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ABSTRACT
The number of blind and low vision persons in the US is projected to increase to 5.68 million by 2020.
The eye diseases causing loss of vision are life-long, chronic, and often need protracted presence of
therapeutics at the disease site to keep the disease in remission. In addition, multiple pathologies par-
ticipate in the disease process and a single therapy seems insufficient to bring the disease under con-
trol and prevent vision loss. This study demonstrates the use of porous silicon (pSi) particles
sequentially loaded with daunorubicin (DNR) and dexamethasone (DEX) to create a synergistic intravi-
treally injectable dual-drug delivery system. DEX targets chronic inflammation while DNR inhibits
excessive cell proliferation as well as suppresses hypoxia-inducible factor 1 to reduce scarring. This
pSi-based delivery system releases therapeutic concentrations of DNR for 100days and DEX for over
165days after a single dose. This intravitreal dual-drug delivery system is also well tolerated after injec-
tion into the rabbit eye model, attested by ocular biomicroscopy, ocular tonometry, electroretinogra-
phy, and histology. This novel dual-drug delivery system opens an attractive modality for combination
therapy to manage refractory chorioretinal diseases and further preclinical studies are warranted to
evaluate its efficacy.
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Introduction

Chorioretinal diseases are major blinding diseases, which
need protracted treatment to suppress relapses and combin-
ation therapy to target their multiple pathologies, such as
the overexpression of vascular endothelial growth factor
(VEGF) and persistent low-grade inflammation as seen in
age-related macular degeneration (AMD) and diabetic retin-
opathy (Aiello et al., 1994; Funatsu et al., 2002). Nowadays,
intravitreal injection of anti-VEGF agents has become the
standard treatment for wet AMD and diabetic macular
edema (DME) (Rofagha et al., 2013; Wells et al., 2016).
However, not all patients respond favorably to these inter-
ventions that solely neutralize VEGF (Krebs et al., 2013). In
addition, a decade of history of repeated intravitreal injec-
tions of anti-VEGF antibodies has demonstrated that disci-
form scarring and inner retina atrophy at the macula
resulting in poor vision is an inevitable outcome (Batman &
Ozdamar, 2010; Hwang et al., 2011; Daniel et al., 2014;
Young et al., 2014) in a large number of patients. We believe
that simultaneous deployment of both anti-scarring/VEGF-
downregulating and anti-inflammatory drugs will yield a

more favorable treatment response. Persistent low-grade
inflammation plays an important role in many retinopathies
including AMD and various stages of diabetic retinopathy
(Telander, 2011; Antonetti et al., 2012). Inflammatory chemo-
kines not only create a neurotoxic milieu, but also recruit
macrophages and lymphocytes to the vitreoretinal interface
or subretinal space to participate in the process of fibrovas-
cular proliferation (Grossniklaus et al., 2002; Semkova et al.,
2011). In addition, prolonged suppression of intraocular VEGF
levels by anti-VEGF drugs may trigger overexpression of con-
nective tissue growth factor that subsequently breaks the
angio-fibrotic balance and promotes fibrosis (Kuiper et al.,
2008; Van Geest et al., 2012).

Anti-inflammatory agents, such as steroids, have been
used for the management of AMD and DME even though
the ocular side effects are of high concern for both physi-
cians and patients (Maturi et al., 2016). Dexamethasone
(DEX) is a steroid well-known for its potent anti-inflammatory
effect (Wang et al., 2011). The currently marketed DEX
implant, Ozurdex, has demonstrated beneficial therapeutic
effect on various macular edema (Aroney et al., 2016).
However, a recent clinical trial revealed that Ozurdex did not
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prevent the reoccurrence of proliferative retinopathy (PVR)
(Banerjee et al., 2017). This again highlights the pharmacody-
namic complexity of each retinal disease and its manage-
ment as well as the unmet need for combination therapy.
Daunorubicin (DNR) is an anthracycline antibiotic that stops
cell proliferation through a few different proposed mecha-
nisms, such as intercalating DNA, inhibiting topoisomerase II,
and interacting with the DNA-topoisomerase II complex
(Gewirtz, 1999). A single intraocular dose of DNR has demon-
strated an anti-proliferative effect against PVR in both experi-
mental and clinical studies (Wiedemann et al., 1998; Hui &
Hu, 1999). More importantly, DNR adversely affects multiple
facets of the synthesis of HIF-1 (hypoxia-inducible-factor 1)
that is upstream of VEGF production (Yamazaki et al., 2006;
Hede, 2009). Therefore, inhibiting HIF-1 with DNR can block
VEGF production, which is an alternative strategy to be
explored for downregulating VEGF. We have previously dem-
onstrated that the short vitreous half-life and narrow thera-
peutic window of DNR (Wiedemann et al., 1983; Santana
et al., 1984; Kwak & D'Amico, 1992) can be largely rectified
by incorporating the drug into a slow-release delivery system
(Hou et al., 2015). Over the past few years, delivery systems
with the ability to simultaneously release multiple drugs
have been of growing interest, particularly to circumvent
multi-drug resistance (Hu & Zhang, 2012) and to simultan-
eously deliver hydrophobic and hydrophilic drugs (Su et al.,
2014). So far, these systems have merely presented the
concept but lack the ability for the long-term delivery of
multiple drugs. Most of these systems provide only a few
hours to a few days of relevant drug levels. There is a
strong need for a practical, long-term, dual-drug deliv-
ery technology.

In recent years, porous silicon (pSi) has been investigated
as a drug delivery platform (Anglin et al., 2008; Kumeria
et al., 2017) and for the sensing of drug release (Xu et al.,
2017a) due to its tunable pores for various sized payloads
and its photonic properties in different biological conditions.
We have demonstrated that hydrosylilated or oxidized pSi is
well tolerated after intravitreal injection and can provide sus-
tained delivery of either DNR or DEX (Cheng et al., 2008;
Chhablani et al., 2013; Hartmann et al., 2013; Hou et al.,
2016). The pSi particles in the vitreous degrade into silicic
acid that is cleared from the eye along with the ocular fluid
turnover (Nieto et al., 2013). We hypothesized that properly
functionalized pSi could be dually loaded with the model
drugs, DNR and DEX, to create a platform to simultaneously
deliver two drugs in a controlled release manner for syner-
gistic effect.

Materials and methods

Synthesis of pSi microparticles

pSi microparticles were prepared by electrochemical etch of
highly doped, (100)-oriented, Pþþ-type silicon wafers (boron-
doped, 1.04� 10�3 X.cm resistivity) purchased from Virginia
Semiconductors or Siltronix. The wafers were mounted into a
54 cm2 etch cell fitted with a platinum counter electrode.
New wafers were cleaned as follows prior to any actual

porous layer etch. The first porous layer was etched in
150ml of a 3:1(vol/vol) solution of 48% aqueous hydrofluoric
acid (HF)/absolute ethanol (EtOH) under a current of
100mA cm�2 for 1min. The porous layer was then dissolved
by a 2N KOH solution in water. The cleaned wafer was finally
rinsed with deionized water 3 times, ethanol 3 times, and
carefully dried under nitrogen. The porous material was then
created through an electrochemical etch in 240ml of a 1:1
(vol/vol) solution of 48% HF/EtOH at a continuous current of
30mA cm�2 for 960 s followed by a pulse of current at
176mA cm�2 for 0.3 s. After allowing the electrolyte to hom-
ogenize by stopping the current for 1 s, 30mA cm�2 were
applied for an additional 960-s period. The resulting porous
layer was then washed once with EtOH and lifted off by elec-
tropolishing in a 1:29 solution of 48% HF/EtOH for 400 s at a
current of 6mA cm�2. The porous material obtained through
each cycle was stored in EtOH in individual glass vials
(30ml). Etching and electropolishing procedures were
repeated up to 8 times per wafer. The pSi particles were
obtained by ultrasound fracturation of the pSi films (20 mm
thickness) in EtOH in an ultrasonic cleaner. The films were
sonicated for 15min and the material was allowed to settle
down. The supernatant was removed and the material was
washed twice with EtOH then sonicated for an additional
15-min period. After sedimentation and removal of the
supernatant, the particles were washed with EtOH until the
supernatant remained clear (absence of very small particles).

pSi oxidation

The harvested pSi particles were thermally oxidized in air
immediately after sonication inside a muffle furnace (Thermo
Fisher Scientific, Pittsburg, PA) in order to form porous silicon
dioxide (pSiO2) microparticles. The particles were heated
from room temperature to 800 �C at a rate of 10 �C per
minute then kept at 800 �C for 1 h. The furnace was then
allowed to freely cool to room temperature. After oxidation,
the pSiO2 particles were stored dry in glass vials.

Characterization of pSi particles

pSiO2 particles were suspended in EtOH. One drop of the
suspension was poured on a glass microscope slide and the
solvent was allowed to evaporate. The particles were imaged
on a bright field microscope mounted with an �5 lens. Four
randomly chosen independent fields of view (a total of at
least 200 particles) were imaged for each sample and the
images were then processed using ImageJ (Schneider et al.,
2012). Each individual particle was manually delimited and
the size of each zone was calculated against a reference
given by a standard stage micrometer (100� 0.01¼ 1mm)
imaged under the same conditions. All data from each sam-
ple were then imported to Excel and a statistical evaluation
of the average size and standard deviation were automatic-
ally calculated. Scanning electron microscope (SEM) images
were obtained by using Phillips XL30 field emission electron
microscope to reveal the pore structure on the surface of the
particle. Nitrogen adsorption/desorption experiments were
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run on a Micromeritics Asap 2020. The specific surface area,
pore size diameter, and total pore volume parameters were
calculated from nitrogen adsorption/desorption isotherms of
particles with the application of the Brunauer-Emmett-Teller
(BET) and Barrett-Joyner-Halenda (BJH) methods.

Functionalization of pSiO2 particles

The resulting pSiO2 particles were suspended into commer-
cial Tris buffer (pH 7.4, 1�) at a concentration of 10mg/ml
for surface activation. After stirring for 2 h, the particles were
recovered by centrifugation at 8000 rpm for 2min. The buffer
was removed and the particles were rinsed 3 times with
deionized water, 3 times with EtOH, and dried under vac-
uum. The activated particles were suspended into EtOH
(120ll/mg of particles) and stirred with 3-aminopropyltrime-
thoxysilane (Sigma-Aldrich Corp., St. Louis, MO, USA; 2.5 ll/
mg of particles) at room temperature. After stirring over-
night, the particles were centrifuged at 8000 rpm for 2min
and washed 3 times with EtOH, and dried under vacuum
resulting in alkylamine-modified particles.

Then, 330mg of amine-grafted pSiO2 particles
(pSiO2–NH2) were reacted with 1.65 g of succinic anhydride
(99%, Sigma-Aldrich Corp.) in 33ml of anhydrous N,N-dime-
thylformamide (Sigma-Aldrich Corp.) at room temperature
overnight, washed 3 times with EtOH, and dried under vac-
uum in order to obtain a succinic acid functionalized surface
(pSiO2–NH–COOH) as shown in Figure 1.

Drug loading to pSiO2 microparticles

DNR and DEX were covalently loaded into pSiO2 particles
successively. First, 15.6ml of a 136mM solution of N-(3-dime-
thylaminopropyl)-N0-ethylcarbodiimide hydrochloride (EDC,
Sigma-Aldrich) in phosphate buffered saline (PBS)/DMSO (9/
1, vol/vol) was mixed with 15.6ml of a 13mM solution of N-
hydroxysulfosuccinimide (sulfo-NHS) in PBS/DMSO (9/1, vol/
vol); 200mg of pSiO2–NH–COOH particles were added to the
solution and was stirred for 20min. Then, DNR was coupled

to the activated surface (Figure 1, step 3) by the addition of
960 ll aqueous solution of 10mg/ml DNR hydrochloride
(Tocris Biosciences, Bristol, UK) to the particle mixture. The
mixture was stirred for 2 h at room temperature in the dark
to form pSiO2-DNR microparticles. After the DNR loading pro-
cedure, the particles were pelletized by centrifugation at
8000 rpm for 2min and carefully washed twice with DI water
and four times with EtOH until the washing solution was
transparent in order to remove unloaded drug and any
excess cross linkers. Finally, the resulting particles were dried
under vacuum.

Subsequently, 121mg of pSiO2-DNR were suspended in
15ml of CH2Cl2. 180mg of dicyclohexylcarbodiimide (DCC)
and 40mg of 4-N,N-dimethy-lamminopyridine (DMAP) were
added to the suspension and the mixture was rotated at
room temperature for 20min in the dark; 70mg of DEX was
added to the mixture system and stirred at room tempera-
ture for 7 days in the dark. As CH2Cl2 freely evaporates over
time, 2ml was added at day 4 to prevent the reaction mix-
ture from getting dry. After reaction, 5ml of EtOH was added
to help dissolve the remaining reactants. The particles were
recovered by centrifugation at 8000 rpm for 2min, carefully
washed six times with EtOH to remove unloaded drug and
reaction side products, and finally dried under vacuum. At
this step, DEX was coupled to the remaining carboxylic
group on surface of pSi (Figure 1, step 3). All resultant
dual-drug loaded samples were stored at –20 �C to avoid
degradation.

For comparison, drug loading was also conducted by
loading DEX first and then DNR. 77mg of pSiO2–NH–COOH
were suspended in 12ml of CH2Cl2; 139mg of DCC and
31mg of DMAP were added to the suspension and the mix-
ture was stirred for 20min in the dark; 54mg of DEX was
then added and the mixture was stirred at room temperature
for 7 days in the dark; 2ml CH2Cl2 was added at day 4 to
prevent the reaction mixture from getting dry. After the reac-
tion, 5ml of EtOH was added to help dissolve the remaining
reactants. The particles were recovered by centrifugation
(8000 rpm, 2min), washed six times with EtOH, and dried

Figure 1. Sketch of drug loading for DEX and DNR. The first step demonstrates a NH2 functionalized pSi surface (left sketch) and the second step is showing a
COOH terminated pSi surface (middle sketch). The third step demonstrates the conjugation of DEX and DNR to the pSi surface via ester (carbon–oxygen) bond or
amide (carbon–nitrogen bond) (right sketch).
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under vacuum. Subsequently, 3.52ml of a 136mM solution
of EDC in a mixture of PBS/DMSO (9/1, vol/vol) was mixed
with 3.52ml of a 13mM solution of sulfo-NHS in PBS/DMSO
(9/1, vol/vol); 45.1mg of DEX loaded particles were added to
the solution and the mixture was stirred for 20min. Then,
216.5ll of a 10mg/ml solution of DNR in DI water was
added to the particles and the mixture was stirred for 2 h at
room temperature in the dark. After reaction, the particles
were recovered by centrifugation (8000 rpm, 2min), washed
six times with EtOH, and finally dried under vacuum.

Fourier-transform infrared (FTIR) spectroscopy and
thermogravimetric analysis (TGA)

The successful surface grafting and covalent drug attach-
ments were determined by FTIR spectroscopy in an attenu-
ated total reflectance mode in a Nicolet 6700 with Smart-iTR
spectrometer (Thermo-Scientific); drug loading efficiency was
further confirmed by TGA. The samples (�5mg) were placed
in a 90 ll alumina sample cup. Samples were heated at a
constant rate of 10 �C/min from 30 to 800 �C under air
atmosphere with a purge rate of 10ml/min using a Q600
simultaneous TGA/DSC apparatus (TA Instruments,
Newcastle, DL). Before heating, the initial weight of each
sample was measured six times over 1min and the average
value was used to normalize the remaining weight of the
sample during the heating process. After reaching 800 �C,
the samples were allowed to cool to 30 �C at a rate of
30 �C/min. The total loss of weight was calculated by the
difference of the weight at 130 �C during the heating and
cooling phases.

In-vitro release in sink condition

DNR and DEX release from the microparticles in vitro was
evaluated in PBS. Briefly, 6mg of DNR/DEX-loaded pSiO2 par-
ticles were weighed into a 4ml clean glass vial. A volume of
1.5ml PBS was added and the tube was vortexed to hom-
ogenize the particle suspension. The samples were capped,
placed in an incubator at 37 �C, and continuously agitated
with a mini laboratory roller. Every 24 h, the vial was centri-
fuged and 1.3ml of the supernatant was sampled and
replaced with an equal volume of fresh release medium.
Based on the drug loading data and our previous studies,
roughly 300 mg of DNR was loaded into 6mg of the pSiO2

particles. DNR solubility in water is 627 mg/ml (https://www.
drugbank.ca/drugs/DB00694); therefore, DNR will never reach
its saturation point. The calculated Dex loaded into 6mg of
the pSiO2 particles was roughly 120 mg. Dex has a much
lower solubility in water (50mg/ml, https://www.drugbank.ca/
drugs/DB01234) than DNR and the pSiO2 rendered its release
much slower than its natural dissolution rate (Wang et al.,
2014); 1.5ml of dissolution medium is an adequate volume
based on our previous studies, otherwise, drug levels in the
release medium will be too low to reliably detect. The super-
natant samples were stored at �80 �C until analysis.

Preparation of the samples for MS/MS analysis

Samples from day 1, day 2, day 4, day 7, day 10, then every
5 days to day 165, and then every 10 days until day 305 were
analyzed by HPLC/MS/MS. In brief, 600 ll of release medium
was mixed with 500 ll of EtOH in 1.5ml Eppendorf tubes to
dissolve all the drug that could have precipitated during the
freeze/thaw process. The mixture was centrifuged
(15,000 rpm, 10min) to remove any insoluble material from
the samples. 1.1ml of the supernatant was sampled into a
2ml glass vial (HPLC vials). 10 ll of a 100 ng/ml solution of
doxorubicin (DOX) in methanol (1 ng) was added to the vial
as internal reference. The samples were evaporated under
vacuum at 37 �C.

UV–visible and MS/MS analysis

Analysis was performed by MS/MS for DNR (with 1 ng of
DOX as internal reference) and UV/vis for DEX (concentration
too high for MS/MS detection) at 240 nm wavelength during
the first 5weeks. After that, the amount of DNR and DEX
released were both measured by MS/MS analysis.

An Agilent 1260 liquid chromatograph (LC) system
coupled with a Thermo LCQ Deca mass spectrometer (MS)
was used to perform the LC-MS/MS analysis using positive
ion mode electrospray ionization (ESI) as the ion source with
source voltage of 5 kV, sheath gas flow rate of 80 units, auxil-
iary gas flow rate of 20 units, and capillary temperature of
250 �C. A Phenomenex EVO C-18 column (2.1mm ID, 5.0mm
length, 2.6 um particle size) was employed for LC separation
using 2.5% methanol in water with 0.1% formic acid as the
mobile phase A and pure methanol with 0.1% formic acid as
the mobile phase B. The LC flow rate was set at 0.30ml/min.
The LC gradient increased from 30% mobile phase B to 95%
mobile phase B in 10min, held at 95% B for 2min, returned
to 30% B in 1min, and then held at 30% B for 7min. The UV
detection wavelength was set at 240 nm for DEX, and
254 nm was selected for DOX. For MS/MS analysis, the data
was recorded as follows: DNR: m/z 528 then SRM at m/z 381;
DEX: m/z 393 then SRM at m/z 373; DOX: m/z 544 then SRM
at m/z 397. A LC-ESI-MS/MS run of pure Hank’s balanced salt
solution was used as a blank control.

In vivo ocular safety of the dual-drug loaded pSiO2-
DNR-DEX system

This pSiO2-DNR-DEX dual-drug delivery system is designed
for intravitreal use. In addition to long-term release, ocular
safety is the first criteria to meet. Seven pigmented New
Zealand rabbits were used for this study. Three males and
four females with an average age of 4.6 ± 2.4months and an
average weight of 3.52 ± 0.82 kg. All animal handling was
performed according to the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research, and the studies
were approved by the Institutional Animal Care and Use
Committee of the University of California, San Diego. One
eye of each rabbit was injected with pSiO2-DNR-DEX and the
contralateral eyes received equivalent diluent injections as
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control. The injection volume was 100ml and the targeted
dose of the delivery system was 2mg for short-term
(3weeks) evaluation and 4mg for long-term evaluation
(3months). A 25-gauge needle attached to a 1ml syringe
was used to inject the particles into the vitreous cavity from
the pars plana (1.5–2mm from the limbus) of the rabbit eye
as reported previously by us (Chhablani et al., 2013). After
seeing the injected pSi particles under direct view of a surgi-
cal microscope, the needle was kept in place for 50 s to
allow for eye fluid equilibration and then the entry hole was
suppressed by a cotton applicator for 1min to avoid leaking
immediately after the needle was removed. After intravitreal
injection, the eyes and pSiO2-DNR-DEX system were moni-
tored by ophthalmic examination including slit-lamp biomi-
croscopy, tonometry, and indirect ophthalmoscopy at
the first week then every two weeks. Retinal function was
evaluated by electroretinography (ERG) at 3weeks and
3months. Histology was performed for light microscopy
after sacrifice.

Statistical analysis

Intraocular pressure (IOP) and ERG parameters from the
in vivo study belong to repeated measuring data category.
A mixed model regression analysis was performed to identify
the significant difference between the study eyes and the
control eyes. The statistical analyses were performed by
JMP software (JMP, Version 13, SAS Institute Inc., Cary,
NC, 1989–2007).

Results

Characterization of pSiO2 microparticles

The dimensions of the obtained pSiO2 microparticles (20mm
thickness) were 40.03 ± 11.63mm by 39.06 ± 11.50mm as
measured from light microscope images. Fifty percent of the
particles fall between 30 and 45 mm. The SEM plan-view
image displayed a high porosity with homogeneous pore
sizes (Supplemental Figure S1).

The adsorption-desorption isotherm displays a type IV
curve (Supplemental Figure S2), in agreement with the meso-
porous nature of the material. The particles have a specific
surface area of 193.65 ± 0.79 m2/g calculated with the BET
algorithm, and an average pore size of 26 nm and a total
pore volume of 1.05 cm3/g calculated with the BJH algorithm
(Supplemental Figure S2).

Surface modifications and drug loading
Surface functionalization and subsequent covalent drug load-
ing were characterized by FTIR spectroscopy (Supplemental
Figure S3) and quantified by TGA. Oxidized particles dis-
played a very intense peak at 1070 cm�1 corresponding to
the silica matrix (Si–O–Si stretch). The appearance of three
peaks at 2970, 2920, and 2880 cm�1 assesses the effective-
ness of APTES grafting (C–H2 stretch). The reaction of suc-
cinic anhydride with amines is measured by the formation of
amide bonds and the appearance of the peaks at 1720,
1630, and 1560 cm�1 (C¼O stretch) corresponding to the
carbonyl groups. DNR loading leads to a slight shift of the
carbonyl peaks (1740 and 1640 cm�1) and the FTIR spectrum
displays an intense peak at 1650 cm�1 after DEX loading
(Supplemental Figure S3).

Surface modification and drug loading were quantified by
TGA and the efficiencies were determined as 4.75% loading
efficiency if only DNR is loaded and 6.74% loading efficiency
for dual-drug loading (Table 1). In contrast to loading DNR
first, loading Dex prior to DNR yielded a loading efficiency of
5.91% for Dex; however, DNR failed to load and no DNR
could be detected by TGA.

In vitro drug release

In vitro release demonstrated a sustained slow release mode
for both payloads, lasting for at least 3months. The release
was conducted in 1.5ml of PBS that was replaced daily, mim-
icking rabbit vitreous volume and the turnover rate of vitre-
ous fluid at 1 ml per min (Hou et al., 2014). DNR showed a
23-day steady state before an apparent elimination phase for
the remaining 70 days. In contrast, DEX release demonstrated
a fast release phase of 45 days followed by a slow tapering
release out to 165 days (Figure 2). The concentration-time
data was analyzed using WinNonlin 6 (Phoenix 64, Build
8.0.0.3176, Certara USA, Inc., 100 Overlook Center, Suite 101,
Princeton, NJ 08540 USA) The key pharmacokinetic parame-
ters from a noncompartmental analysis are summarized in
Table 2.

Table 1. Drug loading parameters.

Step
Grafting efficiency (mg/g of

particles, % in mass)
Loading efficiency (mg/g of

particles, % in mass)

–NH2 28.3, 2.83%
–NH–COOH 42.7, 4.72%
DNR loading 47.5, 4.75%
DEX loading 59.1, 5.91%
Dual drug loading 67.4, 6.74%

DNR: daunorubicin; DEX: dexamethasone.
Figure 2. Dex and DNR concentration-time curves from in vitro release. The Y
axis is in natural log scale. Dex: dexamethasone; DNR: daunorubicin.
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Ocular safety of the pSiO2-DNR-DEX system

The mean injected pSiO2-DNR-DEX was 2.02 ± 0.27mg/eye
for the short-term study and 4.0 ± 0.4mg/eye for the long-
term study. No clinical toxicity was noted during the course
of study. The injected particles dispersed in the vitreous,
then settled down into the inferior vitreous cavity (Figure 3).
There was no difference in IOP between the injected eyes
and the control eyes (p¼ .9), though IOP of both eyes
increased over the study course (p< .0001, Supplemental
Figure S4). No significant difference in ERG b-wave amplitude
between the injected eyes and the contralateral eyes was
found (Supplemental Figure S5). The regression analysis,
including ERG types and examination time points (3weeks
and 3months), revealed that overall least square mean for

the injected eyes was 67.12 mV versus 72.73mV for the
control eyes (p¼ .16). From the in vitro release profile, the
most drug released during the first 3weeks; however,
the histology at week 3 did not show retinal toxicity
(Figure 4), which confirmed the clinical findings.

Discussion

This study demonstrated a pSiO2 based dual-drug delivery
platform designed for intravitreal use and long-term sus-
tained release. Distinctive from other dual-drug loaded sys-
tems, such as hydrogels (Castro et al., 2012) or dendrimers
(Tekade et al., 2009), the current pSiO2 based system pro-
vided about 100 days of slow releasing DNR and over
165 days of slow releasing of DEX. This is the longest dual-
drug release reported in the literature so far. In contrast to
hydrogels or dendrimers, which utilized infiltration drug
loading, the current pSiO2-DNR-DEX system used a covalent
conjugation mechanism, which facilitates long-term release.
The retinal diseases we are targeting are of chronic and
relapsing nature, which require many months of sustained
drug levels in the retina and choroid. Infiltration loading
often fails to provide the needed therapeutic duration even
when using pSi (Chhablani et al., 2013). Poly(lactic-co-glycolic
acid) (PLGA) was used to fabricate composite mats of PLGA
and mesoporous silica nanoparticles in which one model
drug was loaded into the nanoparticles and the other was
loaded into the PLGA (Song et al., 2012). Such a compound
dual-drug system released its drugs for only 2weeks (Song
et al., 2012). pSi nanoparticles were also used to load the
anti-cancer drug methotrexate using covalent conjugation
followed by infiltration loading of another therapeutic, sora-
fenib (Wang et al., 2015). The nanoparticles were designed
to be internalized into cancer cells and release the drugs. In
in vitro release, methotrexate was depleted within the first
four days (Wang et al., 2015).

The current pSiO2-DNR-DEX dual-drug delivery system uti-
lizes a covalent loading strategy for both payloads. This inte-
grated two-drugs on one-particle system has an advantage
over co-injecting a mixture of two single-drug loaded pSiO2

particles. The current dual-drug delivery system delivers the
hydrophilic DNR and the hydrophobic DEX simultaneously.
It is well known that hydrophobic drug loaded particles have
very poor syringeability that can cause inaccurate dosing.
Due to the sharply different syringeabilities of two single-
drug loaded formulations, the targeted optimal ratio of two
therapeutics will be difficult to realize. In contrast, a single
dual-drug loaded delivery system offers the ability to ensure
a consistent ratio of the two therapeutics while injecting less
inert material into the eye.

Figure 3. Images of the fundus and injected particles. The left column shows
the optic nerve and visual streak. The right column displays the inferior view of
the fundus. The injected particles appeared reddish due to the color of DNR
(arrows) and aggregated into the inferior vitreous cavity (arrow heads) within a
few days after the injection. Fundus photographs at all-time points showed
clear vitreous and normal retina.

Table 2. In Vitro release kinetics and predicted parameters.

Drugs R2
Cmax

(ng/ml)
Tmax

(days)
Terminal Half-life

(days)
AUClast

(ng-day�day/ml)
AUCinf_pred

(ng-day�day/ml)

DEX 0.97 7661.4 1 16.6 71742.2 71910.8
DNR 0.94 9.2 20 19.2 449.3 448

AUC: area under curve; Cmax: maximum concentration; DEX: dexamethasone; DNR: daunorubicin; last: up to the last observed
data; inf_pred: infinity predicted; Tmax: the time at which the concentration was maximum.
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The two current model drugs are FDA-approved therapeu-
tics and are being used clinically as free drugs (Wiedemann
et al., 1998) or in an intravitreal implant (Schwartz et al.,
2016). In this study, drug quantitation from the dissolution
medium was performed by mass spectrometry which con-
firmed that the eluted drugs retained their original struc-
tures. Though their efficacy on ocular angiogenesis and
inflammation is well known, little is known about the optimal
drug concentration of these two therapeutics in a synergetic
setting or within a prolonged period of presence in the eye.
DNR has been reported to be toxic to the retinal pigment
epithelium in vitro with an EC50 of 10 mM after 24 h of expos-
ure (Hueber et al., 2003). However, if the exposure is
increased to 7 days, 50 ng/ml can induce significant cytotox-
icity (Garweg et al., 2006). The EC50 for doxorubicin, a drug
chemically and pharmacologically similar to DNR, was
reported to be 10 ng/ml (Blumenkranz et al., 1984).
Considering the possible synergistic effect and sustained
release, we tried to deliver a low concentration of DNR to
avoid retinal toxicity. In vitro study has shown the EC90 is
about 40 ng/ml for DEX (Jaffuel et al., 2001); however, DEX
has a much better ocular safety profile and intravitreal tox-
icity was reported to be 440 mg (Kwak & Damico, 1992).
Therefore, the current dual-drug pSiO2 delivery system seems
to release safe and therapeutically relevant concentrations of
DNR and DEX. Though their efficacy on retinal diseases has
been clinically attested to manage vitreoretinal proliferation
and inflammation (Wiedemann et al., 1998; Calvo et al.,
2015), the current dual-drug delivery pSiO2 platform needs
to be tested in animal models to confirm its synergistic effi-
cacy. The superiority of synergistic therapy has been demon-
strated in cancer therapy (Feng et al., 2017; Xu et al., 2017b).
In fact, it may be possible that due to synergistic action,
lower drug concentrations are required than would be when
administered separately. With the drug loading technology
developed in this investigation, it is possible to tune each
drug-loading efficiency by controlling the loading time ratio
of the two drugs. In this study, the loading time was 2 h for
DNR and 7 days for DEX. It is also interesting to note that
switching the loading order (loading of DEX prior to DNR)
led to significantly less DNR in the dual-drug delivery system.

A logical explanation to this may be that DEX is highly
hydrophobic and this property is transferred to the pSiO2

particles after loading. The subsequent loading of DNR
(hydrophilic) occurs in water using water-soluble coupling
agents (EDC and sulfo-NHS). Thus, the acquired hydrophobi-
city of the DEX loaded particles acts as a shield, repelling
water and forbidding access to EDC and sulfo-NHS, which
are mandatory to activate COOH functions before DNR cou-
pling. Moreover, it may also prevent DNR from reacting with
the functionalized surface.

In summary, we demonstrated a dual-drug delivery sys-
tem based on pSi. This drug delivery system showed good
ocular biocompatibility and therapeutically relevant drug
release rates of two drugs. This technology also opens the
door for the creation of a dual-drug loaded system utilizing
nonsteroidal anti-inflammatory drugs such as ketorolac
instead of DEX in order to eliminate steroid-related ocular
side effects. Further in vivo efficacy studies in animal eye
disease models are warranted to optimize and characterize
this dual-drug delivery platform.
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