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Abstract: The aim of this study was to test the effect of adding chicken eggshell powder (CESP) to
conventional glass-ionomer cement (GIC) on its mechanical properties, and fluoride and calcium
release. CESP was added with proportions of 3% and 5% by weight to the powder component of
conventional glass-ionomer cement. The specimens were categorized into group A: GIC without
CESP; group B: GIC with 3% wt. CESP; and group C: GIC with 5% wt. CESP; there were 12 specimens
in each group. Groups B and C showed higher compressive strength values compared to group
A. However, microhardness scores were higher in group C compared to groups A and B. As for
ion-release results, group B displayed the highest values of fluoride release followed by group C at
both 7 and 30 days. Group C showed the highest amount of calcium release followed by both groups
B and C at 7 days, while at 30 days, groups A and B showed higher calcium release compared to group
C. The mechanical properties of conventional glass-ionomer restorative material were enhanced by
the addition of CESP. Moreover, fluoride and calcium release were not compromised by adding CESP.
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1. Introduction

Since its introduction in 1972, glass-ionomer cement (GIC) has been popular among clinicians
due to its exclusive properties such as chemical adhesion to mineralized tissues, moisture insensitivity,
and low coefficient of thermal expansion, which is close to that of tooth structures. Moreover, GIC has
superior biocompatibility, fluoride release, and rechargeability, which impart its anticariogenic
properties [1–3]. When GIC is exposed to neutral aqueous solutions after complete setting, it absorbs
water and releases ions such as sodium, silica, calcium, and fluoride [4,5]. Two processes occur
in relation to fluoride release: a fast burst during the early period (1–7 days), and a long-term
diffusive process [6]. Despite of all these advantages, GIC has low mechanical strength properties that
compromise its durability in stress-bearing areas [7].

Many attempts have been made to enhance the mechanical properties of conventional GIC,
such 5as the addition of resin [8] and the incorporation of alumina, carbon, glass, hydroxyapatite,
and fluoroapatite nanoparticles without compromising the fluoride-release properties of GIC [9,10].

Chicken eggshell powder (CESP) is composed of 98.2% calcium carbonate, 0.9% magnesium,
and 0.9% phosphate, approximately; thus, it is considered a rich source of mineral salts, mainly calcium
carbonate. Eggshell calcium is probably considered the best natural source of calcium [11]. For this
particular reason, various clinical studies had been successfully conducted in the use of this rich
calcium source in bone substitution [12,13], treatment of osteoporosis [14], and more recently in the
remineralization of early enamel lesions [15].
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Chicken eggshell powder (CESP) has also been used as a rich source of CaCO3 in order to impart
mechanical reinforcement to polyethylene/polypropylene composites used in different industrial
applications [16–18]. To date, no studies have been conducted concerning the addition of CESP with
the aim of strengthening dental restorative material. The utilization of CESP as a filler material to
enhance the mechanical properties of GI has some advantages, as it is naturally renewable, low-cost,
and readily available. For this reason, the current study aimed to investigate the effect of adding CESP
to glass-ionomer powder on its mechanical properties, as well as its fluoride and calcium release.

2. Materials and Methods

An anhydrous glass-ionomer restorative material (AquaCem, Dentsply, Germany) was used.
This powder contains a blend of alumino-silicate glass and polyacrylic acid, which was mixed with
deionized water with a ratio of 1 scoop powder: 2 drops water according to the manufacturer’s instructions.

2.1. Eggshell Powder Preparation

CESP was attained by calcination following the protocol of World Property intellectual
organization (WO/2004/105912: Method of producing egg shell powder) [19]. This calcination
process was performed to obtain pure powder free of pathogens and to increase its alkalinity.
Normally, CESP contains 95% calcium carbonate, which converts to basic calcium oxide on
calcination [20]. Twelve chicken eggs were cleaned with distilled water and kept in hot boiling
water for 10 min at 100 ◦C to facilitate the removal of membranes. The egg shells were crushed and
powdered to small particles with sterile mortar and pestle. The tiny, crushed particles obtained were
then kept in a muffle furnace (Thermolyne 48,000) at 1200 ◦C to make sure the resulting powder was
pathogen free. Subsequently, the size of the powder particles was measured using Mastersizer 2000.

GIC was mixed according to the manufacturer’s instructions, with 1:1 (Powder:Liquid), and CESP
was added to the powder component with proportions of 3% and 5% by weight. The specimens were
categorized into 3 groups:

• Group A: GIC without CESP (n = 12).
• Group B: GIC with 3% wt. CESP added to the powder component (n = 12).
• Group C: GIC with 5% wt. CESP added to the powder component (n = 12).

Cylindrical samples were fabricated using PTFE (Polytetrafluoroethylene) cylindrical molds
with 4-mm diameter and 6-mm height for a compressive strength test [21], and other samples were
fabricated with 6-mm diameter and 3-mm thickness for a surface microhardness test [22]. The molds
were filled with the material, covered with PTFE tape and glass slides, flattened, and pressed in
order to eliminate air bubbles from unset cement paste. A 200-g weight was placed on top of the set,
thus standardizing the pressure exerted during the initial setting of the material. The samples were
ejected from the molds after 30 min and stored in deionized water at 37 ◦C and 100% humidity for
23 h in an incubator until testing time [21].

2.2. Compressive Strength

Compressive strength was measured using a Universal testing machine (Lloyd LR 5 k,
Lloyd Instruments Ltd., Hampshire, UK) with an across-head speed of 1 mm min−1 until failure
occurred [22]. Compressive strength results were automatically calculated by dividing the maximum
load before failure by the surface area using the machine operating software (Nexgen software,
Version 4.6, Llyod Instruments Ltd., Hampshire, UK).

2.3. Microhardness Test (Vickers)

Microhardness was measured using a Vickers microhardness tester machine (Tukon1202,
Wilson Hardness Tester, Instron® ITW Company, Norwood, MA, USA). Three indentations were
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carried out for each specimen at 25 g force for 30 s, and the average score of the three readings was
recorded for each specimen [23].

2.4. Fluoride and Calcium Ions Release

Twelve cylindrical specimens (6 mm in diameter and 3 mm in height) per group were prepared
using mountable split Teflon rings as previously described. Equal lengths of paraffin dental floss
were incorporated into the specimens during setting to suspend the specimens in the deionized
water. Specimens were weighed to ensure standardization within each group using a digital balance
(±0.0001 g) (Precisa 205A series, Superbal, Germany), and their dimensions (diameter and thickness)
were also measured using the digital micrometer. Specimens were stored at 37 ◦C and 100% relative
humidity for 24 h. Each specimen was then stored in an individual tightly-closed polyethylene
tube containing 10 mL distilled deionized water at 37 ◦C. At the time of fluoride and calcium ions
measurement, each specimen was removed from its container, and the storage solution was collected
for analysis. The discs were then blotted dry and placed in a new container with fresh 10 mL
distilled deionized water, and storage was continued [24]. Measurements of fluoride and calcium
ions concentrations were made at 7 and 30 days using an ion selective electrode (Fluoride selective
electrode, Orion Research, Inc., Denmark) and an atomic absorption spectrometer (Perkin-Elmer model
3100, Artisan Technology Group® Shelton, Champaign, IL, USA) at 239.9 nm. Results were calculated
as the amount of fluoride or calcium release per unit surface area of the specimen (µg/mm2).

3. Results

Data from all tested groups were collected, tabulated, and statistically analyzed using SPSS
(21st edition, IBM corp., New York, NY, USA).

One-way ANOVA followed by Tukey’s post hoc test was used to investigate the effect of adding
eggshell powder on the compressive strength of the restorative material. The results revealed that
groups B (3% CESP) and C (5% CESP) showed significantly higher compressive strength values
compared to group A (GI without CESP), which showed the lowest values (Table 1).

However, microhardness scores were significantly higher in group C (5% CESP) compared to
groups A and B, with group A displaying the lowest microhardness values. (Figure 1)

Figure 1. Comparison of microhardness (VHN) in relation to CESP content.

Table 1. Mean and standard deviation (SD) of compressive strength of three groups.

Test A B C p-Value

Compressive strength (MPa) 52.45 a ± 1.8 75.46 b ± 13.9 71.43 b ± 16.7 0.001

Similar superscripts letters indicate no significant difference.
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3.1. Fluoride Release

One-way ANOVAs followed by Tukey’s post hoc test were used to assess the effect of adding
CESP on fluoride and calcium release from the restorative material. At 7 days, group B showed the
highest statistical significant value of fluoride release followed by group C, while group A showed
the least significant amount of fluoride release. Similarly, at 30 days, group B showed a significantly
higher amount of fluoride release compared to groups A and C, and there was no significant difference
between these last two groups. An independent t-test of the effect of time interval on fluoride release
showed that only group B had a significantly lower value of fluoride release after 30 days. Groups A
and C also showed less fluoride release at 30 days than at 7 days; however, the difference was not
significant for either group (Table 2).

Table 2. Mean ± standard deviation of fluoride release of the three groups in relation to time interval.

Test Interval Group A Group B Group C p-Value

7 days 2.03 aA ± 0.9 21.69 cA ± 0.6 4.51 bA ± 0.9 0.0001
30 days 1.33 aA ± 0.6 12.2 bB ± 4.4 3.36 aA ± 1.4 0.0001

p-value 0.104 0.001 0.096

Dissimilar lowercase superscripts letters indicate significant difference in rows. Dissimilar uppercase superscripts
letters indicate significant difference in columns.

3.2. Calcium Release

A one-way ANOVA followed by Tukey’s post hoc test showed that group C had a significantly
higher amount of calcium release than groups A and B at 7 days, with no significant difference between
these two groups. At 30 days, groups A and B showed a significantly higher amount of calcium release
compared to group C.

An independent t-test of the effect of time interval on calcium release showed that calcium release
increased significantly at 30 days in groups A and B, while group C displayed a significantly lower
amount of calcium release at 30 days, compared to values obtained at 7 days (Figure 2).

Figure 2. Comparisons of calcium release (mg/L) for the three groups in relation to time interval.
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4. Discussion

Dental caries continues to be one of the most common childhood diseases despite the evolution
in the field of oral health for children [25]. As a result, restoring decayed teeth remains one of the
priorities in treatment needs. Moreover, the shorter life spans and lower biting forces of primary
teeth compared to permanent teeth make all types of GIC a favorable choice to be used in children.
Conventional GIC has undergone various improvements since its introduction, which in turn led to
better characteristics, such as increased strength, improved handling characteristics, and enhanced
wear resistance [26].

On the other hand, increasing worldwide interest in sustainable technologies led to the invention
of products with lower impact on the environment [27]. Eggshell is one of the by-products of
households, restaurants, and food industries, which is daily produced in massive amounts and
has been categorized as one of the worst environmental problems worldwide due to its chemical
composition and availability. At the same time, eggshell is considered the best natural source of
calcium [28]. The utilization of eggshell in dental material industry could elevate the its added value
and possibly reduce environmental pollution. Thus, the present study sought to test the effect of
adding eggshell powder to the powder component of conventional GIC on some of its mechanical
properties, as well as to examine whether fluoride and calcium release would be influenced by adding
CESP filler in various proportions to GIC.

Compressive strength testing is the most commonly employed method to evaluate the strength
of restorative materials, and surface hardness is widely used to assess the mechanical properties
of restorative materials because the surface of the cement is considered to be directly affected by
environmental conditions [29–31]. For the aforementioned reasons, we chose these two tests to
evaluate the effect of adding CESP to GIC on its mechanical properties.

In the present study, it was evident that the mechanical properties of the tested specimens
improved significantly with the addition of eggshell powder to conventional GIC in terms of
compressive strength as well as microhardness. Furthermore, microhardness values were significantly
highest in group C, followed by group B, while group A (GIC without CESP) trailed with the lowest
statistically significant values in both tests. These findings reflect somehow the consistent enhancing
effect of adding CESP on the mechanical properties of GIC. Since the mechanical properties of GIC
improve with time, testing this novel material for extended time frames would have added extra value
to the current research; however, the chosen testing time (24 h) only aimed at obtaining preliminary
data to be considered as a cornerstone for future investigations.

These results are in accordance with those of Lubis et al. [32], who also concluded that eggshell
filler added to acrylic resin used in the construction of denture base not only improved the mechanical
properties in terms of modulus of elasticity but also provided a cost-effective and renewable filler
material that could be used instead of more costly alternatives.

Similarly, Rahmi et al. [33] deduced that the incorporation of eggshell particles in cross-linked
chitosan composites enhances its mechanical properties, as the values of tensile strength increased
significantly with increasing proportions of added ESP; they also suggested that the utilization of this
novel filler material can lead to the production of low-cost polymer composites.

The bioactivity of glass-ionomer cements stems from their capability of releasing ions, not only
fluoride but also calcium and phosphates. These ions become incorporated in the nearby tooth
structure to enhance its resistance to acid attacks [34]. For this reason, we were tempted to test whether
adding CESP to improve the mechanical properties would affect the ion release properties of GIC.

Deionized water was selected as a medium for the estimation of fluoride and calcium ions release
from the tested glass-ionomer samples; since it is devoid of any ions, it is considered a more accurate
medium than artificial saliva and other acidic media [24,35,36].

Our results clearly showed that adding CESP did not interfere with the inherent ability of GIC to
release ions, on the contrary, it even seemed to potentiate this ability to the extent that fluoride and
calcium release were increased in groups B and C compared to GIC with no added CESP.
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Kumar et al. [37] obtained similar results when they added nano-chaitosan to GIC. They found that
not only did the added nanoparticles improve the mechanical properties of GIC but also the anticariogenic
properties of the cement were enhanced through the recorded increase in fluoride release.

Similarly, Yli-urpo et al. [38] reported that bioactive glass (BAG) improves fluoride release in
conventional GIC, which even increased with increasing proportions of BAG added to GIC. The same
study reported an initial surge of the concentrations of calcium and phosphorous in the test medium
followed by an evident decrease after 72 h. The authors attributed these findings to CaP precipitation,
which they postulated to have precipitated around the seams of the samples and on the bottom of
storage test tubes [38].

The results of the current research, however, cannot be accurately compared to the aforementioned
study, since our first measurement of calcium and fluoride was done at 7 days, followed by a second
measurement at 30 days; this was done for the purpose of tracing long-term release of the ions that aid
in remineralization. We detected the highest values of calcium release in group C, with CESP added to
GIC in a proportion of 5% by weight, followed by group B, which had a slightly lower concentration of
CESP (3% wt.); this could suggest that group B had also leached out too many Ca++ initially (before our
first measurement), before it precipitated as CaP as reported in the previous study [38], so that Ca++

values were depressed and came closer to the measurement obtained from group A (GI without any
added CESP). At the same time, Ca++ in group C was not depleted by CaP precipitation, since samples
in this group had a higher proportion of eggshell powder with a subsequent higher calcium content.

We can also postulate that the high calcium release in Group C (highest eggshell concentration)
coupled with lower fluoride release could be explained by the ability of eggshell to absorb fluoride
in solution, a theory which has been explained and utilized by various researchers [39,40] in order
to find cheaper methods for the defluoridation of drinking water to avoid potential fluoride toxicity.
Moreover, this could also be depicted in our results, as calcium and fluoride released in solution after
30 days were significantly lower in group C, which suggests that the “scavenging” ability of eggshell
continues over time in solution to the extent of depletion of calcium and fluoride ions.

5. Conclusions

Within the limitations of the study, it can be concluded that:

• The mechanical properties of conventional GIC were enhanced by the addition of CESP.
• GIC unique property of fluoride release is not compromised by adding CESP to its powder component.
• Calcium release was potentiated at 5% CESP concentration, which can enhance the remineralizing

ability of GIC.
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