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Abstract

The intensity and duration of immune responses are controlled by multiple proteins that modulate 

Toll-like receptor (TLR) signaling. TRAF family member-associated NF-κB activator (TANK) 

has been implicated in positive regulation of interferon-regulatory factor-3 as well as NF-κB. Here 

we demonstrate that TANK is not involved in interferon responses, and is a negative regulator of 

proinflammatory cytokine production induced by TLR signaling. TLR-induced polyubiquitination 

of TRAF6 was upregulated in Tank−/−macrophages. Notably, Tank−/− mice spontaneously 

developed fatal glomerulonephritis owing to deposition of immune complexes. Autoantibody 

production in Tank−/− mice was rescued by antibiotic treatment or the absence of interleukin 

(IL)-6 or MyD88. These results demonstrate that constitutive TLR signaling by intestinal 

commensal microflora is suppressed by TANK.
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Introduction

Toll-like receptors (TLRs) recognize microbial components and evoke innate as well as 

adaptive immune responses. Stimulation with TLR ligands induces the production of 

proinflammatory cytokines and type I interferons (IFNs) in innate immune cells via 

intracellular signaling cascades1–3. Upon stimulation, TLRs trigger the recruitment of Toll/

IL-1R homology (TIR) domain-containing adaptor molecules. One adaptor, MyD88, is 

essential for the downstream signaling of various TLRs, with the exception of TLR34–6. 

MyD88 interacts with IL-1R-associated kinase (IRAK)-4, which activates IRAK-1 and 

IRAK-27. In turn, the IRAKs dissociate from MyD88 and interact with TNFR-associated 

factor 6 (TRAF6) (http://www.signaling-gateway.org/molecule/query?afcsid=A002312), 

which acts as a ubiquitin protein ligase. Together with an E2 ubiquitin-conjugating enzyme 

complex comprised of Ubc13 and Uev1A, TRAF6 catalyzes formation of a lysine 63 (K63)-

linked polyubiquitin chain on TRAF6 itself and on NF-κB essential modulator (NEMO). 

TGF-β-activated kinase 1 (TAK1) is also recruited to TRAF6, and phosphorylates IKK-β 

and MAP kinase kinase 68. Subsequently, the IκB kinase (IKK) complex, composed of 

IKK-α, IKK-β and NEMO, is formed. NF-κB binds to IκBα in resting cells and is 

sequestered in the cytoplasm. Phosphorylation of IκB by the IKK complex leads to its 

degradation by the ubiquitin-proteasome system, thereby freeing NF-κB to translocate into 

the nucleus and activate expression of proinflammatory cytokine genes. Activation of the 

MAP kinase cascade is responsible for AP-1-induced gene expression. In plasmacytoid 

dendritic cells (pDCs), MyD88-dependent signaling activates the production of type I IFNs 

via the transcription factor IFN-regulatory factor (IRF)-71, 9.

Multiple proteins control TLR signaling so as to ensure that the strength and duration of 

TLR signals is appropriate for any given immune response. TLRs have been implicated in 

the development of autoimmune diseases, and aberrant activation of innate immunity may 

contribute to rheumatoid arthritis, inflammatory bowel disease (IBD) and systemic lupus 

erythematosus (SLE)10, 11. Endogenous RNA molecules such as U1snRNP can activate 

autoreactive B cells and dendritic cells (DCs) via TLR712. Furthermore, duplication of the 

Tlr7 gene accounts for the autoimmune phenotypes associated with Y chromosome-linked 

autoimmune accelerator (Yaa) mice13. TLR9 is also involved in the recognition of immune 

complexes of DNA and anti-double-stranded DNA (dsDNA) antibodies (Abs), together with 

B cell receptor (BCR)14. Signaling proteins that inhibit TLR signaling include IRAK-M, 

ST2, single immunoglobulin IL-1 receptor-related (SIGIRR), suppressor of cytokine 

signaling (SOCS)-1, the tumor suppressor cylindromatosis (CYLD) and A20 15–21. Cells 

lacking any one of these proteins show elevated production of proinflammatory cytokines in 

response to TLR stimulation. Furthermore, mice lacking SOCS-1 or A20 display immune 

disorders that lead to premature death. In addition, the immunosuppressive cytokine IL-10 

suppresses colitis development by inhibiting TLR responses22–24. These studies indicate 

that negative regulation of TLR signaling is important for coordinated innate immune 

responses.

TRAF family member-associated NF-κB activator (TANK; also known as I-TRAF) was 

identified as a TRAF-binding protein25, 26. Among the 6 reported TRAF family members, 

TRAF1, 2, 3, 5 and 6 interact with TANK25–28. TANK has been implicated in positive 
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regulation of NF-κB activation. In addition to TRAF family members, inducible IKK (IKK-

i) and TANK-binding kinase 1 (TBK1) are TANK binding partners29, 30. These proteins 

phosphorylate IRF-3 and IRF-7, which are transcription factors essential for the expression 

of type I IFN and IFN-inducible genes 31, 32. TBK1 and IKK-i are activated in response to 

recognition of viruses via TLRs and retinoic acid-inducible gene-I (RIG-I)-like receptors 

(RLRs)33, 34. TRAF3 is required for TBK1 and IKK-i activation downstream of TLRs and 

RLRs35, 36. It was reported that TANK functions as an adaptor that bridges TRAF3 and 

TBK1-IKK-i and TANK is required for type I IFN production in response to viral infection 

or TLR stimulation37. However, the functional roles of TANK in vivo have not yet been 

clarified.

In the present study, we use Tank-deficient (Tank−/−) mice to demonstrate that TANK is not 

involved in IFN responses but is a negative regulator of TLR and BCR signaling. 

Macrophages and B cells from Tank−/− mice show elevated canonical NF-κB activation in 

response to stimulation of TLRs and BCR. TLR-induced polyubiquitination of TRAF6 was 

upregulated in Tank−/− macrophages, indicating that TANK suppresses TLR signaling by 

controlling TRAF ubiquitination. Tank−/− mice spontaneously developed lupus-like 

autoimmune nephritis. Autoantibody production in Tank−/− mice was abolished in the 

absence of IL-6 or MyD88, but not TNF. Furthermore, treatment of Tank−/− mice with 

antibiotics reduced autoantibody production, implying that IL-6 produced by constitutive 

TLR stimulation resulting from intestinal commensal microflora is important for the 

development of disease.

Results

Tank−/− mice develop lupus-like nephritis

To investigate the physiological roles of TANK in vivo, we generated Tank−/−mice by 

homologous recombination in embryonic stem (ES) cells. We targeted exons 3 and 4 of the 

mouse Tank gene with a neor cassette in ES cells, and established Tank−/−mice 

(Supplementary Fig. 1a). Homologous recombination of the Tank locus was confirmed by 

Southern blotting (Supplementary Fig. 1b). Expression of Tank mRNA and TANK protein 

was abrogated in Tank−/− macrophages (Supplementary Fig. 1c,d). Tank−/−mice were born 

from interbred Tank+/− mice in Mendelian ratios and grew normally.

Tank−/− mice displayed splenomegaly and lymphadenopathy (Fig. 1a,b). Flow cytometric 

analysis revealed a higher percentage of CD19+ B cells in the spleen and lymph nodes (LNs) 

of Tank−/− mice (Fig. 1c,d). IgMlowIgDhigh mature B cells accumulated in the spleen of 

Tank−/− mice (Fig. 1e). The percentage of CD19+CD138+ plasma cells was also highly 

increased in the spleen and LNs of Tank−/− mice (Fig. 1f,g). In contrast, the percentage of 

FoxP3+CD4+ regulatory T cells did not differ between wild-type and Tank−/− mice 

(Supplementary Fig. 2a). Consistent with the increased B cell populations, basal serum 

concentrations of IgM, IgG1, IgG2a, IgG2b and IgA were significantly elevated by 1.2–6.2-

fold in Tank−/− mice compared with wild-type mice (Fig. 1h). Importantly, anti-nuclear Ab 

(ANA) and anti-dsDNA Abs were detected in the sera of Tank−/− mice (Fig. 1i,j)
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Tank−/− mice spontaneously started to die at 3 months after birth and about 50% of Tank−/− 

mice had died by 12 months after birth (Fig. 2a). Histological studies revealed that 24 week 

old Tank−/− mice exhibited glomerulonephritis with mesangial cell proliferation and 

expansion of the mesangial matrix (Fig. 2b,c). The glomerular structure was devastated in 

terminally ill Tank−/− mice, suggesting that renal failure was the cause of death (data not 

shown). Although infiltration of lymphocytes was observed in the liver and lungs of Tank−/− 

mice, no histological changes were detected in their intestine, heart or joints (data not 

shown). In addition, deposition of IgG, IgM and complement components C3 and C1q was 

observed in the glomeruli of Tank−/− mice (Fig. 2d). Such depositions are characteristic of 

lupus-like nephritis, and suggest that deposition of immune complexes of autoantibodies is 

the cause of the glomerulonephritis in Tank−/− mice.

TANK is a negative regulator of TLR responses

Then, we examined the type I IFN responses of Tank−/− cells to virus infection. In contrast 

to the results obtained by in vitro studies, IFN-β production in response to Newcastle disease 

virus (NDV) infection did not differ between wild-type and Tank−/− conventional DCs 

(cDCs) derived from bone marrow cells (Fig. 3a). Wild-type and Tank−/− cDCs also 

produced similar amounts of IL-6 (Fig. 3b). NDV is recognized by RIG-I in cDCs, 

indicating that TANK is not essential for the activation of signaling pathways by RLRs. 

TRAF3 has been shown to be activated downstream of TLR7 and TLR9 in pDCs. However, 

bone marrow pDCs induced by Flt3 ligand from Tank−/− mice produced increased, rather 

than decreased, amounts of IFN-α and IL-6 in response to A/D-type CpG-DNA (Fig. 3c,d). 

Collectively, these results indicate that TANK is not essential for type I IFN responses.

Next, we examined the production of proinflammatory cytokines in macrophages in 

response to a set of TLR ligands, including MALP-2 (TLR6-TLR2), poly I:C (TLR3), LPS 

(TLR4), R-848 (TLR7) and CpG-DNA (TLR9). The production of IL-6 and TNF in 

response to these TLR ligands, except poly I:C, were highly increased in Tank−/− peritoneal 

macrophages compared with wild-type cells (Fig. 3e,f). Of note, the enhanced cytokine 

production in response to LPS stimulation in Tank−/− macrophages was less severe 

compared to that induced by other TLR ligands. cDCs from Tank−/− mice also showed 

excessive cytokine production in response to these TLR ligands (data not shown).

We subsequently assessed the role of TANK in cytokine responses to stimulation with TLR 

ligands in vivo. We chose R-848, because the enhancement in cytokine production in 

Tank−/− macrophages was most pronounced after stimulation with R-848. We injected 

R-848 into the peritoneum of 8-week-old mice, and measured serum concentrations of IL-6 

and IFN-α one and three hours later. Tank−/− mice contained significantly higher amounts of 

these serum cytokines at both time points compared with wild-type mice (Fig. 3g,h). Taken 

together, these results indicate that TANK is a negative regulator of TLR-mediated 

responses, but not an essential positive regulator of type I IFN responses in vivo.

TANK controls TRAF6 ubiquitination

We examined whether the increased cytokine production in Tank−/− macrophages was 

evident at the level of transcription. In response to R-848 stimulation, wild-type 
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macrophages showed induction of Il6, Tnf, Il12b, Ptgs2, Nfkbiz and Nos2 gene expression. 

The expression of these genes was enhanced in Tank−/− macrophages in response to R-848 

stimulation (Fig. 4a), indicating that initial TLR-induced gene expression is enhanced in 

Tank−/− macrophages. Next, we analyzed the activation of the transcription factors NF-κB 

and AP-1 by electrophoretic mobility shift assays (EMSA). In response to R-848 

stimulation, activation of NF-κB and AP-1 was enhanced in Tank−/− macrophages compared 

to wild-type macrophages (Fig. 4b,c).

The above-described results indicate that TANK negatively regulates TLR-induced 

activation of NF-κB and AP-1. Activation of IRAK-1 in response to R-848 was not 

enhanced in Tank−/− macrophages (Fig. 5a). Furthermore, IRAK-1 was degraded after 

R-848 stimulation with similar kinetics in wild-type and Tank−/− macrophages (Fig. 5b), 

indicating that TANK regulates signaling downstream of IRAKs. TANK has been reported 

to interact with the TRAF family members TRAF1, 2, 3, 5 and 6. Among these, TRAF6 is 

needed for TLR signaling. Since TRAF6 is ubiquitinated in response to TLR stimulation, we 

examined whether TANK modifies the ubiquitination of TRAF6. As shown in Fig. 5c, 

induction of TRAF6 ubiquitination in response to R-848 stimulation was enhanced in 

Tank−/− macrophages compared with wild-type cells. Reciprocally, overexpression of 

TANK in HEK293 cells inhibited the ubiquitination of TRAF6 (Fig. 5d). Taken together, 

these results indicate that TANK inhibits TLR-induced NF-κB and AP-1 activation by 

suppressing TRAF6 ubiquitination.

TANK is involved in BCR and CD40 signaling

Next, we investigated the responses of Tank−/− B cells to mitogens such as TLR ligands and 

crosslinking of BCR and CD40. After stimulation with R-848, CpG-DNA, anti-IgM or anti-

CD40, Tank−/− B cells proliferated much more than wild-type B cells (Fig. 6a). On the other 

hand, the amounts of splenic B cell death following culture without a mitogen were 

comparable between wild-type and Tank−/− mice (Fig. 6b), indicating that TANK is not 

involved in the control of B cell apoptosis. In response to anti-CD40, B cells activate both 

canonical and non-canonical NF-κB. The non-canonical pathway is characterized by 

processing of the NF-κB2 precursor protein p100 to generate p52. As shown in Fig. 6c, 

activation of non-canonical NF-κB in response to CD40 stimulation was similar in wild-type 

and Tank−/− B cells. In contrast, NF-κB DNA-binding activity was enhanced in Tank−/− B 

cells compared with wild-type B cells (Fig. 6d), and the band was supershifted by anti-p65 

and anti-p50 (data not shown). Ubiquitination of TRAF6 after anti-CD40 stimulation was 

also enhanced in Tank−/− B cells (Fig. 6e). Furthermore, BCR stimulation also induced 

enhanced activation of NF-κB and ubiquitination of TRAF6 in Tank−/− B cells 

(Supplementary Fig. 3a,b). Further, the expression of cyclin D2, an NF-κB-inducible 

protein, was higher in Tank−/− B cells than in wild-type B cells after stimulation with anti-

CD40 or anti-IgM (Supplementary Fig. 4). These data suggest that TANK is involved in 

canonical, but not non-canonical, NF-κB activation pathways in B cells.

In contrast to B cells, wild-type and Tank−/− T cells proliferated to a similar degree after 

stimulation with anti-CD3 or anti-CD3 together with anti-CD28 (Supplementary Fig. 2b). 

When stimulated with phorbol myristate acetate (PMA) and ionomycin in vitro, similar 

Kawagoe et al. Page 5

Nat Immunol. Author manuscript; available in PMC 2010 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proportions of wild-type and Tank−/− CD4+ T cells produced IFN-γ or IL-17 

(Supplementary Fig. 2c), suggesting that TANK does not play a role in the development of 

T helper type 1 (TH1) or TH-17cells.

To explore the influence of TANK deficiency on Ab responses in vivo, wild-type and 

Tank−/− mice were immunized with a T cell-dependent antigen, NP-CGG, or a T cell-

independent antigen, TNP-Ficoll. The NP-specific IgG1 and IgM titers were elevated in 

Tank−/− mice compared with wild-type mice (Fig. 6f). The TNP-specific IgG3 and IgM 

titers were also augmented in Tank−/− mice compared with wild-type mice (Fig. 6g). The 

difference between wild-type and Tank−/− mice was more severe in response to TNP-Ficoll 

immunization, suggesting that TANK may be more critical for T cell-independent than for T 

cell-dependent immune responses in vivo.

Intestinal microflora in autoimmunity of Tank−/− mice

Proinflammatory cytokines play critical roles in the development of autoimmune diseases. 

Overproduction of IL-6 and TNF in mice results in the development of 

mesangioproliferative glomerulonephritis and chronic polyarthritis, respectively. To 

investigate whether IL-6 or TNF is involved in disease pathogenesis in Tank−/− mice, we 

generated mice lacking IL-6 or TNF on the Tank−/− genetic background. The titers of anti-

dsDNA Abs were significantly lower in Tank−/−IL-6−/− than in Tank−/− 5 month old mice 

(Fig. 7a). Moreover, IL-6 deficiency rescued the glomerulonephritis that developed in 

Tank−/− mice (Fig. 7b). On the other hand, TNF deficiency did not significantly alter the 

amount of anti-dsDNA Ab production in Tank−/− mice (Fig. 7c). To examine whether 

MyD88 deficiency protects against the disease progress, we crossed Tank−/− mice with 

MyD88−/− mice. The anti-dsDNA Ab titers in 5-month-old Tank−/−MyD88−/− mice were 

significantly lower than in Tank−/− mice (Fig. 7d), indicating that TLR and/or IL-1R family 

members are critical for the autoimmunity caused by TANK deficiency. The next question 

we addressed was how TLR and/or IL-1R signaling was activated to cause IL-6 production. 

Intestinal microflora has been shown to be involved in the pathogenesis of autoimmune 

diseases, such as colitis in IL-10-deficient mice. Therefore, we orally treated Tank−/− mice 

with a combination of antibiotics to clear the intestinal microflora. As shown in Fig. 7e, the 

antibiotic treatment significantly ameliorated the production of anti-dsDNA Abs, suggesting 

that continuous stimulation of TLRs by intestinal microflora contributes to the generation of 

autoantibodies in the absence of TANK.

Discussion

In the present study, we generated Tank−/− mice and showed that TANK is essential for 

negative regulation of canonical NF-κB signaling. Tank−/− mice displayed enhanced 

activation of macrophages and B cells in response to TLR ligands and antigens, culminating 

in the development of fatal immune complex-mediated renal failure. Although TANK has 

been shown to positively regulate TBK1 and IKK-i-mediated type I IFN production by in 

vitro studies, analyses of Tank−/− mice revealed that TANK was not needed for activation of 

the type I IFN pathway downstream of RLRs or TRIF. TANK forms a family with NAK-

associated protein 1 (NAP1) and similar to NAP1 TBK1 adaptor (SINTBAD)38, 39, which 
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are comprised of an N-terminal coiled-coil domain and a TBK1-binding domain. NAP1 and 

SINTBAD have also been implicated in the activation of TBK1 and IKK-i downstream of 

virus sensors. Knockdown of NAP1, SINTBAD or TANK by siRNA has been linked to 

impaired IFN responses. Hence, it is possible that these three proteins function redundantly 

in the activation of TBK1 and IKK-i.

Although previous studies showed that TANK is a positive regulator of NF-κB, our results 

clearly demonstrate that TANK is critical for the negative regulation of canonical NF-κB via 

suppression of TRAF6 ubiquitination. K63-type ubiquitination is important for the 

activation of TAK1 via TAB2 and TAB3 in TLR signaling, and TANK may inhibit TRAF6 

ubiquitination by directly binding to TRAF6 in response to TLR stimulation. Although A20 

and CYLD have been identified as deubiquitinases40–42, TANK does not harbor a 

deubiquitination enzyme domain. Immunoprecipitation experiments revealed that 

overexpressed A20 or CYLD failed to co-immunoprecipitate with overexpressed TANK, 

suggesting that TANK may suppress ubiquitination of TRAF6 independently of A20 or 

CYLD (data not shown). Further studies are required to assess the precise mechanism 

through which TANK modifies TRAF6. In addition, canonical NF-κB activation in response 

to BCR and CD40 stimulation was augmented in Tank−/− B cells. Consistently, proliferation 

of B cells in response to TLR and BCR stimulation was highly elevated in Tank−/− mice. In 

TCR signaling, TRAF2 and TRAF6 were reported to participate in NF-κB activation 

downstream of Bcl10 and MALT143. Given that TANK suppresses the polyubiquitination 

of TRAF6 in response to TLR stimulation in macrophages, it is possible that TANK 

suppresses BCR and CD40 signaling by regulating the activation of TRAF proteins in B 

cells. On the other hand, activation of non-canonical NF-κB activation was not enhanced in 

Tank−/− B cells, and it was reported that TRAF3 mainly controls non-canonical NF-κB 

activation in B cells44. Hence, these observations suggest that TANK is not involved in 

signaling downstream of TRAF3. Further, TRAF2 can control non-canonical NF-κB as well 

as marginal zone B cell development. The relationship between TANK and TRAF2 needs to 

be further explored in future.

The disease caused by the absence of TANK was characterized by glomerulonephritis due to 

deposition of immune complexes in the glomeruli. In addition, anti-dsDNA Abs and ANA 

were present in high concentrations in Tank−/− mice. These observations indicate that 

Tank−/− mice may represent a mouse model of lupus-like immune diseases. The phenotypes 

of Tank−/− mice are reminiscent of mice overexpressing IL-6 in B cells45, which are 

characterized by lymphadenopathy and plasmacytosis culminating in the development of 

severe glomerular nephritis. IL-6 is a pleiotropic cytokine responsible for fever, acute-phase 

protein expression, osteoclast activation and the development of TH-17 and plasma cells. 

Indeed, Tank−/− macrophages showed enhanced production of proinflammatory cytokines 

including IL-6 and TNF in response to TLR stimulation. Furthermore, Tank−/− mice failed 

to produce autoantibodies and did not develop glomerulonephritis in the absence of IL-6. 

These results indicate that IL-6 is essential for the development of the Tank−/− B cells that 

are responsible for the production of autoantibodies. In contrast, Tank−/− T cells responded 

normally to TCR stimulation. Given that TANK is critical for inhibiting BCR-induced B cell 
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activation, it is possible that the lack of TANK in B cells is important for the generation of 

autoimmune nephritis via aberrant activation of B cells in response to antigen stimulation.

The generation of anti-dsDNA Abs in Tank−/− mice was significantly decreased in response 

to oral treatment with antibiotics or in the absence of MyD88, suggesting that TLR signaling 

is critical for the development of autoimmune diseases in Tank−/− mice. Although various 

proteins have been identified as negative regulators of TLR signaling, few mice lacking any 

single one of these proteins spontaneously develop autoimmune diseases spontaneously, 

with the exception of mice lacking A20. A20−/− mice spontaneously develop multiorgan 

inflammation and premature lethality, which can be rescued by MyD88 deficiency46, 47. 

Unlike Tank−/− mice, A20−/− mice do not develop immune complex-mediated 

glomerulonephritis. A20 controls TNFR in addition to TLR signaling, and the responses to 

TNF were not altered in Tank−/− cells. TNF is involved in the pathogenesis of organ-specific 

autoimmune diseases, such as rheumatoid arthritis and Crohn’s disease48. Hence, the 

differences in the signaling pathways regulated by A20 and TANK may explain the 

differences in the types of autoimmune disease caused by A20 or TANK deficiency.

Since oral treatment with antibiotics ameliorated autoantibody production in Tank−/− mice, 

constitutive stimulation of TLRs by intestinal microflora seems to be responsible for the 

generation of autoimmunity in the absence of TANK. Bone marrow transfer experiments 

revealed that hematopoietic cells were responsible for the lethality in Tank−/− mice (data not 

shown). Intestinal microflora contribute to the pathogenesis of IBD48, 49, and the colitis 

observed in IL-10-deficient mice was rescued by the absence of MyD8824, suggesting that 

TLR signaling is involved in the pathogenesis of IBD. Since TLRs are expressed on 

intestinal DCs and are responsible for sensing microbes in the intestine, it is possible that 

TANK controls the production of certain cytokines in intestinal tissues. Further studies are 

required to understand why TANK deficiency causes autoimmune nephritis but not colitis.

In addition, the antigen-specific humoral immune responses to haptens were enhanced in 

Tank−/− mice. This may be due to the enhanced DC and B cell activation in response to 

antigens and the adjuvant in Tank−/− mice. It will be interesting to explore whether 

inhibition of TANK expression in certain cell types is beneficial for inducing antigen-

specific immune responses in vivo. Modification of TANK may be useful in vaccinations 

when administered together with an adjuvant.

In summary, the results of the present study clearly demonstrate that TANK is a negative 

regulator of TLR and BCR responses. Future studies involving cell-type specific deletion of 

TANK will clarify the complex interplay between immune cells needed to prevent the 

development of autoimmune diseases.

Methods

Generation of Tank−/− mice

The Tank gene was isolated from genomic DNA extracted from ES cells (GSI-I) by PCR. 

The targeting vector was constructed by replacing a 2.0-kb fragment encoding the Tank 

ORF with a neomycin-resistance gene cassette (neor), and a herpes simplex virus thymidine 
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kinase (HSV-TK) driven by the PGK promoter was inserted into the genomic fragment to 

facilitate negative selection. After transfection of the targeting vector into ES cells, G418 

and gancyclovir doubly-resistant colonies were selected, screened by PCR and further 

confirmed by Southern blotting. Homologous recombinants were microinjected into 

blastocysts from C57BL/6 female mice, and heterozygous F1 progenies were intercrossed to 

obtain Tank−/− mice. Tank−/− mice under the 129Sv × C57BL/6 background and their 

littermate controls were used for the experiments.

Mice and cells

MyD88−/−, and Tnf−/− mice were described previously4, 23. Il6−/− mice were provided by T. 

Yasui (Osaka University, Osaka, Japan). All animal experiments were carried out with the 

approval of the Animal Research Committee of the Research Institute for Microbial 

Diseases (Osaka University, Osaka, Japan). At 3 days after injection of 2 ml of 4.0% 

thioglycolate medium (Sigma), peritoneal exudate cells were isolated from the peritoneal 

cavities of mice by washing with ice-cold Hank’s buffered salt solution (Invitrogen). Resting 

B cells were isolated from splenocyte single-cell suspensions by positive selection with anti-

B220 magnetic beads (Miltenyi Biotec). T cells were isolated from splenocyte single-cell 

suspensions by positive selection with anti-Thy1.2 magnetic beads (Miltenyi Biotec). The 

cell purities were confirmed to be >90% by flow cytometric analysis.

Reagents

MALP-2 was provided as described previously7. LPS from Salmonella minnesota Re-595 

was purchased from Sigma-Aldrich. Poly I:C was purchased from Amersham Biosciences. 

R-848 was provided by the Pharmaceuticals and Biotechnology Laboratory of the Japan 

Energy Corporation. The CpG oligonucleotide was synthesized as described previously7. 

Polyclonal anti-IRAK1 was described previously7.

Measurement of cytokines and autoantibodies

The concentrations of cytokines in culture supernatants and sera were measured by ELISA. 

The ELISA kits for mouse TNF and IL-6 were purchased from R&D Systems. The ELISA 

kit for mouse IFN-α was purchased from PBL Biomedical Laboratories. The ELISA kits for 

mouse anti-dsDNA Abs and ANA were purchased from Alpha Diagnostic International. 

Serum Ig concentrations were determined as described previously50.

Histological analysis

Formalin-fixed tissues were stained with hematoxylin and eosin (H&E) or periodic acid-

Schiff (PAS). For detection of renal IgG deposits, kidneys were rapidly frozen in liquid 

nitrogen and 2-μm cryostat sections were fixed in 100% acetone for 15 min. The sections 

were incubated with FITC-conjugated goat anti-mouse IgG (ICN Biomedicals), FITC-

conjugated donkey anti-mouse IgM (Jackson ImmunoResearch), FITC-conjugated sheep 

anti-human C3c complement (Thermo Electron Corporation) or FITC-conjugated anti-

mouse C1q (RmC7H8) (Cedarlane Laboratories) at 10 mg/ml overnight at 4°C.
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RNA hybridization

Peritoneal macrophages were treated with 10 nM R-848 for 0, 1, 4 and 8 h, and total RNA 

was extracted using the TRIzol reagent (Invitrogen). The extracted RNA was 

electrophoresed, transferred to nylon membranes and hybridized with various cDNA probes. 

To detect the expression of Tank mRNA, a 319-bp fragment (350–669) of Tank cDNA was 

used as a probe. The same membranes were rehybridized with an Actb probe.

In Vitro Kinase Assay

Peritoneal macrophages stimulated with 10 nM R-848 were lysed and immunoprecipitated 

with anti-IRAK-1 antibody. Then, IRAK-1 activity was measured by an in vitro kinase 

assay, as described previously7.

Immunoblot analysis

Peritoneal macrophages were treated with 10 nM R-848 for various times. The cells were 

then lysed in a lysis buffer comprising 1.0% Nonidet-P40, 150 mM NaCl, 20 mM Tris-HCl 

(pH 7.5), 1 mM EDTA and a protease inhibitor cocktail (Roche). The cell lysates were 

separated by SDS-PAGE and analyzed by immunoblots. Polyclonal anti-TANK (2141) was 

purchased from Cell Signaling. Polyclonal anti-TRAF6 (sc-7221), monoclonal anti-Ub 

(F-7), monoclonal anti-β-tubulin (D-10) and anti-cyclin D2 (34B1-3) were obtained from 

Santa Cruz Biotechnology.

Electrophoretic mobility shift assay (EMSA)

Nuclear extracts were prepared from peritoneal macrophages (4 × 106) stimulated with 10 

nM R-848 as described previously7. The nuclear extracts were then incubated with or 

without Abs against NF-κB p65 or p50 (Santa Cruz), and further incubated with a specific 

probe for NF-κB DNA-binding sites, before being electrophoresed and visualized by 

autoradiography.

Immunoblot, immunoprecipitation and in vivo ubiquitination assays

Peritoneal macrophages (4 × 106) were stimulated with 10 nM R-848 for various times. 

Immunoblotting and immunoprecipitation were carried out as described previously7. For 

detection of in vivo ubiquitination of TRAF6, cell lysates were boiled in 1% SDS at 90°C 

for 10 min to remove noncovalently attached proteins, followed by immunoprecipitation 

with anti-TRAF6 in 0.1% SDS lysis buffer in the presence of protease inhibitors. Ubiquitin 

was detected by immunoblot analysis.

B and T cell proliferation assays

Purified splenic B cells (5 × 104) were cultured in 96-well plates for 48 h with various 

concentrations of R-848, CpG-DNA, anti-IgM (Jackson ImmunoResearch) or anti-CD40 

(HM40-3, PharMingen). Purified splenic T cells were stimulated with plate-bound anti-CD3 

(1 or 5 μg/ml; 2C11, Pharmingen) alone or anti-CD3 (1 μg/ml) plus anti-CD28 (1 μg/ml; 

37.51, Pharmingen) for 48 h. The samples were pulsed with 1 μCi of [3H]thymidine for the 

last 16 h and the 3H uptake was measured using a β-scintillation counter (Packard).

Kawagoe et al. Page 10

Nat Immunol. Author manuscript; available in PMC 2010 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In vivo immunization and ELISA

Mice were immunized intraperitoneally with 50 μg of nitrophenol-chicken γ-globulin 

(Biosearch Technologies) precipitated with Imject alum (Pierce) or with 25 μg of 

trinitrophenol-Ficoll (Biosearch Technologies). Antigen- and isotype-specific antibodies in 

sera collected from peripheral blood at various time points were measured by ELISA on 

plates coated with nitrophenol-BSA or trinitrophenol-BSA. Antibodies against mouse IgM, 

IgG1, IgG2a, IgG2b, IgG3 and IgA were purchased from Southern Biotechnology.

Cell viability

Purified splenic B cells (1 × 106) were cultured in RPMI medium containing 10% FCS for 

various periods. Cell viability was assessed using annexin V-indocarbocyanine (BioVision) 

and a FACSCalibur (Becton Dickinson).

Construction of TANK expression plasmids

A murine full-length TANK cDNA was obtained by PCR from a murine cDNA library, and 

cloned into the Myc-pcDNA3 vector.

Statistical analysis

Statistical significance was calculated with the two-tailed Student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Increased Ig and autoantibody production due to B cell abnormalities in Tank−/− mice
(a,b) Images of representative spleens (a) and inguinal LNs (b) from 6-month-old wild-type 

(WT) and Tank−/− mice. (c–g) Expanded plasma cell populations in spleens and LNs of 

Tank−/− mice. The percentages of B cells and T cells in spleens (c) and LNs (d), expression 

of IgM and IgD on splenic B cells (e) and expression of CD138 and CD19 on cells in 

spleens (f) and LNs (g), from WT and Tank−/− mice were analyzed by FACS. (h) Basal 

titers of Ig isotypes in sera from nonimmunized 3-month-old WT (n = 13) and Tank−/− (n = 

13) mice were measured by ELISA. (i, j) ANA (i) and anti-dsDNA Abs (j) in sera from 12-

month-old WT (n = 12) and Tank−/− (n = 12) mice were measured by ELISA. *, P<0.005, 

**, P<0.001, versus Tank−/− cells.
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Figure 2. Development of lethal glomerulonephritis in Tank−/− mice
(a) The survival of WT (n = 10) and Tank−/− (n = 10) mice was monitored for 1 year. (b,c) 

Kidney sections from 6-month-old WT and Tank−/− mice were stained with hematoxylin and 

eosin (H&E) (b) or Periodic acid-Schiff (PAS) (c). (d) Kidney sections from 6-month-old 

WT and Tank−/− mice were stained with FITC-labeled anti-mouse IgG, IgM, C3 and C1q.
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Figure 3. Enhanced proinflammatory cytokine production in response to TLR stimulation in 
Tank−/− mice
(a,b) BM-DCs from wild-type and Tank−/− mice were infected with NDV for 24 h. The 

concentrations of IFN-α (a) and IL-6 (b) in the culture supernatants were measured by 

ELISA. (c,d) Flt3L-DCs from wild-type and Tank−/− mice were stimulated with 0.1 or 1μM 

CpG-DNA for 24 h. The concentrations of IFN-α (c) and IL-6 (d) in the culture supernatants 

were measured by ELISA. (e,f) Peritoneal macrophages from wild-type and Tank−/− mice 

were stimulated with MALP-2 (10 ng/ml), poly I:C (100 μg/ml), LPS (100 ng/ml), R-848 

(10 nM) or CpG-DNA (1 μM) for 24 h. The concentrations of IL-6 (e) and TNF (f) in the 

culture supernatants were measured by ELISA. (g, h) Wild-type (n = 5) and Tank−/− (n = 5) 

mice were intraperitoneally injected with 30 nmol of R-848. Sera were collected and the 

concentrations of IL-6 (g) and IFN-α (h) were determined by ELISA. Data represent the 

means ± s.d. of triplicate assays. Similar results were obtained in three independent 

experiments. *, P < 0.05, **, P < 0.01 and ***, P < 0.005, versus Tank−/− mice.
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Figure 4. TANK negatively regulates the activation of NF-κB and AP-1 as well as gene 
expression in response to TLR7 stimulation in macrophages
(a) Peritoneal macrophages from wild-type (WT) and Tank−/− mice were stimulated with 10 

nM R-848 for the indicated periods. Total RNA was extracted and subjected to Northern 

blot analyses for the expression of Il6, Tnf, Il12b, Ptgs2, Nfkbiz and Nos2. The same 

membranes were rehybridized with an Actb probe. Data of two independent experiments 

(lanes marked 1 and 2 represent distinct experiments) are shown. (b,c) Wild-type and 

Tank−/− macrophages were stimulated with R-848 (10 μM) for the indicated periods. 

Nuclear extracts were prepared, and the NF-κB (b) and AP-1 (c) DNA-binding activities 

were determined by EMSA using NF-κB- and AP-1-specific probes. The arrows indicate the 

induced NF-κB and AP-1 complexes. The results are representative of three independent 

experiments.
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Figure 5. TANK controls TRAF6 ubiquitination in response to TLR7 stimulation in 
macrophages
(a) Peritoneal macrophages from wild-type (WT) and Tank−/− mice were stimulated with 

10μM R-848 for the indicated periods. Cell lysates were prepared and immunoprecipitated 

with anti-IRAK1. The kinase activities in the immunoprecipitates were measured using an in 

vitro kinase assay. (b) Macrophages from wild-type and Tank−/− mice were stimulated with 

10 μM R-848 for the indicated periods. Whole cell lysates were subjected to immunoblot 

analysis with anti-IRAK1. Immunoblots ofβ-tubulin are shown as a loading control. (c) Cell 

lysates of macrophages treated with R-848 for the indicated periods were 

immunoprecipitated with anti-TRAF6, followed by immunoblot analysis with anti-Ub. 

Immunoblots of TRAF6 are shown as a loading control. Data of two independent 

experiments are shown. (d) HEK293 cells were cotransfected with Flag-TRAF6 and Myc-

TANK. Cell lysates were immunoprecipitated with anti-Flag, followed by immunoblot 

analysis with anti-Ub. Immunoblots of β-tubulin are shown as a loading control. The data 

shown are representative of three independent experiments.
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Figure 6. Enhanced activation of B cells in Tank−/− mice
(a) Purified splenic B cells were cultured with R-848 (10 nM), CpG-DNA (10 nM), anti-

IgM (1, 10μg/ml) or anti-CD40 (1 μg/ml) for 48 h. The samples were pulsed with [3H]-

thymidine (1 μCi) for the last 16 h. [3H]-thymidine incorporation was measured using a β-

scintillation counter. (b) Splenic B cells were cultured in the absence of cytokines for the 

indicated periods. The viability of the cells was determined by annexin V staining followed 

by flow cytometric analysis. (c) B cells from wild-type and Tank−/− mice were stimulated 

with 5μg/ml anti-CD40 for the indicated periods, and the processing of p100 to p52 in whole 

cell lysates was detected by immunoblot analysis. Immunoblots of β-tubulin are shown as a 

loading control. (d) B cells from wild-type and Tank−/− mice were stimulated with 5μg/ml 

anti-CD40 for the indicated periods. Nuclear extracts were prepared and the NFκB DNA-

binding activity was determined by EMSA. The arrow indicates the induced NF-κB 

complex. (e) Cell lysates of splenic B cells treated with 5μg/ml anti-CD40 for the indicated 

periods were immunoprecipitated with anti-TRAF6, followed by immunoblot analysis with 

anti-Ub. Immunoblots of TRAF6 are shown as a loading control. The data shown are 

representative of three independent experiments. (f) Mice were immunized with nitrophenol-

chicken γ-globulin, and nitrophenol (NP)-specific IgM and IgG1 production was measured 

by ELISA at 1, 2, 3 and 4 weeks after immunization. The data for 5 representative mice per 

genotype are shown. (g) Mice were immunized with trinitrophenol-Ficoll, and trinitrophenol 

(TNP)-specific IgM and IgG3 production was measured at 1, 2, 3 and 4 weeks after 
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immunization. The data for 5 representative mice per genotype are shown. *, P > 0.05, **, P 

< 0.05 and ***, P < 0.01, versus Tank−/− mice.
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Figure 7. Antibiotic treatment as well as deficiency of MyD88 or IL-6 ameliorates autoantibody 
production in Tank−/− mice
(a) Anti-dsDNA Abs in sera from 5-month-old Tank−/− (n = 6) and Tank−/−IL-6−/− (n = 6) 

mice. (b) H&E staining of kidney sections from Tank−/− and Tank−/−IL-6−/− mice. (c,d) 

Anti-dsDNA Abs in Tank−/− (n = 6) and Tank−/−Tnf−/− (n = 6) mice (c), Tank−/− (n = 6) and 

Tank−/−MyD88−/− (n = 6) mice (d) were measured by ELISA. (e) Oral treatment with 

antibiotics reduces the serum anti-dsDNA Ab concentrations in Tank−/− mice. WT (n = 6) 

and Tank−/− (n = 6) mice were given drinking water containing ampicillin (1 g/L), neomycin 

(1 g/L), vancomycin (0.5 g/L) and metronidazole (1 g/L) after birth. Control wild-type (n = 

6) and Tank−/− (n = 6) mice received untreated drinking water. The serum anti-dsDNA Ab 

concentrations were measured by ELISA at 16 weeks of age.
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