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Abstract

In this report, we demonstrate the pH-dependent, in vitro antimicrobial activity of a cationic,

amphiphilic random copolymer against clinical isolates of drug-resistant Staphylococcus

aureus. The polymer was developed toward a long-term goal of potential utility in the

treatment of skin infections. The proposed mechanism of action of the polymer is through

selectively binding to bacterial membranes and subsequent disruption of the membrane

structure/integrity, ultimately resulting in bacterial cell death. The polymer showed bacteri-

cidal activity against clinical isolates of methicillin-resistant or vancomycin-intermediate S.

aureus. The polymer was effective in killing S. aureus at neutral pH, but inactive under acidic

conditions (pH 5.5). The polymer did not exhibit any significant hemolytic activity against

human red blood cells or display cytotoxicity to human dermal fibroblasts over a range of pH

values (5.5–7.4). These results indicate that the polymer activity was selective against bac-

teria over human cells. Using this polymer, we propose a new potential strategy for treat-

ment of skin infections using the pH-sensitive antimicrobial polymer agent that would

selectively target infections at pH-neutral wound sites, but not the acidic, healthy skin.

Introduction

Drug-resistant bacterial infections have been rapidly increasing over the last several decades,

although resistance to synthetic antibiotics has been noted since their widespread application

as early as 1940. Recently, healthcare- and community-associated Staphylococcus aureus have

become a major concern to patients, with community-acquired infections becoming more

common [1]. However, conventional antibiotics such as fluoroquinolones and daptomycin

may no longer be viable options for treatment of bacterial infections in clinical situations due

to increased resistance [2]. In these cases, vancomycin has been considered the antibiotic of

last resort, but the increased frequency of reports of vancomycin intermediate S. aureus
(VISA) and vancomycin resistant S. aureus (VRSA) suggest that drug resistance among
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S. aureus will continue to be a clinical challenge for the foreseeable future [3]. It has been a sci-

entific challenge to develop new antimicrobial compounds which have a novel mechanism

effective in inhibiting growth of drug-resistant bacteria [4–6].

The therapeutic potential of host-defense antimicrobial peptides (AMPs) found in the

innate immune system has been explored as candidates for the development of new antimicro-

bials [7]. These molecules have been identified in a wide variety of organisms including insects,

reptiles, and up through mammals [8]. Many AMPs have been shown to be active against

drug-resistant bacteria and generally do not contribute to the resistance development in

bacteria, likely due to differences in mechanism of action [7–10]. While there is no general

consensus sequence among the evolutionarily diverse AMPs, generally they are relatively low

molecular weight (10-50aa), and are often rich in cationic and hydrophobic residues resulting

in an amphiphilic nature [9]. The cationic residues enhance the binding of these AMPs to

anionic bacterial membranes. Because human cell membranes have significantly lower net

negative charge, and this charge is localized to the cytosolic face of the membrane, electrostatic

interactions result in AMPs preferentially binding to bacterial cell membranes, imparting

inherent selectivity to bacteria over human cells. The proposed mechanism targets a funda-

mental cellular structure, the lipid membrane, which bacteria cannot “evolve” a resistance

against, which is consistent with the presence of AMPs throughout the evolutionary tree [8].

While attractive in their novelty and low resistance potential, there are significant limitations

for clinical use of AMPs [11]. Chief among them are high manufacturing cost, low stability

due to proteolytic degradation, and low oral availability [11].

In an attempt to develop new antimicrobials which are effective against antibiotic resistant

bacteria and address the issues described above, we previously designed and developed non-pep-

tide cationic amphiphilic random copolymers consisting of cationic and hydrophobic side

chains [12]. These synthetic copolymers were designed to mimic the mode of action of AMPs

but not necessarily the helical secondary structures commonly found in amphiphilic AMPs.

The selective antimicrobial activity of AMPs is directly linked to the cationic and hydrophobic

amino acids in the peptide sequences, and thus these same functionalities were designed into

the polymer structure. This synthetic polymer structure based in methacrylate was selected from

a library of related structures for further study because of potent activity and cell selectivity [13].

Specifically, the cationic groups of polymer were incorporated to bind to enhance electrostatic

interactions with anionic bacterial membranes, providing selective activity against bacteria. The

hydrophobic groups were included to drive the insertion of polymer chains into bacterial mem-

branes, causing membrane disruption. In our previous work, these polymers exhibited broad

spectrum activity, rapid bactericidal activity, and low propensity for resistance development in

bacteria, which are the hallmarks of the AMPs the polymers are designed to mimic [14].

S. aureus is a commonly encountered agent of skin infections, and prevention of commu-

nity associated, drug-resistant S. aureus infections are lagging behind similar efforts in hospital

settings [15]. In general, the pH values of normal and infected skin tissues are largely different;

the normal skin surface is acidic due to the acid mantle, yielding a typical pH in the range 5.4–

5.9 for human skin, although the reported pH values are varied depending in literature primar-

ily due to different methods for measurement of skin pH [16]. The normal, acidic environment

inhibits bacterial growth as well as suppresses the activity of proteases which are harmful to the

tissue [16]. However, the pH of infected sites is close to neutral because of the exposure of sub-

cutaneous tissue [17].

In this report, we investigated the in vitro antimicrobial activity of a cationic amphiphilic

random copolymer against clinical isolates of drug-resistant S. aureus. We also focused on the

pH-dependence of the antimicrobial activity of this polymer. These two areas are relevant to

the long-term interest in the potential application of these polymers as a topical antimicrobial
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for the treatment of S. aureus skin infections. The goal of this work is to exploit the inherent

pH differences in normal vs. infected skin which may impact the amphiphilic balance of the

polymers as well as the cellular properties of the infecting bacteria, resulting in pH-sensitive

susceptibility profiles. It is critical to know the pH-dependence on antimicrobial activity of the

polymer to determine if the polymer could potentially be effective as a topical antibiotic agent

toward treating skin infections. In this study, we characterized the in vitro antimicrobial activ-

ity against drug-resistant S. aureus as well as the cytotoxicity of the polymer to human cells.

The results indicated that the polymer was active against clinical isolates of drug-resistant S.

aureus. The results also indicated that the polymer was active under the neutral pH conditions

similar to that of an infected site, but were inactive under acidic conditions similar to the nor-

mal pH of skin, furthering the potential for future application as a topical antimicrobial agent.

Materials and Methods

Materials

Twelve MRSA colonies (including three VISA colonies containing the mecA gene) which were

isolated from the blood of ten patients treated for blood stream infections at the University of

Michigan Health System were used (Table 1). Human adult fibroblasts (PCS-201-012) and

fibroblast basal medium (ATCC PCS-201-030) were obtained from ATCC (Manassas, VA,

USA). Muller-Hinton (MH) broth was purchased from Fisher Scientific (Pittsburg, PA, USA).

Vancomycin hydrochloride was purchased from Hopira, Inc. (Chicago, IL, USA). 96-well

plates were purchased from Corning (Constar 3591, Corning, NY, USA). Cell counting kit-8

(CCK-8) was purchased from Dojindo laboratories (Kumamoto, Japan). 4-Amino-1-butanol

was purchased from TCI Chemicals. Di-tert-butyl dicarbonate was purchased from Oakwood

Chemicals. 2,2-azobisisobutyronitrile (AIBN) was purchased from Sigma-Aldrich (St Louis,

MO). 2-cyanoprop-2-yl-dithiobenzoate was purchased from Strem Chemicals (Newburyport,

MA). Trifluoracetic acid (TFA) and the solvents hexanes, dichloromethane, diethyl ether and

methanol were purchased from Fisher Scientific. Ethyl methacrylate (EMA), methacryloyl

Table 1. Susceptibility of MRSA to vancomycin, mupirocin, and PE31.

Colonya Vancomycin Mupirocin PE31

pH 7.4 pH 7.4 pH 5.5 pH 6.5 pH 7.4

MICb MBCc MICb MBCc MICb MBCc MICb MBCc MICb MBCc

1a 2 2 2 16 >200 >200 20 40 20 40

1b 1 1 2 4 >200 >200 15 20 15 20

2a 2 2 2 4 >200 >200 15 40 15 20

2b 1 >32 2 2 >200 >200 15 20 15 15

3 2 4 2 8 >200 >200 20 60 15 15

4 4 16 2 8 >200 >200 20 40 15 15

5 4 >32 16 32 >200 >200 25 40 15 20

6 1 >32 16 32 >200 >200 15 25 15 20

7 2 2 8 8 >200 >200 25 60 15 20

8 4 >32 2 4 >200 >200 20 30 15 15

9 2 2 4 4 >200 >200 15 20 15 15

10 2 2 2 4 >200 >200 20 40 15 15

aColonies 4, 5 and 8 are vancomycin-intermediate S. aureus (VISA) based on the CLSI criteria (MIC = 4–8μg/mL) [28].
bMinimum inhibitory concentration (μg/mL).
cMinimum bactericidal concentration for 99.9% killing (μg/mL).

doi:10.1371/journal.pone.0169262.t001
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chloride, 4-butanolamine, methyl 3-mercaptopropionate and di-tert-butyldicarbonate were

purchased from Acros Organics (part of Thermo Fisher Scientific, Geel, Belgium).

S. aureus growth under acidic conditions

To evaluate the impact of pH and a type of acids on bacterial growth, S. aureus clinical isolates

were grown in MH broth at three different pH values (5.5, 6.5 and 7.4). The broth (pH 7.4)

was acidified using each one of three different acids (hydrochloric, acetic, and lactic acids) to

give desired pH values. The initial bacterial suspension contained S. aureus with 2×106 colony-

forming units (CFUs) per ml. The bacterial suspensions with different pH values were incu-

bated at 37˚C for 24 hours. After the incubation, a 10-μl aliquot was removed from each well

and inoculated onto agar plates for viable colony counting.

Antibacterial susceptibility of S. aureus to PE31

The minimum inhibitory concentration (MIC) of the polymer was determined according the

standard protocol for broth micro-dilution method in 96-well plates, published by the Clinical

Laboratory and Standards Institute (CLSI) [18]. The bacterial isolates were grown to an early

stationary phase in MH broth for twelve hours and were harvested via centrifugation (2500 g).

The pH of MH broth (pH = 7.4) was adjusted to be 5.5 or 6.5 by adding lactic acid. The pH

adjusted MH broth was inoculated with bacteria, and aliquots (150 μL) were transferred into a

96-well plate. The polymer was dissolved in MH broth with the pH adjusted to match the cul-

ture conditions and then serially diluted to give a range of polymer concentrations. The poly-

mer stock solutions were added to the bacterial suspension on the plate. The final polymer

concentrations in the plate ranged from 0.25 to 200 μg/mL. The plates with the bacterial sus-

pension were placed in an EnSpire1 multimode plate reader (Waltham, MA) and incubated

at 37˚C for 24 hours. The optical density of assay solution at 600 nm was measured every hour.

The MIC value was defined as the lowest polymer concentration, in which no increase in the

optical density was detected. The assay solutions were serially diluted and inoculated on agar

plates, and the number of colonies was counted. Minimum bactericidal concentration (MBC)

was determined as the polymer concentration for 99.9% reduction in the number of viable

bacterial cells (colony forming unit, cfu) from the control without the polymer.

Zeta potential measurement of bacteria

Overnight cultures of the bacteria grown at three different pHs (5.5, 6.5 and 7.4) were washed

three times using 0.5 mM sodium phosphate buffer of the same pH. The washed bacteria were

resuspended in the sodium phosphate buffer of the same pH to give a final OD600 of 0.4. A

Malvern Zetasizer Nano ZS (Malvern Instruments, Worcestershire, England) was used to mea-

sure the zeta potential of bacterial samples. Potentials were calculated using the Smoluchowski

equation for electrophoretic mobility at 25˚C. For the calculation, the following parameters

were used: 78.54 for a dielectric constant of the dispersant, 0.89 cP of viscosity, and 1.33 for

refractive index. The zeta potential value was determined by 100 repetitions per sample. All

measurements were performed in three independent experiments for each colony of S. aureus.

Hemolysis assay

The hemolytic activity of the polymer was measured using an assay method as previously

described [19]. The polymer was dissolved in phosphate buffered saline (PBS) at pH 5.5, 6.5,

or 7.4, and the solutions were serially diluted in PBS of the same pH. The pH of PBS was

adjusted by lactic acid. This series of polymer solutions were added to a solution of washed
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human red blood cells (RBCs). The final hematocrit was 5%, and the final polymer concentra-

tions ranged from 8 to 1000 μg/ml. The assay plates were incubated at 37˚C for 4 h with shak-

ing (200 rpm). After the incubation, the plates were centrifuged at 3000 g for 5 min, and the

supernatants were transferred to a new plate. The released hemoglobin was determined by

measuring the absorbance of the supernatant at 576 nm. The hemolysis percentage was calcu-

lated by using the following formula:

Hemolysis ¼
OD576ðSampleÞ � OD576ðPBSÞ

OD576ðTritonX100Þ � OD576ðPBSÞ
� 100 ð1Þ

The negative control was PBS (pH 7.4) without polymer, and the positive control (100%

lysis) was RBCs treated with 0.2% Triton X-100.

Cytotoxicity of PE31 to human fibroblasts

Normal adult human dermal fibroblasts were used to evaluate the cytotoxic effects of PE31. A cell

suspension (100 μL, density of 105 cells/ml) in fibroblast basal medium was dispensed on 96-well

tissue culture plates for 24 h and incubated at 37˚C, under 5% CO2, to 80–90% confluence. The

fibroblasts were treated with PE31 solution diluted in fibroblast basal medium adjusted to three

different pH values (5.5, 6.5, or 7.4) at concentrations of 10, 50, 100 and 1000 μg/ml. The treated

cells were incubated at 37˚C for 24, 48 and 72 h. A CCK-8 solution (10 μL) was then added to

each well. The plates were incubated for another two hours at 37˚C, and the absorbance of solu-

tions were measured at 450 nm. Cell viability (%) was determined as the relative value to that of

cells in media pH 7.4 without the polymer, calculated using the following formula;

Cell Viability %ð Þ ¼
OD450ðSampleÞ � OD450ðblankÞ

OD450ðContol pH7:5Þ � OD450ðblankÞ
� 100 ð2Þ

Statistical analysis

All the experiments were carried out three times in duplicate samples. All analyses were per-

formed using one- or two-way ANOVA when appropriate. The graphics were reported as the

means and the standard deviation for the means. Statistical significance was defined p-values

less than 0.05. All of the statistical procedures were performed using RStudio Version 0.98.932

(RStudio, Boston, MA).

Results

Antimicrobial polymer design and synthesis

We previously designed, synthesized, and characterized a series of cationic, amphiphilic copoly-

mers with antimicrobial activity [12]. We selected the methacrylate copolymer consisting of

aminobutyl methacrylate (ABMA) and ethyl methacrylate (EMA) or poly(ABMA-EMA) (Fig 1)

for further study because the polymer formulation showed both potent antimicrobial activity

and a high degree of selectivity to bacteria over human cells [12]. Traditional antimicrobial poly-

mers are high molecular weight polycations with quaternary ammonium groups modified with

long alkyl groups [20–22]. By contrast, our polymer was designed to be relatively small and con-

tain primary ammonium groups, which mimics the overall size and cationic moieties (from Lys

residues) traditionally found in AMP sequences. The synthetic procedure of poly(ABMA-EMA)

was previously reported [23]. The polymer was synthesized by RAFT polymerization (S1 Fig).

While the resulting polymer composition could be altered by varying the ratio of monomers in
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the polymerization, we prepared the specific polymer as described below. This polymer is

referred as PE31 through the report. The degree of polymerization (DP) of the PE31 was 16, yield-

ing a number-average molecular weight of 2,600 g/mol, which comparable to low molecular

weight α-helical AMPs such as the well-characterized natural AMP magainin 2 (2,467 g/mol)

[24]. The mole percentage of EMA was 31 mole %, yielding an approximately 2:1 ratio of cat-

ionic to hydrophobic moieties in the average PE31 molecule (See S2 Fig for 1H NMR spectrum).

pH- and acid-dependent bacterial growth

Before examining the pH-dependent antimicrobial activity of PE31, we determined the general

effect of pH on the growth of S. aureus as well as any influences from the type of acid used to

modify solution pH (Fig 2). This is important to the interpretation of later results as any basal

change in bacterial growth rates due to pH may affect the inhibitory effects of PE31. We

Fig 1. Chemical structure of random methacrylate copolymer PE31. The average mole percentage of EMA in a polymer chain was 31 mole %, and the

degree of polymerization (DP) was 16. The mole percentage and DP were determined by 1H NMR analysis. The number average molecular weight (Mn) of

PE31 was 2,600 g/mol, which was calculated based on the DP and the molecular weights of monomers and chain transfer agents. The molecular weight of

trifluoroacetic acid was excluded in the calculation of Mn for comparison with those of AMPs.

doi:10.1371/journal.pone.0169262.g001
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selected lactic acid, acetic acid, and hydrochloric acid for this study. Lactic acid was included

as it is one of acidic components in sweat from eccrine glands [17]. Acetic acid significantly

decreased the bacterial growth at pH 5.5 (p< 0.01) as compared to pH 7.4 while no significant

effect at pH 6.5. Lactic acid caused no significant reduction in the bacterial growth at pH 6.5 or

5.5 compared to the control. It is not clear at this point why lactic acid has no inhibitory effect

on S. aureus unlike acetic acid. Based on these results, lactic acid was used to acidify buffer and

media solutions in the following antibacterial assays.

Antimicrobial activity of PE31 against MRSA clinical isolates

Next, we examined the antimicrobial activity of the PE31 polymer against MRSA clinical iso-

lates. The minimum inhibitory concentration (MIC, concentration required to inhibit growth

in an overnight culture) of vancomycin, mupirocin, and the polymer PE31 were determined by

Fig 2. Effect of media pH and acids on S. aureus growth. 24-hour change in bacterial density of S.aureus grown at pH 5.5, 6.5, and 7.4 in MH broth. The

pH of MH broth was adjusted by the acids indicated. The initial bacterial suspension contained S. aureus with 2×106 colony-forming units (CFUs) per ml

presented by a broken line. Results shown are the mean and standard deviation of three independent experiments in duplicate samples per condition.

doi:10.1371/journal.pone.0169262.g002
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monitoring the turbidity (optical density) of bacterial cultures as a measure of bacterial growth

(Fig 3) [18] The minimal bactericidal concentration of PE31 (MBC) was also determined as the

concentration required to achieve 99.9% killing of bacteria. We included antibiotic mupirocin,

which has been used to treat topical S. aureus infections [25] as a parallel for the long-range

interest in using PE31 as a treatment of S. aureus skin infections. As anticipated from previous

reports, vancomycin and mupirocin inhibited the growth of MRSA with MIC and MBC values

of 2–32 μg/mL at pH 7.4, depending on the individual strain [26, 27]. Among the tested MRSA

clinical isolates, the MIC values of colonies No. 4, 5, and 8 are 4 μg/mL, which are greater than

the MIC values of 1–2 μg/mL for other colonies. These strains are classified as vancomycin-

intermediate S. aureus (VISA), according to the criteria (MIC = 4–8 μg/mL) published by the

Clinical and Laboratory Standards Institute (CLSI) [28][ref] The polymer PE31 inhibited

growth of MRSA strains at pH 7.4 with MIC values of 15 or 20 μg/mL against all strains tested

(Table 1). The PE31 yielded MBC values which were the same or close to the MIC values, sug-

gesting that PE31 exerts the inhibitory effects by killing S. aureus, i.e., a completely bactericidal

mechanism.

Fig 3. pH-dependent anti-staphylococcal activity of PE31. Representative growth curves of one strain of methicillin-resistant S. aureus (Strain No. 7) as

measured by culture turbidity at 600 nm (OD600). PE31 concentration: 0 μg/mL, 15 μg/mL, 30 μg/mL, and 200 μg/mL. The data points and error bars represent

mean and standard deviation of three replicates in duplicate samples per condition.

doi:10.1371/journal.pone.0169262.g003
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pH-dependent anti-S. aureus activity of PE31

The pH responsiveness of the anti-staphylococcal activity of PE31 was determined. We used

three different pH conditions: neutral (pH = 7.4) and low pH conditions (pH = 6.5 and 5.5),

which reflect the infected (exposure of pH-neutral subcutaneous tissue) and healthy skin con-

ditions, respectively. Inhibition of bacterial growth was found to be both dose-dependent and

pH-dependent, with PE31 being highly effective at pH 7.3 but exhibiting no detectable antimi-

crobial effect at pH 5.5 (Table 1) (Fig 3). The MIC values were 15 or 20 μg/mL at pH 7.4, and

the MIC values were parallel or slightly increased at pH 6.5 to 15–60 μg/mL (Table 1). At pH

5.5, all MIC values were greater than 200 μg/mL, indicating significant loss of function. The

MBC values also increased from 15 or 20 μg/mL at pH 7.4 to> 200 μg/mL at pH 5.5. Together,

these results indicate that PE31 is no longer active against S. aureus under acidic conditions

and exhibits clear pH-dependent activity.

Considering the primary binding interaction of PE31 to the bacterial cell surface is driven

by coulombic interactions, binding could be affected if the charge on the S. aureus cell surface

changes when the pH of the growth medium changes. If the net surface charge decreases

under acidic conditions, the electrostatic binding of PE31 to bacteria would be reduced, result-

ing in decreased activity. To test this hypothesis, we determined the zeta potentials of all strains

studied at various pH conditions. As shown in Fig 4, the zeta potential of S. aureus is strongly

correlated to the culture media pH values. The bacteria at the pH 7.4 were found in more nega-

tive zeta potential, while most bacteria in pH 5.5 have less negative potential (p< 0.05). The

result indicates that the bacterial surface of S. aureus is more negatively charged at pH 7.4 than

Fig 4. Relationship between pH, bacterial zeta potential, and minimum inhibitory concentration of PE31. Data reflect multiple replicate zeta-potential

measurements and MIC measurements across ten clinical blood isolates of methicillin-resistant S. aureus.

doi:10.1371/journal.pone.0169262.g004
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under acidic conditions. Similar pH-dependent effects on the zeta potential of S. aureus have

been also reported in literature [29, 30].

The MIC values of PE31 were also correlated to the pH of the bacterial growth media

(Table 1 and Fig 4). The MIC values were lower for higher pH values, indicating that PE31 was

more active against S. aureus with a more negatively charged surface. The surface of the bacte-

rium also becomes more negatively charged as pH was increased, which would enhance the

electrostatic binding of PE31 the S. aureus cell surface. However, as discussed below, the overall

hydrophobicity of PE31 could be also increased as the solution pH was increased, which may

enhance the membrane permeability. Taken together, the pH-dependent activity of this poly-

mer may result from a combination of enhancing both hydrophobic and electrostatic compo-

nents of the mechanism of action in binding and membrane disruption.

Cytotoxicity of PE31 to human cells

The in vitro cytotoxicity of PE31 to host cells was examined using several approaches. First, a

standard hemolysis assay was performed to determine if PE31 disrupts human red blood cell

(RBC) membranes. If PE31 disrupts the RBC membranes, hemoglobin is released into the solu-

tion. In this assay, washed human RBCs were incubated with varied concentrations of PE31 at

the three pH values previously tested (pH 5.5, 6.6, and 7.4). The hemolytic activity of PE31 was

measured as the percentage of hemoglobin release from RBCs normalized by a detergent con-

trol to induce complete RBC lysis. In general, the percent hemolysis induced by PE31 increased

as PE31 concentration increased. Notably while hemolysis was modest at the highest concen-

trations tested, (percent hemolysis * 30% at pH 7.4 at 2000 μg/mL), there was negligible

hemolytic activity until the concentrations of polymer were well above the MBC value (15–

40 μg/mL at pH 7.4) (Fig 5). The hemolytic activity at pH 7.4 was higher than that in either of

the more acidic conditions, indicating that the hemolytic activity of PE31 was increased as the

pH was increased, which is consistent with the pH-dependent anti-S. aureus activity.

Next, in an attempt to more accurately reflect the intended application conditions of this

molecule, the cytotoxicity of PE31 against human dermal fibroblasts was studied. The cell via-

bility of fibroblasts was determined after incubation with PE31 for 24 or 72 hours. The cell via-

bility (%) was determined relative to that of fibroblasts at pH 7.4 in the absence of PE31. It is

important to highlight that after 24 hours, the viability of fibroblasts at pH 5.5 without PE31 is

lower than that of fibroblasts at pH 7.4, regardless of polymer concentration, indicating that

the acidic conditions potentially reduced the metabolic activity of cells and/or cell prolifera-

tion. When the cell viability data at the same pH values (pH 5.5–7.4) were compared, there

were no significant differences in the viability after incubation with PE31 for 24 or 72 hours

(Fig 6). After 72 hours, it appears that the effect of pH on the cell viability is no longer as severe,

and the average viability is > 80% up to 1000 μg/mL PE31. The range of polymer concentration

tested in this study (50–1000 μg/mL) is well above the MIC values of polymer at pH 6.5 and

7.4 (MIC = 15–60 μg/mL). The results from the hemolysis and cytotoxicity assays indicate that

PE31 was selective to S. aureus over both human RBCs and human dermal fibroblasts and

appeared to exhibit an easily accessible therapeutic window for this application.

Discussion

The results from this study show that the cationic amphiphilic random copolymer PE31 acts a

pH- and dose-dependent antimicrobial agent. PE31 inhibited bacterial growth of clinically iso-

lated drug-resistant S. aureus (MRSA and VISA) at neutral pH 7.4. Most of the MBC and MIC

values of PE31 against the same bacterial isolates were the same or close (within 3 fold)

(Table 1), indicating that the polymer exerted antimicrobial effects against MRSA and VISA

A pH-Responsive Cationic Amphiphilic Random Copolymer against MRSA

PLOS ONE | DOI:10.1371/journal.pone.0169262 January 6, 2017 10 / 17



via a bactericidal mechanism. However, PE31 was effectively inactive at pH 5.5, the approxi-

mate conditions similar to the pH environment of human skin. The bactericidal activity of this

polymer would favor eradication of S. aureus from dermal infection sites. In addition, PE31

was active with similar MIC value against VISA strains and other vancomycin susceptible

MRSA strains. These results suggest that the antimicrobial mechanism of PE31 was not related

to the standard antibiotic resistance mechanisms of S. aureus, consistent with the proposed

membrane disrupting mechanism of PE31. While the data indicating pH dependent activity is

clear, the underlying mechanism for the change in activity is still a ripe area for investigation.

It is possible that the sharp differences in activity stem from pH-dependent changes in the

polymer itself and/or the target bacterium.

There are several possibilities for pH dependent changes in the bacterial physiology in

response to pH. The zeta-potential experiments (Fig 4) show that the overall surface charge

density on the S.aureus cell membrane changes in response to pH. However, it is not clear why
the surface charge of S. aureus is pH dependent. The increased negative surface charge of S.

aureus could be attributed to acidic groups of biopolymers such as teichoic acids, major com-

ponents of S. aureus cell wall. However, the pKa of phosphate groups of teichoic acid is ~2,

Fig 5. Hemolytic activity of PE31 against RBCs. Reported values are mean and standard deviation of three replicates in duplicate samples.

doi:10.1371/journal.pone.0169262.g005
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suggesting that the teichoic acid is fully anionic across the pH range tested here (pH 5.5 to 7.4).

We speculate that other acidic or basic groups in the S. aureus cell wall could contribute to the

pH-dependent differences, although no specific groups have been identified in the literature.

Changes in S. aureus gene expression response to environmental pH may also contribute to

the pH-dependent activity of PE31. The GraRS two-component sensor system in S. aureus has

previously been shown to respond to cationic, amphiphilic hydrophobic peptides and poly-

mers [31–35]. Deletion of this two-component sensor has been shown to modulate the suscep-

tibility of S. aureus in a pH dependent manner. Additionally, studies on GraRS mediated

responses to host defense peptides showed similar pH dependent activity with several peptides

exhibiting lower anti-Staphylococcal activity at low pH. This regulatory sensor controls the

expression of several genes (mprF and dlt) which modulate cell surface charges in S. aureus.
Other staphylococcal regulatory pathways have also been linked to cationic, amphiphilic pep-

tides and polymers include the NsaSR system involved in sensing cell envelope stress [35, 36]

and the SaeRS regulatory system involved in virulence, which was also shown to be influenced

by the pH of the medium [37]. Signaling through these bacterial sensors are clearly linked to

pH dependent activity of antimicrobial peptides, thus they may also be involved in the pH

dependent activity of the cationic, amphiphilic PE31.

Due to the low pH conditions PE31 was exposed to for 24 h in the assay and the reactivity of

the ester groups in the polymer side chains, hydrolysis of the esters in the polymer side chains

could potentially contribute to the loss of function. The stability of PE31 under acidic condi-

tions was analyzed by incubating at pH 5.5 followed by examination of the polymer structure

by 1H NMR (S3 Fig and S1 Text). The results indicated that there was no significant change in

the mole ratio of cationic side chains and ethyl side chains before and after the incubation at

37˚C for 24 hours in 0.1M sodium acetate/acetic acid buffer of pH 5.5. While lactic acid was

Fig 6. The cytotoxicity of PE31 against cultured human dermal fibroblasts after incubation for 24 hours (A) or 72 hours (B). The cell viability was

determined as the relative value to that of cells at pH 7.4 without PE31. Reported values represent the mean and standard deviation of three independent

experiments in duplicate samples per condition.

doi:10.1371/journal.pone.0169262.g006
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used for the antibacterial assay, the signal from lactic acid in the 1H NMR spectrum overlapped

with those from the polymer side chains. Therefore, we could not determine the effect of lactic

acid on the hydrolysis of side chain esters. While the acidic conditions did not significantly

affect the ratio of hydrophobic and cationic moieties of the polymer, the NMR data is incon-

clusive regarding any breakdown of the esters and resulting liberation of side chains. Any

potential could be a contributing factor in the loss of activity at lower pH. However, any hydro-

lysis of the polymer side chains that impacts overall efficacy would need to be extremely rapid

to be consistent with our data. In Fig 3, the untreated S. aureus at pH 5.5 grew with a similar

profile to all of the pH 5.5 samples treated with PE31, even at the highest concentration

(200mg/ml, ~10x greater than the MIC at pH 6.5). If polymer degradation were a significant

factor in loss of activity, there would undoubtedly be some fraction of in-tact polymer at the

early time points to inhibit growth. Additionally, since the PE31 was shown to be bactericidal,

removal of the PE31 via hydrolysis would not allow for a rapid recovery of the S. aureus
exposed to the in-tact polymers, resulting in a delay or shift in the growth curves, which was

not observed. While future studies on the breakdown hydrolysis of the polymer side chain

esters under different conditions are warranted, it does not appear that this is the primary fac-

tor affecting pH-dependent activity. Our results suggest that other factors could also contribute

to the pH dependent activity of PE31 against S. aureus as discussed below.

The pH-dependent activity of PE31 against S. aureus might also be attributed to the changes

in the amphiphilic properties of the polymer chain. The cationic groups of PE31 are expected

to bind to the anionic bacterial membranes through electrostatic interactions, leading to selec-

tive activity to bacteria over human cells. Upon binding to bacterial membranes, the hydro-

phobic side chains of PE31 are inserted into the hydrophobic region of the bacterial lipid

membrane, which subsequently causes membrane disruption and ultimately bacterial cell

death. However, if the polymer chain is highly hydrophobic, the hydrophobic binding would

be dominant, resulting in non-specific binding to bacteria and human cells. Therefore, the bal-

ance of cationic and hydrophobic characteristics is the key determinant in the design of cat-

ionic amphiphilic polymers with potent activity and cell selectivity [12]. Accordingly, changes

in the cationic-hydrophobic balance, caused by changing the solution pH, could alter the anti-

microbial activity of PE31. PE31 showed increased hemolytic activity at pH 7.4 against human

RBCs, which have primarily zwitterionic cell membrane surface. The result may indicate an

increase in the net hydrophobicity of PE31 at pH 7.4. Any increase in net hydrophobicity of

PE31 is likely to increase the ability of PE31 to disrupt bacterial membranes, resulting in the

higher antimicrobial activity. Alternatively, the behavior of the polymer itself may be influ-

enced by the environmental pH. Amphiphilic random copolymers have been known to form

intramolecular or intermolecular compact, micelle-like aggregates due to the association of

hydrophobic side chains in water [38–40]. Similarly, the polymer chains of PE31 do not adopt

regular, folded, three-dimensional structures in solution, however they are also likely to exist

in such a compact or “collapsed” state in solution. This collapsed state is conceptually similar

to the folding of proteins with hydrophobic groups sequestered at the interior of the collapsed

polymer and hydrophilic and charged groups orienting toward the surface. Our previous work

indicated that the polymer would likely contain an equal fraction of charged side chains at

both pH 5.5 and 7.4 [13]. However, it is possible that the overall shape or dynamic structure of

the collapsed chain could be affected by the pH. This could result in differential exposure of

hydrophobic groups, resulting in the observed pH-dependent activity. Additionally, the solu-

tion aggregation state of the polymer may also be influenced by the pH. Changes in polymer

aggregation in solution could affect the binding of the polymer by shifting the thermodynamic

equilibrium between the solution/unbound and the membrane-associated states. While we

currently have no direct evidence regarding the polymer solution properties, the aggregation
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and collapsed states of polymer chains in the assay media are important factors to be investi-

gated to determine the underlying causes of the pH-dependent activity of PE31.

We envision that a future clinical application of an antimicrobial polymer as a topical agent

for treatment of infection on skin or subcutaneous tissues. The data clearly showed PE31 was

active against MRSA at neutral pH but inactive at the low pH 5.5, reflective of infected and

healthy skin tissue, respectively. It is generally accepted that bacterial infection sites are acidic

owing to the abscess formation through the normal host defense response [41]. Accordingly,

previous studies in the literature were conducted for antimicrobial polymers or drug delivery

systems with acid-activated mechanisms that were intended to target the acidic infection sites

[42, 43]. Our study reported here appears to contradict with such traditional approaches using

acid-activation mechanisms. However, the normal skin surface is acidic due to the acid mantle

to prevent growth of pathogenic bacteria, while the pH of infectious sites become more neutral

because of the lack of stratum corneum function maintaining acidic skin surface pH [44]. In

this case, the reported models of acid-activation of antimicrobials would be ineffective due to

the compounds becoming active under “normal” conditions and less active or inactive at the

infection site. Therefore, the strategy to develop an antimicrobial which is active at pH-neutral

infection sites, but inactive at the acidic health skin surfaces can specifically be applied to these

conditions. Additionally, our strategy of acid-inactivated antimicrobial polymers may also

minimize undesired side effects associated with non-specific killing of commensal bacteria,

adapted to the normal acidic skin environment. However, while we propose this new strategy,

this will require significant future studies including in vivo testing to confirm the efficacy and

retention of the pH-sensitive activity of PE31 in a true skin-infection model, as well as a thor-

ough mechanistic analysis of in vitro and in vivo polymer degradation via hydrolysis of side

chain esters.

Conclusion

In summary, cationic amphiphilic copolymer PE31 showed bactericidal activity against drug-

resistant S. aureus (MRSA and VISA) clinical isolates. PE31 was active against S. aureus at neu-

tral pH 7.3, but inactive at pH 5.5. PE31 did not cause any significant hemolytic activity to

human RBCs or cytotoxicity to human dermal fibroblasts. Our work suggests potential future

utility of PE31 as a selective agent with inherent pH-responsive activity against drug-resistant

S. aureus. We propose a new potential strategy using the pH-responsive polymer, which would

target pH neutral S. aureus in skin infection sites, but it is inactive at the acidic health skin.

However, we acknowledge that in vivo efficacy of the polymer needs to be thoroughly investi-

gated for further development of PE31 as a topical antimicrobial agent.
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