently, others have studied task modulation of FC patterns. Shirer and colleagues
(2012) reported that subject-driven cognitive states (i.e., episodic memory, music, subtraction,
and rest) could be correctly classified using whole-brain FC patterns estimated with a window
length (WL) as short as 30–60 s. Similarly high clustering accuracy has been achieved by using
k-means to segment task-evoked dFC patterns to identify the underlying cognitive task at both
individual (Gonzalez-Castillo et al., 2015) and group levels (Xie et al., 2017). Nevertheless,
it remains an open question whether and how task-evoked FC dynamics can be used beyond

Task-evoked functional
connectivity dynamics:
Temporal evolution of functional
connectivity reconfiguration during
task performance.

task identification. More specifically, we are interested to investigate whether spontaneous FC
fluctuations during the performance of the task can be related to behavioral fluctuations.

Initial evidence suggests that task-evoked FC dynamics accompanying demanding tasks
may indeed carry such detailed information (Gonzalez-Castillo & Bandettini, 2017). Yet, how
to extract behaviorally relevant features from whole-brain dFC patterns remains a matter of
debate. For example, Shine et al. (2016) focused on the level of brainwide information inte-
gration during an N-back working memory task, and reported that more integrated FC config-
urations, as reflected by a higher between-module connectivity, were associated with better
task performance. Somehow contradictorily, Sadaghiani and colleagues (2015) found that it
was a more modular—and therefore less integrated—network structure that led to improved
perceptual efficiency for a continuous auditory detection task. Given the discrepancy, we are
interested to evaluate how brain network structure reorganizes according to short-term task
engagement level from a graph-theoretic perspective.

Additionally, an alternative approach would be to compute representative whole-brain FC
patterns that describe how the brain is functionally organized during periods of high and
low engagement (HE/LE) during a given task, and use some measure of dissimilarity between
windowed dFCs and those HE/LE representative patterns to track short-term engagement level
indexed by task performance. Here we make several claims, which lead to the following
testable hypothesis.
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Claim 1: Short-term task engagement levels, that is, the amount of mental effort dedicated
to the task, are encoded in whole-brain FC dynamics.

Claim 2: The resting whole-brain FC pattern can be regarded as a non-task-specific marker of
low engagement/passive engagement during task performance. Such a low-engagement
FC (LE-FC) representative pattern is obtained here as the k-means centroid associated
with resting periods, which serves as a prototype FC pattern for rest.

Claim 3: Task-related whole-brain FC patterns can be regarded as task-specific markers of high
engagement/active engagement with a given task. Such task-specific high-engagement
FC (HE-FC) representative patterns are estimated here using k-means centroids for active
tasks.

Hypothesis: The distance between windowed dFCs and HE-FC/LE-FC patterns reflects ongo-
ing changes in the task engagement levels, as reflected in variations in short-term task
performance (e.g., faster/more accurate responses). dFC during a given window is ex-
pected to indicate better performance if it is more similar to the HE-FC pattern, while
higher similarity to the LE-FC pattern may indicate worse performance.

To test this hypothesis, we used a continuous multitask dataset, part of which was published
in (Gonzalez-Castillo et al., 2015) to test a different hypothesis, and also incorporated addi-
tional data with the same experimental design collected as the follow-up. We tested three task
engagement markers derived from whole-brain dFC patterns, that is, brainwide integration
level as well as distance between dFC patterns and HE/LE-FC patterns. We first estimated dFC
from ICA time courses in terms of windowed whole-brain functional network connectivity
patterns (WL = 45 s). Then, we estimated the temporal evolution of global brain integration

Brain segregation/integration:
Connections occur primarily within
or across functional networks. levels as indexed by each dFC’s participation coefficient. We applied k-means algorithm to

extract representative HE/LE-FC patterns as defined above. Cluster labels were assigned based
on the experimental paradigm, and distance-to-centroid metrics were computed for all avail-
able windowed connectivity estimates. Finally, we evaluated if those three engagement mark-
ers correlated well with windowed behavioral measures of task engagement (e.g., windowed
reaction time, RT). See Figure 1 for a schematic of the analysis pipeline to compute distance-
to-centroid metrics.

We performed these analyses separately on the three available active tasks: 2-back working
memory (memory), mental calculation (math), and visual attention (video). In this exploratory
work, we were only able to partially confirm our hypothesis for one of the three tasks available,
namely the 2-back memory task. As we shall discuss, the negative findings for the math and
video task are probably due to task engagement not being the primary variance contributor to
the behavioral metrics available for these two tasks.

RESULTS

Clustering Accuracy Versus Behavior

The average response accuracy, missing rate and RT within each window calculated following
the previously used procedures (Gonzalez-Castillo et al., 2015), are reported in Table 1, which
shows overall high task compliance across three active tasks.

The average clustering accuracy describing the overall agreement between k-means par-
titions and ground truth task engagement across all 24 participants is 78.52%, suggesting in
general the k-means algorithm could successfully group dFC patterns according to ongoing
tasks despite the algorithm not being provided with any information about task timing.
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Figure 1. Schematic of the analysis pipeline. (A) dFC patterns were first computed using the win-
dowed time series, obtained via group ICA, as input. (B) Unsupervised k-means clustering was
then applied on the vectorized dFCs to obtain representative HE-FC or LE-FC patterns. (C) Distance
between task-dFCs and the corresponding task-specific HE-FC pattern defined as dist(task_dFC,HE)
are plotted against RT. A significant positive relationship between the two variables should be
observed if our hypothesis holds.

To gain intuition of how clustering relates to behavior, we now focus on three representative
subjects (SBJ 1, 22, and 11) with different performance levels (e.g., good, medium, and bad
performance). Figure 2A shows a 2D visualization of dFCs and their cluster assignments (as
colors) for a subject with overall good task performance obtained with multidimensional scal-
ing (MDS). Similarly, Figure 2B shows the same result for a representative subject with mediocre
performance and Figure 2C for one with bad overall task performance. For subjects with good
performance (Figure 2A), dFCs appear to be highly organized according to the ongoing task,
so that dFCs associated with a given task (as indicated by color) cluster together, and sepa-
rate from those associated with the other tasks. In fact, for such a subject, k-means produces
100% clustering accuracy. As for a mediocre performer shown in Figure 2B, the equivalent 2D
projection shows how the general 4-group structure is mostly preserved (yet with a few out-
liers present), leading to a clustering accuracy of 84.38%. For bad performers (Figure 2C), the
2D projection of dFCs becomes much less structured, reflecting weaker task modulation and
leading to poor k-means clustering accuracy (53.12% for the subject depicted in Figure 2C).

We observed that clustering accuracy correlated with overall task performance across all
tasks as previously reported (Gonzalez-Castillo et al., 2015). We next tested if that would be the

Table 1. Average and standard deviation of RT, response accuracy, and missing rate

Memory Math Video
RT (s) 1.00 ± 0.37 2.27 ± 0.35 1.34 ± 0.18
Accuracy (%) 93.30 ± 5.55 94.39 ± 4.98 66.63 ± 16.38
Missing (%) 13.23 ± 14.78 1.53 ± 2.54 30.50 ± 15.08
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Figure 2. Multidimensional scaling (MDS) 2D projection of dFCs from three subjects with differ-
ent overall task performance (A, B, and C), and clustering accuracy vs. RT for each subject during
the working memory task (D). The dFCs are color coded based on the task. Rest: gray dot; mem-
ory: blue crosshair; video: yellow dot; math: green dot. (A) Subject 1 is a good subject with well
distinguishable dFNC structure leading to very high overall clustering accuracy (100%). (B) Subject
22 is a mediocre performer with a few outliers leading to relatively high overall clustering accuracy
(84.38%). (C) Subject 11 is a bad performer, and the lack of structure led to degraded overall clus-
tering accuracy (53.12%). (D) Clustering accuracy was correlated with average RT for the memory
task. Each cross-represented a subject.

case on a task-by-task basis. We found that the memory clustering accuracy was significantly
correlated with subject’s average task performance metrics: RT (r = −0.77; pFDR < 0.001;
d f = 22, shown in Figure 2D), missing rate (r = −0.62; pFDR < 0.001; d f = 22), and re-
sponse accuracy (r = 0.43; pFDR = 0.019; d f = 22) using Spearman correlation (see also
Figure 2A–C). All p values have been false discovery rate (FDR) corrected for multiple com-
parisons. We failed to find an equivalent significant relationship between clustering accuracy
and average behavioral metrics for the other two active tasks.

Tracking Short-Term Engagement Level

Clustering accuracy provides a limited picture of the behavioral significance of the clustering
structure. To further understand the behavioral interpretation of whole-brain dFC, we eval-
uated three candidate metrics derived from whole-brain dFC, that is, dist(task_dFC, HE),
dist(task_dFC, LE), and mean participation coefficient (BT). dist(task_dFC, HE) and
dist(task_dFC, LE) refer to the distance of each windowed dFCs to its corresponding high-/
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low-engagement FC pattern (termed as HE-FC and LE-FC respectively) for a given subject
and task. These distance measures reflect the overall dissimilarity between each dFC and
engagement-specific FC patterns. Besides, we also computed the mean participation coeffi-
cient (BT) for each dFC by using brain connectivity toolbox (Rubinov & Sporns, 2010; https://
sites.google.com/site/bctnet/ ), which quantifies the degree that a given brain region connects
across different modules/networks. An overall higher BT represents higher between-module
connectivity, hence marks a more globally integrated brain state. As previously mentioned, task
performance was evaluated in terms of window-averaged RT, response accuracy, and missing
rate. Our goal is to determine the relationship between before-mentioned dFC-derived metrics
and task performance, for example, dist(task_dFC, HE) versus windowed RT.

To further evaluate those relationships, a linear mixed effects (LME) model was formulatedLinear mixed effect analysis:
Linear mixed effects analysis is
extension of linear regression models
for data that are collected in groups
that has both random and fixed
effects.

on the group level by treating subject and window as random effects (Bates et al., 2014). The
p values were computed using likelihood ratio tests, by comparing the goodness of fit of a full

Likelihood ratio test:
A likelihood ratio test is a statistical
test used for comparing the goodness
of fit of two models (full vs. reduced
model).

model and a reduced model (one with the fixed effect, e.g., BT, in question and one without).
The t values were obtained from the full LME model (df = 177). The results of 2-back memory
task are reported in Table 2. Eight out of nine relations were proven significant, and there was a
considerable trend toward significance between BT and missing rate (p = 0.090). These results
suggest that as task performance degrades, dFCs appear more similar to the LE-FC pattern,
and less similar as the task-specific HE-FC pattern. Moreover, an increased brain integration
level (BT) was found to be associated with improved task performance. Those relations were
true only for the working memory task, as no consistently significant relation was found that
correlated task performance for either the math or the video. Results of math and video task can
be found in Supporting Information Table S1 (Xie, Gonzalez-Castillo, Handwerker, Bandettini,
Calhoun, Chen, Damaraju, Liu, & Mitra, 2018).

Group-Level HE/LE-FC Contrast Pattern

In this section, we focused on the difference between the HE-FC and LE-FC patterns during
the 2-back task in order to pinpoint potential key FC links for engagement level. After obtain-
ing the HE-FC and LE-FC matrices, each of which contains 61 independent components (ICs),
we computed the difference between each subject’s HE-FC and LE-FC pattern, that is,
FC(HE,subN) – FC(LE,subN), and performed a one-sample one-sided t test for each of 61 ×
60/2 = 1, 830 links. We retained links that were significant at an FDR-corrected p value of
0.01. We also assigned network labels by computing the spatial overlap between ICs and
eight canonical networks from the Shen atlas (Shen, Tokoglu, Papademetris, & Constable,
2013). For seven ICs with almost equal overlap with more than one canonical network in
the Shen atlas, the IC labels were manually determined by visually checking the ICs’ spatial
patterns and compared against previous studies (Allen et al., 2014; Xie et al., 2017).

This yielded two group-level engagement-specific FC contrast patterns that were consistent
across subjects, that is, the active-engagement (HE > LE) and passive-engagement (LE > HE)
contrast as shown in Figure 3. If a link appears significant in the active-engagement contrast,

Table 2. Results for 2-back memory task

t value (p value) RT Response accuracy Missing rate
dist(WM_dFC,HE) 2.82 (0.005) −2.47 (0.014) 3.30 (0.001)
dist(WM_dFC,LE) −3.93 (< 0.001) 4.28 (< 0.001) −3.93 (< 0.001)
BT 2.68 (0.027) 2.35 (0.020) −1.72 (0.090)
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Figure 3. FC contrast maps between HE-FC and LE-FC during 2-back working memory task and
spatial maps of ICs highlighted in two contrast maps. (A) Active-engagement FC contrast (HE >
LE). Only links that were significant at a FDR-corrected p value of 0.01 were kept. The IC index is
also displayed along the diagonal cell. The task-positive network (TPN) for working memory task
(IC 64, 77, 78, 84, and 98) are highlighted by the rectangle. (B) Passive-engagement FC contrast
(LE > HE). IC 34 and 88 pointed at by arrows are ventral anterior angular cortex (vACC) and PCC,
respectively, which are more coupled to TPN during passive engagement. (C) A composite spatial
map of task-positive ICs. (D) The spatial map of IC 34 (vACC). (E) The spatial map of IC 88 (PCC).
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it indicates a stronger link is associated with improved task performance. Conversely, a signifi-
cant link in the passive-engagement contrast suggests that stronger coupling between those ICs
could be detrimental to task performance. Figure 3A reveals clusters among fronto-parietal ICs
with significantly increased connectivity during the active engagement of the working mem-
ory task. Figure 3B shows a higher number of connections within default mode, as well as
an increased number of links between fronto-parietal and default-mode ICs during the passive
engagement period.

To better interpret the results in Figure 3A and 3B, we sorted the ICs associated with the
working memory task by matching the ICs’ spatial maps with the activation map generated from
NeuroSynth (Yarkoni et al., 2011; http://neurosynth.org/ ) using the term “working memory”
(see Supporting Information Figure S1, Xie et al., 2018). Five task-positive ICs were identified
in this manner, namely IC 64, 77, 78, 84, and 98 as shown in Figure 3C. These ICs include
portions of the inferior frontal gyrus, superior parietal lobule, dorsolateral prefrontal cortex, and
inferior parietal lobule. Moreover, two default-mode ICs (i.e., IC 34 and 88) were significantly
coupled with task-positive ICs during the passive engagement condition (highlighted by the
arrows in Figure 3B), were identified as ventral anterior angular cortex (vACC) and posterior
cingulate cortex (PCC) as shown in Figure 3D and 3E.

DISCUSSION

In this study, we successfully replicated the relationship observed by Gonzalez-Castillo et al.
(2015) between k-means clustering accuracy and subject overall task performance, and our
results also suggest the integrity of the clustering structure of dFCs reflects individual’s task
performance (Figure 2) while using a group ICA approach rather than an atlas-based approach.
We extended the earlier work by further hypothesizing that short-term engagement level (i.e.,
the amount of effort dedicated to the task during a short period of time) may be encoded in
the whole-brain dFC. We tested three engagement markers extracted from whole-brain dFC
patterns, namely dissimilarity between dFCs and FC patterns representing active engagement
(high-engagement FC or HE-FC); dissimilarity between dFCs and FC patterns representing
passive engagement (low-engagement FC or LE-FC); and the level of brainwide integration
level indexed by mean participation coefficients. Those metrics were used to relate to the short-
term engagement level reflected by windowed task performance through a mixed effects
model. Experimental results only partially confirmed our initial hypothesis. In particular, the
expected relationship was only observed for the working memory task, but not for the math
and video tasks.

Behavioral Relevance of Whole-Brain dFC

An increasing number of studies has focused on the behavioral relevance of whole-brain dFC
(Cohen, 2017). In the current study, we showed that for the memory task (see Table 2), worse
task performance was associated with dFCs with lower similarity to HE-FC patterns, and higher
similarity to LE-FC patterns, as well as smaller participation coefficients (less integrated brain
configuration). This suggests that the degree of deviation of dFCs from the HE-FC patterns (FC
pattern of active engagement) and LE-FC patterns (FC pattern of passive engagement) as well
as the degree of global FC integration may indeed reflect the extent of task engagement, as
originally hypothesized, although only limited to the confines of the memory task.

When focusing on the global FC pattern, we showed that higher similarity to HE-FC patterns
was associated with better short-term task performance. This is in line with previous stud-
ies showing that decreased dFC variability is related to improved task performance including
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increased accuracy (Elton & Gao, 2015) and more stable response times (Hutchison &
Morton, 2015). In other words, the fact that reduction in dFC variability associated with
better task performance highlights the importance of maintaining a stable brain functional
organization that is optimized for a given task (HE-FC pattern) for successful task performance.
The remaining dFC variability during task performance may reflect some degree of residual
mind wandering and loss of focus as suggested by Elton and Gao (2015). On the other hand,
we quantified task disengagement level by using the similarity between dFC patterns and
non-task-specific LE-FC (rest k-means centroids). Using a 64-task dataset, Cole and colleagues
noted that task-evoked FC changes from rest are often similar to one another, indicating the
existence of a task-general network architecture (Cole, Bassett, Power, Braver, & Petersen,
2014). Hence, failure of evoking such task-general network architecture may signal dis-
engagement from task, and result in dFCs with higher similarity to the rest FC pattern.

When switching our attention to specific FC links and networks, careful examination re-
vealed five frontal-parietal ICs (IC 64, 77, 78, 84, and 98) showing group-level increase dur-
ing active engagement of working memory than passive engagement (Figure 3C). Using the
meta-analysis tool NeuroSynth (Yarkoni et al., 2011), we observed how those task-positive
ICs showed considerable overlap with the so-called canonical “working memory” regions,
such as dorsolateral prefrontal cortex and superior parietal lobule (Meyer & Lieberman, 2012).
Moreover, stronger connectivity was also found between those task-positive ICs and ventral an-
terior angular cortex and PCC, part of default-mode network, during the passive-engagement
condition (Figure 3D and 3E). In other words, greater decoupling between the task-positive
and default-mode network is expected during active-engagement period. This observation is
in line with studies linking the strength of the anticorrelation between those two networks
with cognitive performance. For example, stronger anticorrelation between task-positive and
default-mode network was found to be associated with faster reaction times (Thompson et al.,
2013) and less variable reaction times (Kelly et al., 2008). Wang et al. (2016) also found that
reduced anticorrelation between the default-mode and attention networks was associated with
more frequent eyelid closure. Although the underlying mechanism remains to be further elu-
cidated, one explanation involves the competition between internally and externally oriented
cognition (Boveroux et al., 2010).

When turning our attention to global integration levels as a way to track task engagement,
we were able to successfully replicate the findings in Shine et al. (2016) using Pearson’s cor-
relation instead of multiplication of temporal derivatives (MTD) as a connectivity index. MTD
is calculated as the window-averaged dot product of first-order derivatives of two time se-
ries. Our result supports the original claim by Shine et al. (2016) that a globally integrated
and coordinated brain functional topology, as reflected by higher participation coefficients,
might facilitate communication among brain areas that would otherwise remain segregated
during active working memory task performance. Moreover, our result evidences the robust-
ness of the link between global network integration level and working memory cognitive per-
formance against different dFC measures as well as parcellation schemes (group ICA in current
study vs. Gordon atlas in Shine et al., 2016). It is worth noting that the relationship between
task performance and brainwide integration/segregation level might depend on the under-
lying cognitive context. During the preparation phase of a visual discrimination task,
Ekman et al. (2012) reported that an enhanced integration level among task-relevant regions
and a reduced integration level within task-irrelevant areas. The difference in the cognitive
context could explain the discrepancy between the conclusion of Shine et al. (2016) and
Sadaghiani et al. (2015), in which Sadaghiani and collegues found that a more modular brain
organization was linked with better auditory detection task performance. Given the complex
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nature of the working memory task, it recruits more brain regions that are widely distributed
across the brain compared with those an auditory detection task would, which may lead to the
opposite conclusion.

A recent study by Schultz and Cole (2016) showed that subjects with higher performance on
tasks such as language, relational reasoning, and memory had smaller static FC reconfiguration
between such tasks and rest. In other words, Schultz and Cole concluded that task FC patterns
of good performers were more similar to their rest FC pattern than those of bad performers. It
was argued by the authors that individuals with less FC reconfiguration might modify network
connectivity more efficiently to achieve task goals. Although our results may seem to contra-
dict Schultz and Cole, we focused on the dynamical aspects of FC and window-to-window
performance fluctuation, whereas they studied static connectivity patterns by using complete
scans and their relation to intersubject performance differences. The distance between a rest
and task FC map is less relevant to our measure of behavior than the relative distance of a
specific window’s FC pattern and to HE/LE-FC patterns. As such, observed discrepancies could
simply be a result of the difference in temporal scale and analysis-level (intrasubject in
ours vs. across-subject in theirs) across both works.

Post Hoc Analysis on Negative Findings for Math and Video Tasks

We failed to find a significant linear relationship between windowed connectivity and behav-
ioral metrics for the math and the visual search (video) task. We performed a series of post hoc
analyses in order to better understand what might have led to such negative results. Those
analyses are discussed in this section.

To evaluate our hypothesis, variability in behavioral metrics should be driven primarily by
task engagement levels. Post hoc evaluation of behavioral metrics following our negative
results for the math and video task suggests otherwise. In particular, our data suggests (see
Figures S2 and S3 in the Supporting Information, Xie et al., 2018) that intertrial variability
of our behavioral metrics were confounded by other factors, such as trial difficulty. Despite
our efforts to account for overall intersubject differences in performance (i.e., adopting a LME
model), these additional confounds remain present, potentially masking window-to-window
task engagement levels.

The visual search task involves free viewing a natural scene (a prerecording of a live fish
tank without fixation), target directed saccades (look for the emergent red crosshair), and target
identification (decide whether the target is a clown fish). As such, reaction times for this task
can be divided into saccade latency, target localization latency, and identification latency
(Castelhano, Pollatsek, & Cave, 2008). The stimuli are perceived faster and more accurately
when they are near the target of an upcoming saccade (Shepherd, M., Findlay, & Hockey,
1986), hence the saccade latencies would be heavily influenced by the foveal location prior
to the appearance of the target (which is independent of task engagement), but expected to be
highly variable across trials.

For the math task, subjects were asked to select the correct answer from two given options.
Math trials involved addition and/or subtraction of three numbers between 1 and 10. One
robust phenomenon in mathematical cognition is known as the problem size effect, which
refers to the fact that solution latencies (reaction time) and error rate increase with larger
operands (Ashcraft & Guillaume, 2009). Another potential confounding factor in the math
task is intertrial alternations between retrieval or calculation strategies (Van Beek et al., 2014).
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Both of these confounds may have played an important role determining solution latencies,
therefore masking task engagement levels.

On the contrary, the memory task is less prone to the confounding effects of the above-
mentioned factors, as in our study the number complexity (Sternberg, 1969), and strength
(Froeberg, 1907) of stimuli, intertrial interval, and memory load remained constant through-
out the task. Unlike the math and video tasks (Figures S2 and S3, Supporting Information,
Xie et al., 2018), no relationship between individual’s RT and group-averaged RT was observed
for the memory task, which supports the lack of systematic intertrial difficulty differences.
In fact, working memory and attentional engagement have been comprehensively studied
together in the past, and led to a long list of significant findings and theories (Awh & Jonides,
2001; Hampson, Driesen, Skudlarski, Gore, & Constable, 2006).

In summary, our initial hypothesis set was confirmed for one of the three candidate tasks.
Post hoc detailed evaluation of behavioral metrics for the math and video tasks (those leading
to negative results) suggests that their behavioral metrics may not cleanly reflect task engage-
ment, impeding evaluation of our hypotheses. In the meantime, we believe the results pre-
sented here provide evidence in support of our original claim that dFC patterns may contain
information that goes beyond task identification, and could be a valuable index for tracking
task engagement levels.

Limitations and Future Directions

Our study has some important limitations, most of which result from its exploratory nature. As
mentioned earlier, this study used data acquired under a paradigm previously used (Gonzalez-
Castillo et al., 2015; Xie et al., 2017). This was done so that results could be better interpreted
within the context of those previous studies, as well as for the previously reported good sep-
aration of these tasks via dFC. With hindsight, two of the three tasks were not well suited for
our goals, as their recorded behavioral metrics were not driven primarily by fluctuations in
engagement level. To reliably use behavioral metrics like reaction time as a proxy for task per-
formance requires control for confounding factors such as perceived difficulty, engagement
strategies, and fixation location. Although the memory task results presented here support our
initial hypothesis, it would be desirable to also show that the effects observed here are gen-
eralizable across tasks. To address this question of generality, we believe that tasks such as
gradual onset continuous performance task (gradCPT; Rosenberg et al., 2016) could constitute
good candidates for future studies. The gradCPT task consists of stimuli that gradually transition
between images of cities and mountains, and participants are instructed to respond when they
perceive city scenes (which occur randomly 90% of the time) leading to frequent behavioral
measures not contaminated by any of the abovementioned factors. In addition, behavioral
measurements other than reaction time or accuracy that are more directly related to engage-
ment level, such as pupil diameter, could be helpful as complementary behavioral logs.

In addition, although k-means clustering together with the sliding window approach has
proven to be an effective method to study FC dynamics (Allen et al., 2014; Wang et al., 2016;
Xie et al., 2017), we are aware of the ongoing debate on the accuracy of dFC estimation
based on sliding window (Abrol et al., 2017; Laumann et al., 2016; Liégeois et al., 2017).
One criticism of window-based approach is the arbitrary choice of WL (Lindquist, Xu, Nebel,
& Caffo, 2014). In our case, no optimal a priori WL exists given the different intertrial inter-
vals for the different tasks. Excessively long WL may increase stability of dFC estimation, but
may hamper our ability to analyze FC and behavioral dynamics. Too short of a WL may lead

Network Neuroscience 59



Functional network connectivity coupled to task engagement

to inaccurate estimation of FC dynamics and engagement level. We believe WL = 30TRs =

45 s constitutes a plausible middle ground to accommodate both factors. It should be noted
that optimal WL is recommended to be 50 s without knowledge about the true dFC timescale
(Hindriks et al., 2016), and a recent study comparing various WLs identified 45 s as an op-
timal choice (Vergara et al., 2017). Future studies should consider alternative dFC methods,
such as dynamic condition correlation (Lindquist et al., 2014), dynamic coherence (Yaesoubi
et al., 2015), and sparse dictionary learning (Yaesoubi, Adali, & Calhoun, 2018). It would be
interesting to evaluate our approach against different parcellation schemes as well.

METHODS

Subjects and Experimental Paradigm

The dataset consisted of two datasets with a total number of 25 subjects (age 26.25± 5.15 years,
9 men). The first dataset with 17 subjects was previously studied (Gonzalez-Castillo et al.,
2015, available at https://central.xnat.org, project ID: FCStateClassif ), and the second dataset
with additional 8 subjects was later collected for another study by using a similar protocol.
Functional runs of the subjects were obtained on a Siemens 7 Tesla MRI scanner using a
32-element receive coil (Nova Medical) with a gradient recalled, single shot, echo planar
imaging (gre-EPI) sequence with TR = 1.5 s, TE = 25 ms; FA = 50◦, 40 interleaved slices;
FOV = 192 mm; in-plane resolution, 2 × 2 mm; slice thickness, 2 mm.

The subjects were scanned continuously for approximately 25 min (1,017 TRs) as they en-
gaged and transitioned between four different mental tasks (math, memory, video, and rest) as
shown in Figure 4. Each task block lasted for 120 TRs (180 s). There were instructions between
every two task blocks for 8 TRs (12 s). Each task was repeated twice, and the order of task blocks
was randomized so that each task was followed by a different task. Below is a summary of
four task paradigms.

During the resting-state scan, subjects were asked to passively fixate on the crosshair in the
center of the screen.

For the memory task, subjects were shown a continuous sequence of five different geometric
shapes that appeared in the center of the screen every 3 s (shapes appeared on the screen for
2.6 s, followed by a blank screen for 0.4 s). Subjects were asked to press the button when
the current shape matched that of two shapes before. There was a total number of 60 memory
trials per block.

Figure 4. Experimental paradigm from Gonzalez-Castillo et al. (2015).
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For the math task, the subjects were instructed to choose one correct answer among two
choices for a math operation involving subtraction and addition of three numbers between
1 and 10. The operation remained on the screen for 4 s followed by a blank screen for 1 s. There
was a total number of 36 math trials per block.

For the video (visual search) task, a short video clip of fish swimming in a fish tank was pre-
sented, and subjects were asked to identify whether the fish highlighted by a red crosshair is a
clown fish by pressing left button (or right button if the target fish is not a clown fish). Each cue
(i.e., the red crosshair) lasted for 0.2 s, and there was a total number of 16 trials per task block.

Data Preprocessing

With a combination of toolboxes (SPM and AFNI) and customized code developed by the
Mind Research Network, the imaging data underwent the following preprocessing steps:
removal of the first four volumes; slice timing correction using middle slice as the reference
slice; motion correction; despiking (3dDespike) to mitigate the impact of outliers; detrend-
ing (3dDetrend up to eighth order given the relatively long scan time); spatial normalization
to Montreal Neurological Institute space; spatial smoothing with a Gaussian kernel with
FWHM = 4 mm; and, finally, intensity normalization to percentage signal change.

Postprocessing and Functional Network Connectivity Estimation

The group ICA was performed using the GIFT toolbox (http://mialab.mrn.org/software/gift/ )
with the model order (number of components) equal to 100. Principal components analysis
was adopted to retain 120 principal components (PC) at the single-subject level and the expec-
tation maximization algorithm was applied to retain 100 PCs at the group level. The Infomax
ICA algorithm was repeated 20 times using ICASSO (http://www.cis.hut.fi/projects/ica/icasso)
with random initialization, and aggregate spatial maps were estimated as the modes of the
component clusters. Subject-specific time courses and spatial maps were estimated using the
GICA1 back reconstruction method (Erhardt et al., 2011). A subset of 61 ICs were manually
identified for further analysis based on the expectations that ICs should exhibit peak activations
in gray matter, and should have time courses dominated by low-frequency or task-frequency
fluctuations (Allen et al., 2014). Time courses underwent motion-related variance regression
(motion parameters and the first derivatives), and then were band pass filtered with a sixth-
order Butterworth band-pass filter (0.0222–0.18 Hz). The upper cut-off frequency was chosen
to be 0.18 Hz to avoid confounds arising from task motor responses, for example, one button
press was required every 5 s during math task. The low cut-off frequency was set according
to the WL (45 s) to remove spurious fluctuations as suggested by Leonardi and Van De Ville
(2015). The time courses were shifted by 6 s or 4 TRs to approximately account for hemo-
dynamic delay and segmented with nonoverlapping windows with WL (45 s) yielding a total
number of 32-windowed time series (8 for each task) for each subject. On average, each win-
dow contains 15 trials for working memory task, 9 for math task, and 4 for visual search task.
The dFCs were calculated as Pearson’s correlation of those windowed time series, on which
Fisher transformation was then applied. One subject (SBJ 15) was dropped because of high
similarity across all dFCs.

K-Means Clustering

K-means clustering was applied on the dFCs as an unsupervised vector quantization tool to
explore the intrinsic structures of FC dynamics for each individual. The number of clusters was
set to four, and Pearson’s correlation was used as a distance measure. The maximum number
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of iterations for the k-means algorithm was set to 1,000 to ensure the algorithm converges, and
k-means++ (Arthur & Vassilvitskii, 2007) was used to choose initial cluster centroid positions.
The distance-to-centroid was recorded after convergence and later correlated with windowed
behavioral measures.

Window-by-Window Participation Coefficients

This part of analysis was performed to validate the findings in (Shine et al., 2016), which used a
slightly different connectivity measure rather than Pearson’s correlation coefficients. The whole
analysis was carried out using brain connectivity toolbox (Rubinov & Sporns, 2010; https://
sites.google.com/site/bctnet/ ).

First, the Louvain modularity algorithm for community detection was employed to estimate
time-varying community structure by iteratively maximizing the modularity statistics. The goal
is to further parcellate the ICs into communities so that the within-module connectivity is
stronger than the between-module connectivity. The Louvain modularity (Blondel, Guillaume,
Lambiotte, & Lefebvre, 2008) was repeated 500 times for each dFC and a consensus
partition was achieved with the consensus clustering algorithm introduced in (Lancichinetti
& Fortunato, 2012). Then, the participation coefficient (BT), which measures the between-
module connectivity strength, was computed for each window using Equation 1:

BiT = 1 −∑N
s=1

(κisT
κiT

)2
(1)

where BiT is the participation coefficient of IC i for window T; κisT is the strength of the positive
connections of IC i belonging to the module s for window T; κiT is the total strength of all
positive connections of IC i for window T; and N is the total number of modules detected
with the Louvain modularity algorithm. Hence, the participation coefficient is between zero
(all links are within its own module) and one (links are uniformly distributed among all the
modules), as detailed by Guimera and Amaral (2005).

Finally, the participation coefficients were averaged across all the ICs of each window to
achieve mean window-by-window mean participation coefficients (BT), which represented
the level of global integration for window T and were later correlated with average behavioral
measures for that window.

Group-Level Linear Mixed Effects Analysis

LME analysis has been used to conduct group analysis for fMRI studies, as this method
can address issues such as repeated measurements per person, missing data, and multiple
subject-grouping, and therefore leads to increased statistical power as well as controls for
within-individual variation (Beckmann, Jenkinson, & Smith, 2003; Chen, Saad, Britton, Pine,
& Cox, 2013).

For this study, we used R (R 3.4.2) and lme4 package (Bates et al., 2014) to perform the LME
analysis. The behavioral metrics (e.g., windowed RT) were expressed as a linear combination
of a set of independent variables. The fixed effects were metrics derived from whole-brain win-
dowed FC matrices, for example, distance-to-centroid or windowed mean participation
coefficient. The random effects included intercepts for subjects (within-subject variation) and
windows (within-window variation as all subjects go through the same experimental paradigm).
All variables were z scored before the LME analysis. The p values were computed by likeli-
hood ratio tests, that is, comparing the full model with the fixed effect in question against
a reduced model without the fixed effect, to determine which model better fits the data. The
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t values were obtained from the full LME model. Moreover, framewise displacement (FD;
Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) was used as a proxy for head motion, and
windowed FD was included in both models as a fixed effect to rule out the possibility that
effect was merely driven by head motion.

Group-Level Contrast Pattern

We compared the group-level FC patterns associated with high-engagement (HE) and low-
engagement (LE) level by using a one-sample t test. More specifically, the difference between
k-means centroid labeled as memory and rest was computed on the subject level, yielding
a 61 × 61 matrix and 61 × 60/2 = 1,830 FC links for each subject. We performed a one-
sample one-tailed t test on a given link of all 24 subjects, followed by FDR to correct for
multiple comparison, and we only kept the links with FDR-corrected p value smaller than
0.01. Two group-level contrast patterns were generated, namely active-engagement (HE > LE)
contrast and passive-engagement (LE > HE) contrast. A significant link in active-engagement
contrast indicates the strength of the link is stronger for the HE condition. A significant link
in passive-engagement contrast means the coupling between the two nodes is stronger during
the LE condition, hence weaker coupling (or stronger decoupling) is to be expected during the
HE condition.

The network labels were assigned by computing the spatial overlap between IC’s spatial
maps and the spatial masks of eight canonical networks from the Shen atlas (Finn et al., 2015;
Shen, Tokoglua, Papademetrisa, & Constablea, 2013), and the one network with maximum
overlap was chosen. For seven ICs that were shared equally by more than one network, the
network assignment was determined by visual inspection and comparison with previous
studies (Allen et al., 2014; Xie et al., 2017).

To identify the task-positive ICs, the activation pattern of working memory was obtained
from NeuroSynth (Yarkoni et al., 2011; http://neurosynth.org/ ) using the keyword “working
memory.” Neurosynth exported a whole-brain z-score map representing the likelihood that a
voxel being activated associated with working memory from 901 studies. The working memory
activation pattern generated by NeuroSynth can be found in Supporting Information Figure S1
(Xie et al., 2018).
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