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Introduction: Insulin, the key hormone for glucose regulation, has garnered attention for its role as an immune modulator. Impaired 
insulin signaling in the central nervous system is linked to neuroinflammation and neurodegenerative diseases. Microglia, the resident 
macrophage-like immune cells in the brain, are key regulators of neuroinflammation. However, the mechanisms by which insulin 
influences microglial immune responses remain relatively unknown.
Methods: This study aimed to assess the effects of post-treatment with insulin [30 minutes after lipopolysaccharide (LPS) exposure] 
on LPS-induced inflammatory responses in BV2 microglial cells.
Results: Post-treatment with insulin potentiated LPS-induced production of nitric oxide and pro-inflammatory cytokines, such as TNF 
and IL-6, through activation of the Akt/NF-κB pathway. Insulin also enhanced the ability of BV2 cells to phagocytose bacteria 
particles and β-amyloid fibrils. Conversely, insulin inhibited activation of NADPH oxidase and reduced intracellular levels of reactive 
oxygen species in LPS-treated BV2 cells.
Conclusion: Insulin enhances microglial immune competence when challenged by endotoxins but mitigates oxidative stress in these 
cells.
Keywords: β-amyloid, p47phox, phagocytosis, superoxide dismutase

Introduction
Evidence has increasingly shown that neuroinflammation plays an active role in the development of neurodegenerative 
diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease.1–3 Neuroinflammation is highly regulated by 
microglia, the resident macrophage-like innate immune cells in the brain. Under physiological conditions, microglia 
are in a “surveillance” state that is characterized by a ramified morphology. Surveillance microglia actively govern the 
homeostasis of the central nervous system (CNS) through constant scanning of a defined territory of brain parenchyma 
via their processes.4,5 In response to stimulatory signals, microglia undergo varying degrees of transformation (referred to 
as microglial activation), including changes in morphology, gene expression, and functional behavior.5 Depending on the 
type, intensity, and duration of the stimuli, microglial activation can be neuroprotective or neurotoxic.5 Activated 
microglia can release inflammatory cytokines and toxins, which can injure or even cause neuronal death.5 Therefore, 
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the regulation of microglial activation represents a critical means of controlling neuroinflammation and related neuro-
logical disorders.

While insulin is primarily known for its role in glucose homeostasis, recent studies have highlighted its critical role in 
regulating immune responses. Insulin signaling has been implicated in modulating inflammation through various 
pathways.6 It can influence the activity of nuclear factor-κB (NF-κB),7 a key regulator of inflammation, via the PI3K/ 
Akt pathway.8,9 Insulin also induces vasodilation by promoting nitric oxide (NO) production7,10–13 and mitigates 
endotoxin-induced systemic inflammation by activating anti-inflammatory signaling cascades and suppressing the 
expression of pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF).14,15 In patients 
with type 2 diabetes, insulin has been shown to transcriptionally downregulate toll-like receptors (TLRs) in mononuclear 
cells, thereby reducing TLR-mediated inflammatory injury.16 Notably, insulin also plays a prominent role in modulating 
microglia-mediated immune responses, as the brain is insulin-sensitive,17 with insulin receptors widely expressed in 
various brain regions.18–21 In vitro, insulin has been shown to reduce lipopolysaccharide (LPS)-induced production of 
NO, reactive oxygen species (ROS), and TNF, while enhancing phagocytic activity in BV2 microglia.22 However, the 
administration of high doses of insulin (>100 nM) alone has been found to increase the expression of pro-inflammatory 
cytokines, such as IL-1β and TNF, in both BV2 cells and primary microglia.23 In vivo, microglial reactivity has been 
observed in the hippocampus of mice with high-fat diet-induced central insulin resistance.23 Interestingly, a five-day 
intracerebroventricular insulin infusion has been reported to activate microglia, as indicated by increased inflammatory 
markers in the hippocampus of young adult rats.24 Additionally, co-infusion of insulin and LPS via intracerebroven-
tricular administration significantly improved LPS-induced cognitive decline and inhibited LPS-induced glial activation, 
TNF, IL-1β, and ROS release, blood-brain barrier disruption, and ferroptosis in the hippocampus of mice.25 Collectively, 
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these findings suggest that the effects of insulin on immune responses in the CNS are complex and may vary depending 
on treatment protocols and the presence or absence of inflammagen stimuli. Thus, investigating the molecular mechan-
isms by which insulin modulates microglial immune responses and interacts with inflammatory agents is essential for 
a deeper understanding of the regulatory role of insulin in neuroinflammation.

In addition to regulating neuroinflammation, insulin also contributes to the pathogenesis of neuroinflammation-related 
diseases, as disrupted insulin signaling in the brain has been linked to the development of several neurodegenerative 
disorders,26,27 particularly AD. AD is characterized by chronic, progressive memory loss and cognitive decline, making it 
a leading cause of dementia.28 Pathologically, AD is defined by three key features: the presence of extracellular amyloid 
plaques consisting primarily of aggregated Aβ in the brain parenchyma, intracellular neurofibrillary tangles composed of 
hyperphosphorylated tau proteins, and neurodegeneration.29 Epidemiological studies have demonstrated a strong asso-
ciation between AD and diabetes,30 and AD is sometimes referred to as type 3 diabetes due to the insulin resistance 
observed in the brain.31,32 Insulin receptor expression and its binding capacity are reduced in individuals with AD, 
correlating with disease severity.33,34 Moreover, mounting evidence indicates that microglia actively participate in 
clearing Aβ from the AD brain.35 Microglial phagocytosis has been proposed as a mechanism for reducing Aβ levels 
in response to Aβ immunization in AD.36 Microglia interact with fibrillar Aβ via cell surface receptors, promoting its 
clearance and phagocytosis in vitro.37 However, in vivo studies suggest that while microglia surrounding plaques in 
the AD brain are activated, they fail to effectively phagocytose and degrade fibrillar Aβ deposits,38 indicating 
a microglial dysfunction in AD. Since insulin is known to enhance microglial phagocytosis22 and insulin resistance is 
present in the AD brain,31,32 investigating whether insulin treatment can stimulate microglial phagocytosis of fibrillar Aβ 
warrants further exploration.

In this study, we determined the effects of insulin on LPS-induced inflammatory responses in BV2 microglial cells. 
LPS, a TLR4 ligand, is known to induce a series of inflammatory responses in innate immune cells. LPS upregulates the 
expressions of pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) and activates NOD-, LRR- and 
pyrin domain-containing protein 3 (NLRP3) inflammasome through activating the NF-κB and mitogen-activated protein 
kinases (MAPKs) pathways downstream to TLR4.39–41 LPS also regulates phagocytosis42,43 and quickly increases the 
production of ROS in macrophages.44 ROS are mainly generated by the members of the NADPH oxidase (NOX) 
family.45,46 Increased NOX activity is linked to an accumulation of intracellular ROS.47 Within cells, superoxide 
dismutases (SODs), catalyzing the conversion of superoxide to oxygen and hydrogen peroxide, act as the first-line 
defense system against ROS.48 Accordingly, the interacting effects of insulin and LPS on the activity of TLR4 signaling, 
the secretion of pro-inflammatory mediators (ie, TNF, IL-6, and NO), the phagocytic activity, and the production of ROS 
were examined.

Materials and Methods
BV2 Microglial Cell Cultures and Treatments
Immortalized murine microglial BV2 cells (Cat#: ABC-TC212S, AcceGen Biotechnology, Fairfield, NJ, USA; RRID: 
CVCL_0182) were cultured in Dulbecco’s modified eagle medium/nutrient mixture F-12 (DMEM/F12, Cat#: 12500062, 
Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum containing extremely low 
endotoxin (< 0.05 EU/mL; Lot#: VP2002200, Cat#: TMS-013-BKR, Merck-Millipore, Burlington, MA, USA), and 
penicillin-streptomycin (Cat#: 15140122, Thermo Fisher Scientific). The cultures were maintained in a humidified 
atmosphere of 5% CO2 and 95% air at 37°C. Subcultures were performed when cell density reached 80% confluence 
(approximately every two days). BV2 cells used in experiments were from passage numbers four to nine. Detailed 
sample sizes for each assay are provided in the respective figure legends.

To characterize the interacting effects of LPS and insulin on inflammatory responses in the BV2 cells, we conducted 
a 2 (with or without LPS) × 2 (with or without insulin) experimental design. This generated four experimental groups: 
LPS-INS-, LPS-INS+, LPS+INS-, and LPS+INS+, as indicated in the figures. The BV2 cells were seeded in culture 
plates at a density of 3×104 cells/cm2. Sixteen hours after seeding, the cultures were treated with LPS (from Escherichia 
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coli O55:B5, Cat#: L2880, Sigma-Aldrich, St. Louis, MO, USA; stock concentration: 1 mg/mL, dissolved in saline) to 
a final concentration of 500 ng/mL or an equal volume of saline (vehicle control).

Establishment of the Dosing Regimen
To obtain an ideal dosing regimen, we first treated BV2 cells with various doses of insulin (Cat#: I0516, Sigma-Aldrich, 
dissolved in 25 mm HEPES) for 2 hours. The degrees of Akt phosphorylation at S473 (pAktS473), the major mediator in 
the insulin signaling pathway,9 increased when insulin concentrations were 200 ng/mL or higher. To determine the 
effective treatment time points of insulin, we added insulin to BV2 cells 30 minutes before, concurrently, and 30 minutes 
after the LPS treatment. Our results showed that 500 ng/mL of LPS effectively induced phosphorylation of NF-κB p65 
when insulin was given 30 minutes after, but not 30 minutes before or concurrently, significantly affected the LPS- 
induced NF-κB activation (data not shown). Consequently, in the following experiments, we treated BV2 cells with 200 
ng/mL of insulin 30 minutes after LPS exposure (500 ng/mL) to assess the interaction between insulin and LPS. 
A summary of this dosing regimen, the experimental model, and subsequent examinations is provided in Figure 1.

Western Blots
The BV2 cells were collected at targeted time points and lysed in chilled RIPA buffer (Cat#: 89900, Thermo Fisher 
Scientific) containing protease and phosphatase inhibitors (Cat#: 04693116001 and 04906837001, Roche, Basel, 
Switzerland). The homogenates were centrifuged at 15,000 × g for 20 minutes at 4°C. Protein concentrations of the 
supernatants were determined using a BCA Kit (Cat#: 23225, Thermo Fisher Scientific) and adjusted to uniform levels. 
Twenty μg of total protein was mixed with the sample buffer (Cat#: S3401, Sigma-Aldrich) supplemented with 2% β- 
mercaptoethanol (Cat#:19-1335, Sigma-Aldrich), denatured by boiling, and resolved in polyacrylamide gels (8–15%) at 

Figure 1 Experimental scheme of this study.
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110 V for two hours. The separated proteins were transferred to PVDF membranes (Cat#: IPVH00010, Merck-Millipore), 
blocked with 5% skim milk, and probed with respective primary antibodies for 16 hours at 4°C. After washing, the 
membranes were hybridized with proper horseradish peroxidase-conjugated secondary antibodies (goat anti-mouse IgG: 
Cat#: 115-035-166; goat anti-rabbit IgG: Cat#: 111-035-144, Jackson ImmunoResearch, West Grove, PA, USA). The 
bound antibodies were detected using an enhanced chemiluminescence detection kit (Cat#: WBKLS0500, Merck- 
Millipore) and medical X-ray film (Cat# Super RX, Fujifilm, Minato City, Tokyo, Japan). For re-probing, the membranes 
were incubated with a stripping buffer containing 2% SDS, 62.5 mm Tris, and 0.8% β-mercaptoethanol for 20 minutes at 
55°C to remove the bound antibodies. The band densities were analyzed using ImageJ software (v2.0.0-rc-69/1.52p, US 
National Institutes of Health, Bethesda, MD, USA). Relative protein expression was estimated by normalizing with levels 
of respective total proteins or α-tubulin. Band densities from one identical sample applied to each gel were used to 
normalize band densities among gels. The antibody dilution ratios and image exposure times were optimized to confirm 
that the luminescence signals were within the linear range of detection. The details of the primary antibodies are listed in 
Table 1, and the uncropped blot images are provided in Supplementary Material 1–3.

Table 1 Information of Antibodies Used in This Study

Antibodies (Dilution ratio) Source Identifier

Rabbit polyclonal anti-phospho-AktS473 

(1:1000)

Cell Signaling Technology Cat#9271 

RRID: AB_329825

Rabbit monoclonal anti-Akt 

(1:10000)

Cell Signaling Technology Cat#4060 

RRID: AB_2315049

Rabbit monoclonal anti-phospho-p65S536 

(1:1000)

Cell Signaling Technology Cat#3033 

RRID: AB_331284

Rabbit monoclonal anti-p65 

(1:1000)

Cell Signaling Technology Cat#8242 

RRID: AB_10859369

Rabbit monoclonal anti-iNOS 

(1:1000)

Cell Signaling Technology Cat#13120 

RRID: AB_2687529

Rabbit monoclonal anti-phospho-p38T180/Y182 

(1:1000)

Cell Signaling Technology Cat#4511 

RRID: AB_2139682

Rabbit monoclonal anti-p38 

(1:10000)

Cell Signaling Technology Cat#8690 

RRID: AB_10999090

Rabbit monoclonal anti-phospho-JNKT183/Y185 

(1:1000)

Cell Signaling Technology Cat#4668 

RRID: AB_823588

Rabbit polyclonal anti-JNK 

(1:10000)

Cell Signaling Technology Cat#9252 

RRID: AB_2250373

Rabbit monoclonal anti-phospho-Erk1/2 

(1:1000)

Cell Signaling Technology Cat#4370 

RRID: AB_2315112

Rabbit monoclonal anti-Erk1/2 

(1:10000)

Cell Signaling Technology Cat#4695 

RRID: AB_390779

Mouse monoclonal anti-TLR4 

(1:1000)

Santa Cruz Biotechnology Cat#sc-293072 

RRID: AB_10611320

Rabbit monoclonal anti-NLRP3 

(1:1000)

Cell Signaling Technology Cat#15101 

RRID: AB_2722591

(Continued)
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Plasmid DNA Transfection and NF-κB Luciferase Reporter Assay
An NF-κB-dependent luciferase activation assay was conducted to analyze the activity of NF-κB-mediated transcrip-
tional activity in the BV2 cells. Sixteen hours after seeding the cells in white-sided and clear-bottom 96-well plates 
(Cat#: 165306, Thermo Fisher Scientific), the cultures were transfected with the NanoLuc® reporter vector with NF-κB 
response element (100 ng/well, Cat#: N1111, Promega, Madison, WI, USA) by using Lipofectamine™ 3000 transfection 
reagent (0.3 µL/well, Cat#: L3000015, Thermo Fisher Scientific) and Lipofectamine™ P3000 reagent (0.2 µL/well, Cat#: 
L3000015, Thermo Fisher Scientific). Forty-eight hours after transfection, cultures were exposed to LPS and insulin as 
described above for four hours. The activities of NF-κB-driven luciferase were detected using the Nano-Glo® luciferase 
assay reagent (100 µL/well, Cat#: N1110, Promega). The intensities of luminescence signals were detected by a multi- 
mode reader (Model#: Synergy HT, BioTek, Winooski, VT, USA).

Griess Test
NO release in BV2 cultures was estimated by detecting nitrite levels in conditioned medium collected 24 hours after LPS 
treatment using a commercial Griess reagent kit (Cat#: K544, BioVision, Milpitas, CA, USA) following the manufac-
turer’s instructions.

ELISAs Assay
Twenty-four hours after the beginning of LPS treatment, the conditioned culture medium was collected for further 
examinations. The levels of pro-inflammatory cytokines, including TNF and IL-6, in the collected medium were 
measured using commercial ELISA kits (IL-6, Cat#: 550950; TNF, Cat#: 560478, BD Biosciences, Franklin Lakes, 
NJ, USA) following the manufacturer’s instructions.

Phagocytosis Assay Using Vybrant™ Phagocytosis Kit
Vybrant™ phagocytosis assay kit (Cat#: V6694, Thermo Fisher Scientific) was employed to measure the degree of 
phagocytosis of fluorescein-labeled E. coli BioParticles® in the BV2 microglia. BV2 cells were seeded in 96-well plates 
with black side and clear bottom (Cat#: 165305, Thermo Fisher Scientific) at a recommended density of 105 cells/ well. 

Table 1 (Continued). 

Antibodies (Dilution ratio) Source Identifier

Rabbit polyclonal anti-p47phox 

(1:500)

Cell Signaling Technology Cat#4312 

RRID: AB_2150287

Rabbit monoclonal anti-SOD1 

(1:1000)

Cell Signaling Technology Cat#37385 

RRID: N/A

Rabbit monoclonal anti-SOD2 

(1:1000)

Cell Signaling Technology Cat#13141 

RRID: AB_2636921

Mouse monoclonal anti-α-tubulin 

(1:10000)

Sigma-Aldrich Cat#T9026 

RRID: AB_477593

HRP-conjugated goat anti-mouse IgG Jackson ImmunoResearch Cat#115-035-166 

RRID: AB_2338511

HRP-conjugated goat anti-rabbit IgG Jackson ImmunoResearch Cat#111-035-144 

RRID: AB_2307391

Abbreviations: Aβ42, beta-amyloid 1–42; AD, Alzheimer’s disease; CNS, central nervous system, fAβ42, fibrillar Aβ42; 
IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; MAPKs, mitogen-activated protein 
kinases; NF-κB, nuclear factor-κB; NLRP3, NOD-; LRR- and pyrin domain-containing protein 3; NO, nitric oxide; 
NOX, NADPH oxidase; pAkts473, Akt phosphorylation at S473; ROS, reactive oxygen species; SODs, superoxide 
dismutases; TLRs, toll-like receptors; TNF, tumor necrosis factor; TUNEL, terminal deoxynucleotidyl transferase 
dUTP nick end labeling.
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Sixteen hours post-seeding, the cells were treated with LPS and insulin as described in the Establishment of the dosing 
regimen. Four hours after the beginning of LPS treatment, the cultures were treated with fluorescein-labeled E. coli 
particles for two hours, and their activities of phagocytosis of fluorescein-labeled E. coli particles were determined 
following the manufacturer’s instructions and detected by a multi-mode reader (Model#: Synergy HT, BioTek).

Assay of Phagocytosis of Aβ
HiLyte™ Fluor 488-labeled beta-amyloid 1–42 (Aβ42, Cat#: AS-60479-01, AnaSpec, Fremont, CA, USA) was used to 
prepare fibrillar Aβ42 (fAβ42) by dissolving it in sterile water and incubating 37°C for five days.49 BV2 cells were seeded 
in 24-well culture plates and treated with LPS and insulin as previously described. Four hours after the beginning of LPS 
treatment, the cultures were treated with 5 µM of HiLyte™ Fluor 488-labeled fAβ42 for four hours. Cells were then 
removed by the treatment of 0.01% trypsin, centrifuged at 1000 × g for five minutes, washed with PBS twice, and 
suspended in PBS for the fluorescence analysis using a flow cytometer (model: BD FACSCalibur™, BD Biosciences) 
equipped with a FITC signal detector.

Detection of the Intracellular Level of ROS
The fluorogenic probe, CellROX™ green reagent (Cat#: C10444, Thermo Fisher Scientific), was used to measure the 
general level of ROS in the live BV2 cells. The cells were seeded in 8-well culture slides (Cat#: PEZGS0816, Merck- 
Millipore) and treated with LPS and insulin as aforementioned. Twelve hours after the start of LPS treatment, the cells 
were stained with CellROX™ green reagent following the manufacturer’s instructions. The culture slides were then 
sealed with an aqueous mounting medium (Cat#: F4680, Sigma-Aldrich) and imaged with an optical fluorescence 
microscope (Model: Axio Imager A1, Carl Zeiss) equipped with a digital camera (Model: Axiocam 305 Color, Carl 
Zeiss). The fluorescent density was quantified using ImageJ software (v2.0.0-rc-69/1.52p, US National Institutes of 
Health).

Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling
The effects of LPS and insulin on the extent of cellular apoptosis were detected by terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) staining. The BV2 cells were seeded in 8-well culture slides (Cat#: PEZGS0816, 
Merck-Millipore) and treated with LPS and insulin. Twenty-four hours after the start of LPS treatment, the TUNEL 
staining was conducted with a commercial kit (Cat#: C10617, Thermo Fisher Scientific) following the manufacturer’s 
instructions. The culture slides were sealed with an aqueous mounting medium containing DAPI (Cat#: ab104139, 
Abcam, Cambridge, UK). The images were captured with an optical fluorescence microscope (Model: Axio Imager A1, 
Carl Zeiss) equipped with a digital camera (Model: Axiocam 305 Color, Carl Zeiss). The fraction of TUNEL-positive 
cells was analyzed and reported.

Measurements for Activities of NOX and SOD
Twelve hours after the beginning of LPS treatment, the activities of total NOX and SOD were determined using their 
respective commercial assay kits (NOX activity, Cat #: MBS8243191, MyBioSource, San Diego, CA, USA; SOD 
activity, Cat#: E-BC-K019-S, Elabscience, Houston, TX, USA) following the manufacturer’s instructions.

Statistical Analysis
All numerical data are presented in the form of box and whisker plots. Statistical analyses and graph plotting were performed 
using Prism software (v. 10.1.1, GraphPad Software Inc., San Diego, CA, USA). Significance was set at p < 0.05. The 
D’Agostino-Pearson normality test was adopted to estimate the assumption of normality. For datasets with normal distribu-
tions, an unpaired, two-tailed Student’s t-test was used to compare means in experiments with two groups. For non-normal 
distributed datasets, the Mann–Whitney U-test was used for comparisons of two groups. Designs with two independent 
variables were analyzed by two-way ANOVA followed by Tukey’s multiple comparison tests if the main effects or 
interactions were significant. The details of statistical analyses and results are described in Supplementary Table 1.
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Results
Insulin Aggravates LPS-Induced Activation of NF-κB, Expression of iNOS, and 
Secretions of NO and Pro-Inflammatory Cytokines in BV2 Microglial Cells
Our results showed that, two hours after LPS treatment, levels of phosphorylated AktS473 (p-AktS473, Figure 2A and B) 
and NF-κB p65 (p-p65, Figure 2A and C) increased in BV2 cells. Insulin alone mildly increased levels of p-AktS473 and 
p-p65. The LPS-induced increases in p-AktS473 and p-p65 were aggravated by insulin (Figure 2A–C, LPS+INS- vs LPS 
+INS+) based on our dosing regimen (see Materials and Methods for details). Insulin enhanced LPS-induced NF-κB 
activation, as confirmed by the NF-κB luciferase reporter assay (Figure 2D). We then examined the expression levels of 
iNOS and pro-inflammatory cytokines downstream of NF-κB signaling. The basal expression level of iNOS in the BV2 
cells was below our Western detection limit (Figure 2A). Twelve hours after the LPS treatment, levels of iNOS were 
upregulated (Figure 2A and E). Although insulin alone did not trigger iNOS expression, it potentiated LPS-induced 
upregulation of iNOS (Figure 2A and E, LPS+INS- vs LPS+INS+). Consistently, LPS increased NO production in these 
cells, which was further potentiated by insulin (Figure 2F). A similar increase was observed in the production of TNF 
(Figure 2G) and IL-6 (Figure 2H). These results indicated that insulin aggravates the LPS-induced secretion of pro- 
inflammatory mediators in BV2 microglial cells.

Insulin Does Not Affect LPS-Induced Activation of TLR4-Mediated MAPK Signaling in 
BV2 Microglial Cells
Next, we determined the effects of insulin on the TLR4/MAPK signaling pathway in the BV2 cells. Two hours after LPS 
treatment, phosphorylation levels of p38, JNK, and Erk1/2 were significantly increased (Figure 3A–D). Post-treatment of insulin 

Figure 2 Effects of LPS and insulin on Akt/NF-κB signaling and secretions of pro-inflammatory mediators in BV2 microglial cells. (A) Representative Western blots for 
selected molecules involved in AKT/NF-κB signaling cascades. (B) Quantitative results of relative levels of p-Akt. (C) Quantitative results of relative levels of p-p65. (D) 
Quantitative results of NF-κB luciferase reporter assay. (E) Quantitative results of relative levels of iNOS. (F) Quantitative results of the Griess assay in the conditioned 
media. (G) Quantitative results of levels of TNF in the conditioned media. (H) Quantitative results of levels of IL-6 in the conditioned media. u.d.t., under the detective 
threshold. n.s., not significant. Sample size = 9 biological replicates in Western blots, Griess assay, and ELISA assays; 12 biological replicates in NF-κB luciferase reporter 
assay. See also Supplementary Table 1 for details of the statistical test results.
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did not affect LPS-induced increases in phosphorylation levels of any of the three MAPKs (Figure 3A–D). The effects of LPS 
and insulin on expressions of TLR4 and NLRP3 were determined 12 hours after the LPS treatment. Neither LPS nor insulin 
affected the expression levels of TLR4 (Figure 3A and E). The expression of NLRP3 was significantly altered (upregulated) by 
LPS but not insulin (Figure 3A and F). These results suggested that insulin does not affect the LPS-induced activation of TLR4- 
MAPK signaling pathway.

Insulin and LPS Enhance the Phagocytic Activity of BV2 Microglial Cells
The abilities of BV2 cells to phagocytose fluorescein-labeled E. coli fragments and fAβ42 were examined. Our results 
showed that both insulin and LPS alone enhanced phagocytosis of fluorescein-labeled E. coli fragments (Figure 4A). The 
combination of both treatments induced even higher phagocytic activity than either alone (Figure 4A). Similarly, insulin 
and LPS alone enhanced phagocytosis of fAβ42, with the combination of the two treatments induced even higher 
phagocytic activity than either treatment alone (Figure 4B). These results indicated that both insulin and LPS enhance 
the phagocytic activity of BV2 microglial cells.

Insulin Inhibits LPS-Induced Intracellular ROS Accumulation and Apoptosis in BV2 
Microglial Cells
Twelve hours after LPS treatment, levels of intracellular ROS in BV2 cells were increased, which was attenuated by 
insulin (Figure 5A). Accordingly, we then explored the effects of LPS and insulin on the activity and expression of 
molecules that modulate ROS levels, such as NOX and SODs. Our results showed that the activities of NOX in the BV2 
cells were increased by LPS treatment, which were completely suppressed by insulin (Figure 5B). Interestingly, insulin 
alone inhibited the basal activities of NOX (Figure 5B). The levels of p47phox, a cytosolic subunit of NOX, were 
increased by LPS, which were repressed by insulin (Figure 5C). Furthermore, LPS increased the activities of total SOD 

Figure 3 Effects of LPS and insulin on TLR4/MAPK signaling in BV2 microglial cells. (A) Representative Western blots for TLR4/MAPK signaling and NLRP3. (B-D) 
Quantitative results of relative levels of phosphorylated p38, JNK, and Erk1&2. (E and F) Quantitative results of relative levels of TLR4 and NLRP3. u.d.t., under detective 
threshold. n.s., not significant. Sample size = 9 biological replicates in each assay. See also Supplementary Table 1 for details of the statistical test results.
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in BV2 cells, which were not affected by insulin (Figure 5D). LPS increased the expression of SOD2 but not SOD1, and 
insulin exerted no effect on the levels of either protein, regardless of LPS treatment. (Figure 5E). Since accumulated ROS 
contributes to LPS-induced cell death,50,51 we examined whether insulin affects LPS-induced apoptosis in these cells. In 
parallel to the ROS levels, numbers of TUNEL+ cells increased 24 hours after LPS treatment, which were reversed by the 
presence of insulin (Figure 6A and B). Taken together, these results suggested that insulin mitigates LPS-induced 
oxidative stress and apoptosis, partly by repressing NOX activity in BV2 cells.

Discussion
Beyond its glucose-lowering effects, insulin is also known to modulate immune responses in macrophages.6 Notably, 
insulin also plays a prominent role in modulating microglia-mediated immune responses, as the brain is insulin- 
sensitive.17 However, studies examining the role of insulin in microglial immune modulation indicate the complexity 
of its effects on CNS immune responses, varying based on treatment protocols and the presence or absence of 
inflammagen stimuli.22–25 Therefore, understanding the molecular mechanisms through which insulin regulates micro-
glial immune responses and interacts with inflammatory agents is crucial for gaining deeper insight into its role in 
neuroinflammation. By adopting the well-established LPS-induced innate immune response, we showed that insulin 
potentiated LPS-induced productions of NO and pro-inflammatory cytokines through the Akt/NF-κB pathway and 
enhanced phagocytic activity of BV2 microglial cells. Moreover, insulin repressed LPS-induced increases in levels of 
intracellular ROS and apoptosis, partially by inhibiting the activities and levels of NOX. Our results suggested that 
insulin not only enhances immunocompetence but also counteracts oxidative damage in microglia challenged by 
endotoxin.

The PI3K/Akt signaling pathway has been shown to be essential for LPS-induced microglial activation.52 

Pharmacological inhibition of Akt blocks LPS-induced activation of NF-κB and upregulation of iNOS in chick primary 
microglia.52 Since the PI3K/Akt pathway is a key component of the insulin signaling cascade,9 it was not surprising to 
observe that insulin enhanced LPS-induced production of inflammatory mediators in our study. However, PI3K/Akt- 
mediated immune responses are not uniform across all mononuclear phagocytic cells. For instance, in RAW 264.7 
macrophages, inhibition of the PI3K/Akt pathway following LPS exposure increases iNOS expression through sustained 
NF-κB activation, rather than decreasing it.53 Interestingly, contrary to our findings, other studies report that insulin 
reduces the production of pro-inflammatory mediators in endotoxemic human macrophages and BV2 microglia.22,54 One 
possible explanation for these discrepancies may lie in the varying LPS strains used across experiments. It is known that 

Figure 4 Effects of LPS and insulin on phagocytic activity of BV2 microglial cells. (A) Quantitative results of Vybrant™ phagocytosis assay. (B) Quantitative results of phagocytosis 
of HiLyte™ Fluor 488-labeled fAβ42. The left panel showed the overlayed histograms of flow cytometry. The right panel showed the quantitative results of flow cytometry. Sample 
size = 9 biological replicates in (A); 3 biological replicates in (B). See also Supplementary Table 1 for details of the statistical test results.
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LPS derived from different Gram-negative bacterial strains can trigger distinct innate immune responses.55,56 Another 
factor could be the different dosing regimens of LPS and insulin used in these studies. In our study, we employed 
a relatively high dose of LPS (500 ng/mL) to achieve significant induction of iNOS expression. Additionally, we 
observed that administering insulin 30 minutes after LPS treatment produced a more pronounced effect than when it 
was given 30 minutes before or concurrently with LPS. Furthermore, high doses of insulin (>100 nM) have been shown 
to independently increase pro-inflammatory cytokine expression in both BV2 cells and primary microglia.23 Similarly, 
a five-day intracerebroventricular infusion of insulin has been reported to activate microglia, as indicated by elevated 
inflammatory markers in the hippocampus of young adult rats.24 These results suggested that the strengths and kinetics 
between LPS- and insulin-induced signaling are critical determining factors for insulin-mediated immune responses in 
microglia.

The effects of insulin on the phagocytic activity of peripheral innate immune cells have been well-studied.57–60 Given 
that microglial phagocytosis has recently emerged as a critical factor in regulating several CNS diseases,61,62 we sought 
to investigate the interacting effects of insulin and LPS on microglial phagocytosis. Consistent with previous studies,22 

Figure 5 Effects of LPS and insulin on intracellular accumulation of ROS in BV2 microglial cells. (A) Representative micrographs and quantitative results of CellROX™ green 
staining. Scale bar: 100 µm. (B) Quantitative results of NOX activity. (C) Representative Western blots and quantitative results of p47phox. The red arrow indicates the accurate 
molecular size. (D) Quantitative results of total SOD activity. (E) Representative Western blots and quantitative results of SOD1 and SOD2. n.s., not significant. Sample size = 9 
biological replicates in each assay. See also Supplementary Table 1 for details of the statistical test results.
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our results showed that insulin significantly enhances the ability of BV2 microglia to phagocytose both bacterial 
components and fAβ42. Insoluble Aβ filaments are the primary constituents of extracellular amyloid plaques, which 
represent one of the hallmark pathologies of AD.63 Microglial phagocytosis plays a crucial role in the pathogenesis 
of AD.2,64,65 Interestingly, AD has been classified as type 3 diabetes, a disease manifesting as insulin resistance in the 
brain.31,32 Whether insulin resistance in microglia contributes to impaired Aβ clearance and subsequent Aβ deposition in 
the AD brain warrants further investigation. It has been shown that fAβ interacts with microglial surface receptor 
complexes, triggering both inflammation and Aβ phagocytosis.66–68 Moreover, activation of microglia through TLRs 
enhances Aβ clearance in microglial cultures,66–68 aligning with our findings that LPS treatment alone increased the 
phagocytosis of fAβ42. However, the overall impact of LPS on microglial phagocytic activity remains debated. The 
capabilities of mouse primary microglia to phagocytose IgG-coated sheep erythrocytes and pHrodo-labeled synapto-
somes were enhanced by LPS at 2 μg/ mL69 and 100 ng/mL,70 respectively. Conversely, lower doses of LPS (5 ng/mL) 
have been reported to suppress the phagocytosis of E. coli bioparticles in the CD11b-expressing mouse primary 
microglia.71 Whether these conflicting results arise from differences in LPS strains or dosing regimens requires further 
clarification.

Our results revealed that insulin inhibited the LPS-induced intracellular accumulation of ROS in the BV2 cells. 
Similar antioxidative actions of insulin have been found in LPS-challenged human polymorphonuclear leukocytes.72 In 
agreement with these findings, we also found that insulin decreased the activities and expression levels of NOX. 
However, the effects of insulin on intracellular levels of ROS and NOX also vary depending on the cell types. It has 
been demonstrated that insulin upregulates the expression of NOX2, the vascular isoform of NOX, and increases the 
production of ROS in human adipose microvascular endothelial cells.73 Moreover, we found that LPS, but not insulin, 
elevated the total SOD activity and elevated the level of SOD2 in the BV2 cells without affecting the expression of 
SOD1. Consistently, LPS also induces SOD2 expression in macrophages treated with an apoptosis-inducing factor.74 The 
upregulation of SOD2, located mainly in the mitochondria, may represent a compensatory defense mechanism to 
counteract LPS-induced oxidative damage in the innate immune cells.

This study has several limitations. While the BV2 microglial cell line is often used as a substitute for primary 
microglia due to their similarities, including the expression of NADPH oxidase75,76 and comparable transcriptomic and 
proteomic profiles following LPS stimulation,77 more recent studies have raised concerns. Notably, proteomic differences 
between BV2 cells and primary microglia have been identified under M1 and M2 polarization and irradiation 
conditions.78 Beyond the limitations of the cell line, translating these findings to human microglia and in vivo models 

Figure 6 Effects of LPS and insulin on apoptosis in BV2 microglial cells. (A) Representative micrographs of TUNEL staining. Scale bar: 100 µm. (B) Quantitative results of 
TUNEL staining. n.s., not significant. Sample size = 12 biological replicates. See also Supplementary Table 1 for details of the statistical test results.
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poses further challenges. This is primarily due to the limited availability of nonpathological primary human microglia 
and the complexity of cell-type-specific effects of insulin in the brain.17 As such, future research using human microglia 
and in vivo models will be crucial to assess the applicability of these findings to human neuroinflammation. These 
limitations should be carefully considered when interpreting the results of this study.

Conclusion
Our results suggested that insulin 1) increases releases of Akt/NF-κB pathway-mediated pro-inflammatory mediators, 2) 
enhances phagocytotic activity, and 3) counteracts oxidative damage through repressing activity and expression of NOXs 
in microglia activated by endotoxin. These results provide insights into the molecular mechanisms through which insulin 
modulates microglial immune responses and contribute to understanding the potential of insulin as an anti-oxidative, 
anti-inflammatory, or anti-amyloid agent. This study may also offer new perspectives on the role of insulin resistance in 
neuroinflammation.
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