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ABSTRACT 

Artificial intelligence ( AI ) is a science that involves creating machines that can imitate human intelligence and learn. AI 
is ubiquitous in our daily lives, from search engines like Google to home assistants like Alexa and, more recently, OpenAI 
with its chatbot. AI can improve clinical care and research, but its use requires a solid understanding of its 
fundamentals, the promises and perils of algorithmic fairness, the barriers and solutions to its clinical implementation, 
and the pathways to developing an AI-competent workforce. The potential of AI in the field of nephrology is vast, 
particularly in the areas of diagnosis, treatment and prediction. One of the most significant advantages of AI is the 
ability to improve diagnostic accuracy. Machine learning algorithms can be trained to recognize patterns in patient data, 
including lab results, imaging and medical history, in order to identify early signs of kidney disease and thereby allow 

timely diagnoses and prompt initiation of treatment plans that can improve outcomes for patients. In short, AI holds the 
promise of advancing personalized medicine to new levels. While AI has tremendous potential, there are also significant 
challenges to its implementation, including data access and quality, data privacy and security, bias, trustworthiness, 
computing power, AI integration and legal issues. The European Commission’s proposed regulatory framework for AI 
technology will play a significant role in ensuring the safe and ethical implementation of these technologies in the 
healthcare industry. Training nephrologists in the fundamentals of AI is imperative because traditionally, 
decision-making pertaining to the diagnosis, prognosis and treatment of renal patients has relied on ingrained practices, 
whereas AI serves as a powerful tool for swiftly and confidently synthesizing this information. 

LAY SUMMARY 

Artificial intelligence ( AI ) has become an integral part of our lives, from search engines and home assistants to 
advanced chatbots like ChatGPT. In the field of nephrology, AI holds immense potential for improving diagnosis, 
treatment and prediction. AI algorithms can be trained to analyze patient data, including lab results, medical history 
and imaging, to identify early signs of kidney disease. This enables timely diagnoses and personalized treatment 
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plans, leading to better patient outcomes. However, the implementation of AI in healthcare faces several challenges. 
The European Commission’s proposed regulatory framework aims to promote the safe and ethical use of AI in 

healthcare. To fully leverage the benefits of AI, nephrologists and other healthcare professionals need to be educated 
about its fundamentals and its potential applications in routine patient care. This will enable them to effectively 
utilize AI technologies and provide better care for kidney patients. 

Keywords: artificial intelligence, kidney, machine learning, natural language processing, nephrology 
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NTRODUCTION 

rtificial intelligence ( AI ) is described as the science and engi-
eering of creating intelligent machines that can mimic human 
ntelligence and learn. Many of us might think that AI is some-
hing complex that we do not want to get involved with because
e are doctors, we know our speciality, and we do not need any
igure 1: Examples on how OpenAI is used. ( A ) Questions and answers from ChatGPT.

ransplanted kidney in his hand. 
artificial” help. But fortunately, or unfortunately, this is not an
ption. We live wrapped in AI: Google, Amazon, Tesla, Alexa,
oomba, Siri, DeepL, facial recognition on our mobile phone,
tc., as well as, more recently, OpenAI with its chatbot, ChatGPT,
nd its customized image designer, DALL·E 2 ( Fig. 1 ) . ChatGPT
s a large language model ( LLM ) based on the GPT ( Generative
 ( B ) Proposal to DALL •E 2: oil paintings of a patient leaving hospital with a new 



2316 L. Fayos De Arizón et al.

Figure 2: ML, step by step: ML is a type of AI that enables computer systems to learn from training data without explicit programming. DL is a more specific subset of ML 
that uses algorithms with multiple layers, simulating the complexity of the human brain. In healthcare, popular DL algorithms include artificial neural networks ( ANNs ) , 
convolutional neural networks ( CNNs ) and recurrent neural networks ( RNNs ) . There are three main types of ML algorithms: supervised learning, unsupervised learning 

and reinforcement learning. Supervised learning uses labeled data to train classification models, while unsupervised learning identifies clusters in unstructured data. 
Reinforcement learning relies on trial and error to learn from feedback. Once the model has been selected and data has been inputted, it must be trained with the 
data to produce accurate results. The model should then be validated to ensure it can generalize to new data and be reproducible for reliable clinical use. 
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re-training Transformer ) architecture, trained on a dataset of 
nternet text to generate human-like text, while DALL·E 2 is a 
ew AI system that can create realistic images and art from a 
escription in natural language. These astonishing AI tools can 
elp us all. And we say “help”because in most areas of medicine,
I will not replace the professional; rather, whoever understands 
nd can manage it is likely to be a better professional and to 
ake better informed decisions. In this regard, there is much 
ontroversy in the USA about the nomenclature, with the Amer- 
can Medical Association using the term “augmented intelli- 
ence” [ 1 ]. In fact, AI and digital health will augment ( not replace ) 
ur ability to improve care and maintain health. This means us- 
ng AI algorithms to augment human intelligence rather than to 
eplace it. 

AI has the potential to improve clinical care and research in 
ephrology, but its use requires a solid understanding of the fun- 
amentals of AI, the promises and perils of algorithmic fairness,
he barriers and solutions to its clinical implementation, and the 
athways to developing an AI-competent workforce. To adopt 
 new technology, clinicians and scientists need to be familiar 
ith its fundamentals, fluent in its vocabulary and nomencla- 
ure, and inspired by its potential to improve outcomes for pa- 
ients with or at risk of kidney disease. Due to the integration 
f AI into the field of medicine, nephrologists will soon engage 
ith this technology on a daily basis, making it essential for 
he nephrology community to be well-informed and educated 
bout its implications. Nephrologists around the world need to 
nderstand the core concepts of AI and its subtypes, and how 

he models are created, so that they can critically evaluate them 

nd actively participate in minimizing the current challenges.
iven nephrologists’ medical duties and legal responsibilities for 
he care they provide, they may be understandably reluctant to 
b

ake action on a patient based on unexplained decisions made 
y black-box algorithms. The success of any AI-based study will 
herefore require strong interdisciplinary collaboration between 
edical experts and computer scientists, always avoiding the 
lack-box feeling which refers to the opaqueness that often per- 
lexes AI users when attempting to elucidate the algorithm’s 
perations. Black-box is directly related with the lack of inter- 
retability of the AI system. Interpretability, also often referred 
o as explainability, refers to the study of how to understand the 
ecisions of machine learning ( ML ) systems, and how to design 
ystems whose decisions are easily understood, or interpretable.
nterpretable AI systems yield less risk as it can be better iden-
ified whether the model makes sense or not, given the obser- 
ation of parts of the AI in which the reasoning might be flawed
 for instance due to confusing variables ) . 

For all these reasons, education on AI should be one of the 
bjectives of nephrology societies ( including the European Renal 
ssociation ) . A focus on the basics of AI education for nephrol-
gists will enhance our specialty and improve patient care. 

In this review, we aim to provide a very basic knowledge of 
hat AI and more specifically ML is, as well as to outline its chal-

enges and applications in renal medicine. 

ACHINE LEARNING 

L is a subset of AI that involves algorithms and statistical mod- 
ls that enable computer systems to improve their performance 
n a specific task based on the analysis of data ( Fig. 2 ) . ML al-
orithms are designed to learn from training data, identify pat- 
erns, and make predictions or decisions without being explic- 
tly programmed to do so. The application to healthcare has 
een established for decades for classical methods like logistic 
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egressions, but the use of newer methods like neural networks
s still incipient, and although the number of publications is
uite large, the number of models deployed on the healthcare
arket are still increasing at a slow pace [ 2 ]. 
There are three main types of ML algorithm: supervised 

earning, unsupervised learning and reinforcement learning. 
Supervised learning algorithms learn from labeled data,

here the input data are already categorized or labeled with
nown outcomes. These are commonly used in healthcare appli- 
ations for tasks such as predicting disease diagnosis or patient
utcomes. 

Unsupervised learning algorithms, on the other hand, are 
sed to identify patterns in unlabeled data, meaning that the
nput data are not labeled with known outcomes. These algo-
ithms are used to find structure in data, e.g. identification of
lusters of patients with similar disease symptoms or charac- 
eristics. 

Reinforcement learning algorithms are used to learn through 
rial and error and involve conveying feedback to the algorithm
fter this has generated its outputs. In such a scheme, an al-
orithm could receive feedback from the patient’s response to 
reatment generated by an ML algorithm and adjust the treat-
ent plan accordingly to achieve the best possible outcome. 
These algorithms are to be trained on sets of medical data,

uch as electronic health records or medical images. The qual-
ty and quantity of the training data are critical factors for the
erformance, robustness and general trustworthiness of the de- 
ised algorithm. Such algorithms, once trained, can provide a 
rediction or output such as a diagnosis, a risk score for a par-
icular condition, a natural language response to a patient state-
ent, molecular subtyping or survival data projected from pa- 

ient trajectories. 
One of the most important aspects of training a ML algorithm

or clinical applications is the quality and quantity of the train-
ng data. The algorithm’s ability to make accurate predictions 
nd generalizations depends critically on the quality and rep- 
esentativeness of the data used to train it. If the training data
re biased, incomplete or not representative of the population 
or which this algorithm will be deployed, i.e. if the training data
esign is poor, the algorithm may not perform well in real-world
ettings and may even be liable to biased assessments. These
efects might not be evident, as they might be the result of a
iased workflow, for instance if a segment of the population is
ess likely to receive a treatment due to systematic or uninten-
ional exclusion of that segment of population ( e.g. of racist or
conomic selection nature ) . 

The concept of generalization refers to how well the algo-
ithm performs on new data on which it has not been trained. If
he algorithm is overfitting to the training data, it will not gen-
ralize well. Overfitting occurs when the algorithm learns the 
oise, bias, confounding effects or random variation in the train-
ng data instead of the underlying clinical patterns. To prevent
verfitting, the algorithm is generally validated on a separate 
ataset, called the validation dataset. The validation dataset is 
sed to evaluate the performance of the algorithm and ensure
hat it is not overfitting to the training data, thus ensuring the
orrect generalization of the algorithm. 

Other factors can affect the quality and overall generalization 
f an ML algorithm, including choice of model, the hyperparam- 
ters of the model and the evaluation metrics used to assess the
erformance of the algorithm. The choice of model depends on
he type of data and the task for which the algorithm is being
eveloped. For example, if the algorithm is being developed to
nalyze endoscopy medical images, a convolutional neural net- 
ork may be a good choice of model [ 3 ]. If the algorithm is being
eveloped to predict outcomes, a logistic regression model may
e more appropriate. 

Hyperparameters are settings that are used to fine-tune the
odel and can affect its performance. Examples of hyperparam-
ters include the learning rate, batch size and number of hidden
ayers for a neural network. The optimal values for hyperparam-
ters can be determined through a process called hyperparam-
ter tuning, where the model is trained and evaluated with dif-
erent hyperparameters. All ML and AI models have some sort
f hyperparameter design [ 4 ]. 
Additional concepts relevant to ML development for medi-

al use are those of reproducibility. ML in health must be repro-
ucible to ensure reliable clinical use. This can be achieved with
he publication of open datasets and the provision of code acces-
ibility, which is still an open issue in the case of health-related
L models [ 5 ]. 
Deep learning ( DL ) is a subset of ML that involves algorithms

nspired by the structure and function of the human brain. These
lgorithms, called artificial neural networks, consist of multiple
ayers of interconnected nodes that can learn to recognize pat-
erns and make decisions based on input data. DL algorithms are
articularly effective in handling unstructured data, such as im-
ges, video and natural language, and have been used in appli-
ations such as image and speech recognition, natural language
rocessing ( NLP ) , autonomous driving and healthcare [ 6 ]. 

ATURAL LANGUAGE PROCESSING 

LP is a field of AI that deals with the interaction between com-
uters and human language. Specifically, NLP aims to enable
omputers to understand and generate natural language, as well
s to perform various tasks such as text generation, text classi-
cation, machine translation and information extraction ( Fig. 3 ) .
NLP has undergone a significant shift in recent years, mov-

ng from a mainly rule-based approach to one that relies heav-
ly on ML. This shift has been instrumental in enabling NLP to
chieve better results. Rule-based approaches have significant 
imitations, such as time-consuming and labor-intensive devel- 
pment, requiring domain experts to spend significant time and
ffort crafting rules and patterns. Additionally, rule-based sys-
ems can struggle to handle the variability and complexity of
atural language and do not generalize well to newer domains. 
ML techniques have enabled NLP systems to overcome many

f these limitations. ML-based systems are trained on datasets,
llowing the ML algorithms to learn patterns and associations.
L-based systems adapt to new data and contexts more eas-

ly than rule-based systems and can achieve higher levels of ac-
uracy and performance [ 7 ]. These ML algorithms, able to learn
bout language, are referred to as language models. Although
anguage models, statistical representations of language, have 
een used since 1948 [ 8 ] in applications like spell checking,
pecifically, LLMs [ 9 ] have played a key role in improving the
uality and effectiveness of embeddings, the numerical repre-
entation of a words or documents that captures its context and
eaning, and therefore the results in NLP tasks. LLMs are a type
f neural network that have been trained on vast amounts of text
ata, allowing them to capture a wide range of linguistic pat-
erns and relationships. LLMs might be able to capture the sub-
le differences in meaning between terms like “glomerular” and
proteinuria” that are closely related, as well as between terms
ike “heart attack” and “lung cancer” that are not. 

NLP use cases vary from improving patient care to increas-
ng operational efficiency and reducing errors. In the context of
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Figure 3: Use of NLP to extract data from medical records. NLP, a branch of AI, can convert the human language used in medical records, which may include typing 
errors, into a computer-understandable language in the form of algorithms. 
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linical care, NLP is being used to automatically extract relevant 
nformation from medical records; for example, diagnoses, med- 
cations and laboratory results can be extracted from electronic 
ealth records ( EHRs ) [ 10 ] in order to build diverse systems such 
s clinical decision support [ 11 ], patient monitoring, chatbots 
nd virtual assistants [ 12 ], and drug safety monitoring [ 13 ]. 

These use cases are built on top of different NLP tasks [ 14 ],
pecific problems that involve processing and understanding 
uman language to be solved. These tasks include, for example,
amed entity recognition, i.e. the identification and classifica- 
ion of words in a text, such as medical conditions, medications 
nd anatomical locations. Topic modeling, text classification and 
uestion answering provide ways to organize and categorize text 
ata, while language translation can facilitate patient engage- 
ent and satisfaction by providing medical information in the 
atient’s preferred language. Each task addresses different as- 
ects of text analysis, allowing for a variety of applications in a 
linical setting. 

SE OF AI FOR KIDNEY DISEASES 

iagnosis 

iagnosis is a critical component of medical practice, as it forms 
he foundation for subsequent efforts in staging, treatment and 
rophylaxis. Over the years, clinicians have relied on a variety of 
ools, including analytical, imaging and histological studies, in 
ddition to semiology, to reach an accurate diagnosis. Further- 
ore, clinical practice should be based on the best available sci- 
ntific evidence for each patient. 

In today’s world, where AI is ubiquitous, it would be a missed 
pportunity not to utilize its potential in medicine. AI can help 
linicians make more accurate and timely diagnoses by analyz- 
ng vast amounts of patient data and identifying patterns that 
ay not be visible to the human eye. This technology can also 
ssist in the interpretation of complex imaging studies and his- 
ological findings, improving the accuracy of diagnoses. 

By incorporating AI into clinical practice, clinicians can make 
ore informed decisions, leading to better patient outcomes.
owever, it is crucial to ensure that the use of AI in diagnosis 
s done ethically and transparently, and with appropriate safe- 
uards in place to protect patient privacy and autonomy. 

Overall, the use of AI in diagnosis has enormous potential 
o improve medical practice, and it is important for clinicians 
o embrace this technology and incorporate it into their daily 
ractice. 
Different areas of diagnosis in nephrology have begun to 

e influenced by the use of AI ( Table 1 ) . A random forest al-
orithm has been developed that enables the early diagnosis 
f chronic kidney disease ( CKD ) [ 15 ]. Using ML techniques, re- 
earchers have identified metabolic signatures associated with 
ediatric CKD by linking sphingomyelin-ceramide and plas- 
alogen dysmetabolism with focal segmental glomerulosclero- 
is [ 16 ]. Researchers have also successfully mimicked the ability 
f nephropathologists to extract diagnostic, prognostic and ther- 
peutic information from native or transplanted kidney biopsies 
sing image recognition [ 17 ]. 
An AI-based algorithm has been developed to estimate the 

otal renal volume of patients with autosomal dominant poly- 
ystic kidney disease from magnetic resonance imaging scans.
his algorithm could aid in disease monitoring and prognos- 
ic evaluation [ 18 ]. ML algorithms have been developed to iden-
ify pathogen-specific fingerprints in peritoneal dialysis patients 
ith bacterial infections. These algorithms can help clinicians 
ake informed treatment decisions and improve patient out- 
omes [ 19 ]. Although tools have been developed to aid in the
iagnosis of glomerular diseases, such as ML-based algorithms,
he lack of validation in diverse populations has hindered their 
ranslation into clinical practice [ 20 ]. 

A recent study demonstrated the potential of using deep phe- 
otyping on EHRs to facilitate genetic diagnosis through clini- 
al exomes [ 21 ]. This approach could be particularly useful in
ephrology, where the diagnosis of hereditary diseases is still 
n area that requires further exploration. 

rediction of outcomes 

rediction scores or scales, as we know, have been widely used 
n the medical field to help clinicians establish criteria for man- 
ging patients long before ML became this large in healthcare.
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n nephrology, various prognostic scores are used to estimate 
he risk of developing end-stage CKD, with some scores being 
eveloped for specific kidney diseases. In order to perform the 
coring, traditional statistical methods have been used up to the 
resent. However, the integration of clinical expertise with ML 
xperts opens up new possibilities to provide the best predic- 
ions to the patient. When making use of ML tools, like XGBoost,
n conjunction with traditional statistical techniques, it becomes 
ore feasible to generate expansive predictive capabilities, even 
hen working with limited data. 
Prediction scores typically incorporate both classic risk fac- 

ors and additional variables such as histology or imaging tests.
ome examples of use of ML techniques in the development of 
hese scores ( Table 1 ) include the IgAN-tool [ 22 ] and IBox [ 23 ].
cores have also been developed to predict the risk of acute kid- 
ey injury ( AKI ) in different patient populations, such as the 
ostop-MAKE score [ 24 ], which estimates the risk of AKI in pa- 
ients with normal renal function undergoing cardiac surgery,
nd AKI risk scores in patients with heart failure [ 25 ]. Even 
eonatal patients can benefit from AKI risk assessment using 
he STARZ score [ 26 ]. 

A common challenge in developing risk scores for kidney dis- 
ases is the small size of the patient populations studied, which 
imits the scope of validation. Moreover, many studies are con- 
ucted within a single country, which can further limit valida- 
ion across ethnicities. To address this issue, it is necessary to 
onduct and promote multicenter studies with the goal of val- 
dating algorithms that can accurately predict outcomes in the 
uture. By facilitating and encouraging collaborative research the 
lgorithms will be validated and tested for effectiveness and be- 
ome reliable. 

reatment aid 

hroughout history, physicians have recognized the uniqueness 
f each patient and have strived to provide tailored and person- 
lized treatments to deliver the best possible care. This approach 
mphasizes the importance of interindividual variability and is 
ommonly referred to as precision medicine. The goal of preci- 
ion medicine is to develop treatment strategies that are specifi- 
ally tailored to the individual patient, taking into account their 
nique characteristics, including genetics, lifestyle and environ- 
ental factors. By embracing precision medicine, physicians can 
rovide more effective and targeted treatments, leading to bet- 
er patient outcomes [ 27 ]. 

The large-scale applicability of this concept has been greatly 
ided by the development of large-scale biological databases, the 
se of genomics, proteomics and metabolomics, and computa- 
ional tools that enable massive data analysis. The combination 
f all these disciplines can guide us in adjusting medical treat- 
ent to specific pathological processes and ultimately optimize 
atient outcomes [ 27 , 28 ]. Fields such as oncology have been pi- 
neering in the application of ML algorithms to predict response 
o immunotherapy and to develop targeted therapies based on 
olecular disease processes that improve outcomes for differ- 
nt types of tumor [ 29 ]. Nephrology should be no less forward 
ooking, but there is a long way to go. Still today, targeted thera- 
ies for specific etiologies are lacking as improvement of classi- 
cations and more specific biomarkers to categorize kidney dis- 
ases are needed. 

How might we benefit? New therapeutic strategies based on 
I models may help us in guiding drug prescription, decreas- 
ng variability, achieving a higher percentage of patients on tar- 
et and avoiding error proneness. ML models may also con- 
ribute to clinical trials by identifying high-risk patients who 
ay benefit from new therapies under study as well as those 
ho will not, thus avoiding unnecessary treatments. Some of 
hese objectives may be achieved by using the “digital twins”
pproach. Health digital twins are defined as virtual represen- 
ations ( “digital twin”) of patients ( “physical twin”) that are gen- 
rated from multimodal patient data, population data and real- 
ime updates on patient and environmental variables [ 30 ]. 

Several ML therapeutic models have been developed in re- 
ent years, although most of them are not yet validated for ap- 
lication in daily clinical practice ( Table 1 ) . Dialysis is a par- 
icularly attractive field for AI application because of its large 
olume of documented data in EHR [ 31 ]. ML models were 
ble to predict dialysis adequacy in chronic hemodialysis pa- 
ients [ 32 ] and could lead to future personalized prescriptions.
ifferent models have been developed to optimize anemia 
anagement [ 33 ]. Barbieri et al. [ 34 ]. developed an artificial
eural network which guided the prescription of iron and 
rythropoietic-stimulating agent doses, resulting in a decrease 
n hemoglobin variability and an increase in the percentage of 
emoglobin values on target. In AKI patients, Zhang et al. [ 35 ]
eveloped an XGBoost model that identified patients who would 
nd would not respond to volume-driving treatment strategies. 

The IBox system, an accurate and validated algorithm for the 
rediction of graft failure [ 23 ], has laid the groundwork for the
se of AI in kidney transplantation. Regarding immunosuppres- 
ion therapy, achieving a perfect balance between graft survival 
nd chronic immunosuppression-associated complications ( i.e.
pportunistic infections, malignancies and others ) is still a chal- 
enge. Different algorithms based on tacrolimus pharmacokinet- 
cs and pharmacodynamics [ 36 , 37 ] have been developed in or-
er to decrease toxicity, but the perfect therapeutic model that 
rings together genetics, pharmacokinetics and clinical param- 
ters is yet to come. 

HALLENGES OF AI 

t is important to carefully consider the risks and challenges as- 
ociated with AI technology and to put systems in place to mit- 
gate the risks. Some of the challenges are the following. 

ata access and quality 

ata sets for ML should come from a trusted source of relevant 
ata that is clean, accessible, well managed and secured. Data 
carcity is often a shortcoming in nephrology, as many diseases 
re rare and kidney diseases are generally far less common than 
ther medical conditions. 

ata privacy and security 

ata protection is also a key concern when using AI in nephrol-
gy. Patient data is sensitive and must be protected in accor- 
ance with relevant laws and regulations, such as the General 
ata Protection Regulation ( GDPR ) in the European Union ( EU ) .
atient data must be anonymized or pseudonymized prior to 
nalysis or storage somewhere other than where it was col- 
ected. It is important to ensure that patient data is handled se- 
urely and that patients are informed about how their data will 
e used. Any AI tool or project should have a data management 
nvironment for sensitive data. 
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he potential for bias in AI algorithms is a further risk that
hould be considered. If an AI algorithm is trained on biased
ata, it may perpetuate or even amplify existing biases in the
ealthcare system. For example, if an AI algorithm is trained
n data from predominantly white patients with focal glomeru- 
osclerosis, it may not accurately identify or classify the disease
n patients from other racial or ethnic groups. It is important to
nsure that AI algorithms are trained on diverse and represen-
ative data sets in order to minimize the risk of bias. 

rustworthiness 

t is human nature to trust only things that are easy to under-
tand, and doctors are a perfect paradigm of this. One of the
ritical challenges in implementing AI is the unknown nature of
ow learning models and a set of inputs can predict the output
nd provide guidance in a medical intervention. Explainability 
n AI is needed to provide transparency in the decisions made
y AI, as well as in the algorithms that lead to those decisions.
his is essential in order to avoid the black-box feel common
o many AI tools. Multiple techniques can be used to try avoid
his feeling, though. Methodologies like feature importance rank 
he variables used by an AI model based on their impact on
rediction results, revealing how each input contributes to the 
ecision-making process. Although this can shed some light, re- 
ently, OpenAI has admitted its lack of full understanding of how
hatGPT works, and the lack of tools to explore newer models’
ecision-making process. This kind of lack of understanding has 
rompted governments to put in place measures to control and
imit the expansion of unregulated AI. One tool to improve trust-
orthiness in the kidney arena is education of the nephrological
ommunity in this field. 

omputing power 

L and DL are the stepping stones of AI, but they require an ever-
ncreasing number of cores and GPUs to operate efficiently, and
hese are not readily available everywhere. Achieving the com- 
uting power to process the massive amounts of data needed
o build AI systems is the biggest challenge the industry has
ver faced. And it goes without saying that this computing power
omes with a significant environmental footprint. This is a real
urdle for many research projects using AI and has raised con-
erns in the AI community, leading to calls for more trans-
arency, optimization of training cycles and increased focus on 
green AI,”which aims for novel results without increasing com- 
utational costs, and ideally reducing it [ 38 ]. 

I integration 

HRs are relatively new to many healthcare providers. While the
U is supporting efforts to harmonize them and the USA has
lready introduced some shared patient information, the reality 
s that interoperability is scarce and embedding AI tools in EHRs
s not always feasible in many hospitals. 

I specialists 

he integration, deployment and implementation of AI require 
 specialist, such as a data scientist or data engineer, with a cer-
ain level of skills and expertise. One of the main challenges in
mplementing AI in hospitals or in a research environment is
hat these experts are expensive and currently quite rare; they
re often more willing to join a large company with high salaries
han to work in a public environment such as most hospitals or
esearch centers in Europe. 

egal issues 

nother risk to consider is the potential for errors in AI algo-
ithms. While AI algorithms can process large amounts of data
uickly and accurately, they are not perfect and can make mis-
akes. It is important to have systems in place to identify and cor-
ect errors in AI algorithms in order to ensure the safety and ef-
ectiveness of the technology. As mentioned above, for the time
eing, AI tools will help nephrologists make decisions, but will
ot replace expert professionals. AI algorithms may also vio-
ate laws or regulations, exposing the organization to legal chal-
enges. 

UROPEAN UNION FRAMEWORK 

n 2021, the European Commission proposed a regulatory frame-
ork that is expected to enter into force in 2023 as a transitional
eriod and in 2024 as a full deployment. It classifies AI technol-
gy into four levels of risk: ( i ) unacceptable risk as a clear threat
o safety, ( ii ) high risk, including transport, health, administra-
ive and law enforcement, among other sectors, ( iii ) limited risk,
uch as chatbots, where transparency is key, and ( iv ) minimal
isk, such as AI video games. 

Most healthcare AI systems will be placed in the high-risk
ategory and will need to undergo a regulatory process including
onformity assessment and compliance specifics. High-risk AI 
ystems considered medical devices will have to be compliant
ith the Medical Regulation ( MDR ) and will be registered in an
U database and CE marking will be required. 

The European Health Data Space ( EHDS ) is an initiative of-
cially launched in 2018 by the EU to promote secure and
eamless access to health data across the EU. The aim of the
HDS is to create a comprehensive and interoperable platform
or sharing health data while ensuring data privacy and pro-
ection. The EHDS facilitates the collection and exchange of
ealth data such as electronic health records, research data
nd patient-generated data among healthcare professionals, re- 
earchers and policymakers. It ensures the safety and confiden-
iality of personal data by complying with the GDPR, which is an
xtensive data protection regulation applicable to all EU mem-
er states that establishes guidelines for the collection, handling
nd retention of personal data. 

Another important component of the EU framework is the
thical Guidelines for Trustworthy AI, which were formulated
y the High-Level Expert Group on AI of the European Commis-
ion. The guidelines outline a set of principles and requirements
or AI that align with fundamental human rights, ethical values
nd social well-being. They emphasize the need for AI systems
o be transparent, accountable and explainable while respecting
ata privacy and protection. Furthermore, the guidelines high-
ight the significance of fairness, non-discrimination and sus-
ainability in the development and deployment of AI, serving as
 reference for developers, deployers and users of AI systems
cross multiple sectors, including healthcare. 

The abovementioned guidelines provide a comprehensive 
ramework for AI governance in nephrology and healthcare.
hile AI algorithms offer significant potential, they are tools for
umans, created by humans, and the responsibility to ensure
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Figure 4: The future of nephrology: advancing precision medicine with AI. The field of nephrology aspires to achieve precision medicine by taking into account 
interindividual variability in prevention, diagnosis and treatment strategy. The use of AI is expected to greatly enhance achievement of this goal in the coming years. 
AI has the potential to improve patient outcomes and revolutionize clinical management in nephrology. As such, it is a promising paradigm shift that will enable 

healthcare professionals to provide more personalized and effective patient care. 
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he ethical and responsible use of these technologies remains 
aramount. 

ONCLUSIONS 

I has the potential to revolutionize healthcare in several ways,
ncluding personalized medicine, early disease detection and 
mproved drug discovery techniques ( Fig. 4 ) . Economically, AI 
an be used to predict patient outcomes, readmission rates and 
ength of hospital stays based on patient data. While AI can sig- 
ificantly improve patient care, it cannot replace the patient–
octor relationship, which is a critical aspect of healthcare. 
In nephrology, the use of AI has the potential to bring about 

ignificant benefits, but it is crucial to consider the risks and 
hallenges associated with the technology and to develop sys- 
ems to mitigate these risks. Nephrologists will soon be inter- 
cting with AI in their daily practice, making it essential for the 
ephrology community to be educated about this technology.
nderstanding the core concepts of AI and how models are cre- 
ted is a prerequisite for effective use of the technology. 

While AI will not replace nephrologists, those who can use it 
ffectively will likely become better professionals for their pa- 
ients. However, it is important to recognize that the integra- 
ion of AI into clinical practice will require a shift in the tradi- 
ional roles of healthcare professionals, and that there will be a 
eed for ongoing training and education to ensure that AI is used 
ffectively and ethically. 
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