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ABSTRACT: A coarse-grained computational model is used to investigate
how the bending rigidity of a polymer under tension affects the formation of a
trefoil knot. Thermodynamic integration techniques are applied to
demonstrate that the free-energy cost of forming a knot has a minimum at
nonzero bending rigidity. The position of the minimum exhibits a power-law
dependence on the applied tension. For knotted polymers with nonuniform
bending rigidity, the knots preferentially localize in the region with a bending
rigidity that minimizes the free energy.

Type II topoisomerases are enzymes that may knot or
unknot DNA by introducing a transient break in both

strands of one DNA duplex and passing a second duplex
through it. One of their key biological functions is to regulate
the level of knotting in the genome.1 Type II topoisomerases
tend to act preferentially on certain sequences in DNA.2 There
is evidence that sites that are more frequently cleaved tend to
be located in or next to parts of the genome called scaffold
associated regions or matrix attachment regions,3−5 which are
typically several hundred base pairs long3 and rich in adenine
(A) and thymine (T), two of the nucleotides in DNA. Further,
a specific sequence evolved in vitro, which was preferentially
cleaved by a certain type II topoisomerase, was highly AT-rich.2

It is believed that AT-rich sequences are more flexible than
random ones.5−8 For example, the work of Okonogi et al.7

suggests that a sequence of AT repeats is about 20% more
flexible than a random sequence. An earlier study suggested
that such an AT-rich sequence can have a persistence length
less than half that of a GC-rich sequence.6 Scipioni et al.8 used
scanning force microscopy to observe a correlation between
AT-rich parts of a DNA fragment and flexibility. Further,
Masilah et al.5 found that there is a preferentially large opening
of the base pairs immediately adjacent to a preferentially
cleaved site. This opening was found to be dependent on the
sequence context. Opening of base pairs (bubble formation)
can lead to greatly increased local flexibility.9 Very high
flexibility at the topoisomerase II cleavage sites is probably
necessary because the enzyme enforces a large bend in DNA
when it binds to it.10

An intriguing question arises as to whether the correlation
between the positions of cleavage sites and DNA flexibility
could be important in the regulation of knotting. For example,
could the variation of bending stiffness help to localize knots
near cleavage sites, thus, expediting their removal? Here we
make a first step toward understanding these issues by using a
simple bead−spring polymer model to investigate how the free
energy cost of forming a knot, ΔFknotting, varies with polymer
bending stiffness and how this influences the position of a knot

within a polymer of nonuniform flexibility. In this work, we
simulate only the trefoil knot, 31,

11 but our general arguments
do not depend on the particular topology. Previous work12 on
how the action of type II topoisomerase may be guided by bent
geometries of DNA has been performed, but variable bending
stiffness was not considered.
The case of polymers under tension is biologically relevant

because the action of enzymes during processes such as
transcription applies forces to DNA.12,13 In general, for
polymers in a good solvent with bending stiffness, A, under
tension, τ, there are three main contributions to ΔFknotting: the
reduction in entropy due the self-confinement of the polymer
in the knotted region; the increase in bending energy due to the
curvature enforced by the knot; and the work done against the
tension in reducing the extension of the polymer, necessary to
give free length for knot formation.
We consider how ΔFknotting varies with A for fixed τ. We

identify two length scales: that associated with the bending
stiffness, lA ∼ A/(kBT), and that associated with the size of the
knotted region, lknot(A), which depends on A. When lA ≪
lknot(A), the main effect of increasing A will be to decrease the
entropic cost of knotting and ΔFknotting will decrease with A.
Previous work on fully flexible chains (A = 0) has found knots
to be weakly localized,14−16 Nknot ∼ Nt, where Nknot is the
number of monomers in the knot, N the total number in the
polymer, and 0 < t < 1.14 By applying scaling arguments based
on the blob picture to interpret the results of simulations of
polymers under tension, Farago et al.14 estimated t = 0.4 ± 0.1.
A later study used two methods, including one based on closing
subsections of the polymer and calculating a knot invariant, to
find t ≃ 0.75.15 The discrepancy between the two estimates
may be attributed to the relatively short polymers used in the
earlier work.15 Knot localization has been observed exper-
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imentally17 but is found to disappear with confinement.18 A free
energy calculation for an open, linear polymer found no
evidence of a metastable knot size.19

In the flexible regime, a polymer under tension will form a
linear series of blobs of Nb ∼ (kBT/τ)

1/ν monomers each, where
ν ≈ 3/5.20 The series of blobs cannot be knotted and so the
knot resides within one blob. Treating this blob as an
independent polymer, we expect lknot to be determined by
the entropic localization of the knot and the number of
monomers participating to the knot to scale, accordingly, as
Nknot ∼ (kBT/τ)

t/ν. By employing the simulation techniques and
knot-identification algorithm to be presented shortly, we have
determined the dependence of Nknot on τ for a flexible polymer
of N = 256 beads of size σ each. The results in Figure 1 indeed

show a power-law dependence. By fitting to this data, we
estimate that t = 0.43 ± 0.01, which is consistent with the value
found by Farago et al.,14 as expected given the relatively short
chains used. Concomitantly, the knot size in fully flexible chain
scales as lknot(0) ∼ Nknot

ν ∼ (kBT/τ)
t.

For lA ≫ lknot(A) the size of the knot will be dominated by
the interplay of bending energy and tension and ΔFknotting will
increase with A. We therefore expect a minimum of
ΔFknotting(A) at a value of A determined by lA ≈ lknot(A). As
the dependence of lknot(A) on τ is not known, we replace
lknot(A) with lknot(0) to find what the likely form of the
dependence of the bending stiffness for which the free energy
cost is minimal, Amin, on τ is. When the results obtained above
are used, a power-law dependence is obtained:

τ∼ −A t
min (1)

Of course, the replacement of lknot(A) with lknot(0) in the
relationship lA ≈ lknot(A) is an approximation that is expected to
break down precisely in the region of validity of this equality.
On the other hand, a power-law dependence Nknot ∼ NtA is a
reasonable assumption also for the case A ≠ 0, thus, we
anticipate a relationship of the form of eq 1 to hold also for A ≠
0, albeit with some exponent tA ≠ t.
For very large values of A, we expect the knot to form a

single loop with the all crossings close to each other.21

Assuming the thickness of the polymer is small compared to
the loop, we expect ΔFknotting to be approximately given by21

π τΔ =F A8knotting
2

(2)

For lower A, the form of ΔFknotting may not be so easily
deduced. At the crossover, this is particularly difficult because
here we expect the bending length and self-confinement length

to be approximately equal. For this case, a scaling form of the
confinement free energy is not available.22

We next study the consequences of these predictions with
computer simulations. In what follows, we first outline the
technical details of our approach, we then present results on
ΔFknotting, before investigating the positional probability
distribution of knots in polymers of nonuniform flexibility.
We primarily simulate single chains of N = 256 beads of size σ
in a simulation box of volume V = 2.048 × 105σ3 with periodic
boundaries: unless otherwise stated, all results are for these
parameters. The polymers are connected to themselves across
the periodic boundaries in the x-direction. A constant tension is
simulated by including in the potential a term proportional to
the x-length of the box, Lx and allowing Lx to vary. The
advantage of this approach is that there are no free ends so that,
as long as chain crossings are prevented, unknotting will never
occur.
The simulation of the polymer is carried through for the

following interaction potential:
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where ri,j = rj − ri, is the vector from bead i to bead j, located at
position vectors ri and rj, respectively, whereas rî,j denotes a unit
vector. The first term sets the bending stiffness, which may be
varied along the chain using the parameter κi, giving a bending
stiffness of A = κiσ for the ith bead. The second term applies a
tension, τ. The third and fourth terms are spring and excluded
volume terms, respectively, H is the Heaviside step function,
which truncates the Lennard-Jones potential to be purely
repulsive. We choose ε = kBT, k = 30kBT/σ

2, and R0 = 1.5σ,
which prevents the chain from crossing itself and so conserves
topology.
We simulate using a Monte Carlo (MC) algorithm,23 which

comprises two types of moves. To simulate a given tension,
moves that attempt to change Lx, while rescaling Ly and Lz to
keep V fixed and also applying a corresponding transformation
to all particle coordinates, are included. Displacements of the
polymer beads are made using the Hybrid MC method,24

where trial states are generated using Molecular Dynamics
(MD). During the MD trajectories, Lx is fixed, the tension term
is not included in the Hamiltonian used to calculate the forces.
Collective motions of the polymer beads are more easily
captured in this way than by local, single bead moves.
To calculate ΔFknotting for a given tension, τ, we simulate

systems with all κi set to the same value, κ. We simulate two sets
of systems, one with linear topology and one with knotted
polymers. The systems within one set span a range of rigidities
from κ = 0 up to the desired value. For each of those values, we
calculate the average ⟨(∂V)/(∂κ)⟩. By numerically integrating
⟨(∂V)/(∂κ)⟩ from κ = 0, we obtain the relative free energy as a
function of κ,23 ΔFα(κ) = Fα(κ) − Fα(0), where α stands for
either “knot” or “linear”. To fully determine ΔFknotting, we

Figure 1. Variation of the number of beads forming the knot, Nknot
with tension, τ for N = 256 bead flexible polymers. The solid line is a
fit to the data with slope −0.71 ± 0.01. Error bars were estimated by
performing three independent repeats of the simulations.
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would need to perform an integration between unknotted and
knotted states. However, because we are interested in the
relative cost of knotting for different bending stiffnesses, we
simply calculate ΔFknotting(κ) − ΔFknotting(0) = ΔFknot(κ) −
ΔFlinear(κ) instead.
To improve the efficiency of our calculation of ΔFknotting(κ)

− ΔFknotting(0), we implemented the most computationally
intensive part of our simulation algorithm on a GPU using
CUDA, which allows for a high degree of parallelism but is
restrictive in terms of the homogeneity of the parallel
calculations.25 While a standard local-move MC algorithm
would be difficult to implement on a GPU,25 the most time-
consuming part of our algorithm is calculating the MD
trajectories to produce trial states for the Hybrid MC. The
MD integration may be straightforwardly performed on a GPU.
We simulate all systems for a given τ and topology in parallel,
performing force calculations and integration steps on the
GPU. As a simple alternative to a cell list, we reduce the
number of pair separations calculated by exploiting the
connectivity of the polymer, which guarantees the maximum
separation of two beads within a section: by comparing the
center of mass positions of two sections, we can determine
whether beads within them may interact. Random number
generation and other MC moves were performed on the CPU.
To help reduce correlation times we added parallel tempering23

swaps between systems with different κ.
For simulations considering the positional probability

distribution or size of the knot, it is necessary to determine
the knotted section of the polymer. We applied a method,
summarized in Figure 2, based on calculating the Alexander
polynomial,11 Ak(x), at x = −2 for polymer subsections.26

Because the polymer is extended in the x-direction by the
tension, there will usually be x-positions at which only one part

of the polymer crosses the y−z-plane. Regions that are bounded
by such points are considered. Only one will have the correct
Ak(−2). The more exact position is then found by taking
subsections of this region, closing them with extensions in the
±x-direction and finding the shortest with the correct Ak(−2).
The center of this section is taken as the knot position and the
number of beads it contains as the knot size. This is the same
method applied for the determination of Nknot for flexible
chains earlier in this paper.
Our procedure may occasionally result in a false

identification of a knot due to extra crossings included by the
closing sections. However, in previous studies the rate of such
errors was found to be low and to usually involve sections larger
than truly knotted ones.26 We thus do not expect such pitfalls
to significantly affect our results but we refer the interested
reader to an in-depth consideration of such schemes.27 We also
found that, occasionally, no x-positions with only one crossing
of the y−z-plane were found. In this case, the knot position was
not identified and so these configurations were neglected. The
rate of such configurations was <1% for all the results
presented. As a further check, we verified that, for the knot
size results, if instead of neglecting the configurations, a knot
size equal to the total polymer size was added, the final averages
were not changed by more than the errorbars. Simulations with
knot-finding were performed with the same MC algorithm as
for the free energy calculations. However, due to the
computational cost of the knot-finding algorithm, which
would be difficult to implement on a GPU, the calculations
were performed entirely on a CPU.
We first present, in Figure 3a, results for Ψ(κ) ≡ ΔFknotting(κ)

− ΔFknotting(0) as a function of κ for τ = 0.1, 0.4, and 0.8kBT/σ.
As expected, we observe that there is a minimum at nonzero κ,
which we denote κmin, and which decreases with increasing
tension. In Figure 3b, we also plot the same data subtracting a

Figure 2. Schematic depiction of the knot-finding process. (a) The
polymer is divided into sections by finding points along its contour,
indicated by the dashed lines, at which there is a boundary between
regions where only one strand crosses the y-z-plane and those where
multiple strands do. Regions in which there are multiple crossers are
identified, these are indicated by the shaded areas. They may be closed
and the Alexander polynomial calculated to identify which of them
contains the knot. (b−d) Subsequently, a finer determination of the
knot position may be achieved by taking the knot-containing section
and considering subsections of it. These are closed by extending the
polymer in the x-direction, as shown by the dotted lines. The
Alexander polynomial may then be calculated for each of these. The
section with the correct Alexander polynomial that contains the least
number of beads is taken as containing the knot. (b−d) A few
examples of subsections. The subsection shown in (c) would be
identified: that in (b) is contains more beads and that in (d) has the
wrong polynomial.

Figure 3. (a) Difference in free-energy, Ψ(κ) ≡ ΔFknotting(κ) −
ΔFknotting(0), against κ for different tensions, τ: 0.1kBT/σ (×, black);
0.4kBT/σ (□, red); 0.8kBT/σ (○, green). Note the minimum at κ =
κmin, which decreases for increasing τ. (b) The free-energy difference
with a term proportional to the high A limit in eq 2 subtracted: Ψ(κ)
− 1.11(8π2κστ)1/2 plotted against κ for the same τ. Error bars were
estimated by performing three independent repeats of the simulations.
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term proportional to (8π2κστ)1/2, the expression for ΔFknotting at
high A (eq 2 with A = σκ). The additional proportionality
factor of 1.11 was determined by fitting ΔFknotting(κ) −
ΔFknotting(0) for τ = 0.4 and 0.8kBT/σ for κ ≥ 15kBT. For
both, the same factor was found to the accuracy that is given.
The extra factor is likely necessary because our polymers do not
have negligible thickness. To within errors, the curves for τ =
0.4 and 0.8kBT/σ, with the expression subtracted, become flat
for higher κ. This suggests that for these κ values we have
reached the regime where ΔFknotting is dominated by the
bending and tension terms. We further observe that, at the
position of the minimum of the knotting free energy cost, the
quantity ΔFknotting(κ) − ΔFknotting(0) − 1.11(8π2κστ)1/2 still has
a relatively steep slope, confirming that the entropic
contribution is important in determining the position of the
minimum.
In Figure 4, we show the dependence of κmin on τ for N =

256. Plotting on a logarithmic scale, we see that the points for

the highest five τ show a power-law relationship. Fitting to
these data, we find an exponent of −0.50 ± 0.01. We, thus,
obtain a power-law dependence of the optimal rigidity on the
tension that we anticipated in eq 1, but with an exponent
different than the t = −0.43 we found from Figure 1, as
expected. For the lowest two τ we see that the curve deviates
from this power-law relationship. This may be attributed to
finite size effects. To verify this we repeated simulations for the
three lowest τ for N = 512: the results are also plotted in Figure
4. We observe that, as expected, the results are consistent with
the same power-law relationship and also follow it to lower τ.
We expect κmin to be approximately that value of bending

rigidity for which the size of the knot is equal to the bending
length. We consider the variation of the number of the beads in
the knot at κmin, Nknot(κmin), with τ. We take κmin to be given by
the best fit relationship from Figure 4. We plot the results for
Nknot(κmin) in Figure 5. By fitting, we find an exponent of −0.56
± 0.02, close to −0.50 ± 0.01: indeed, Nknot(κmin) ∼ κmin
because the polymer is stiff at the scale of the knot.
We have found that ΔFknotting has a minimum at a nonzero

value of the bending stiffness, namely, κmin. We therefore expect
that, if we consider a knotted polymer with nonuniform
flexibility under tension, τ, the knot will be more likely to be
found in a region with κmin than in other regions. To test this,
we consider a polymer of N = 512 beads at τ = 0.8kBT/σ, split
into two halves: the first 256 beads have κi = κ0 ≠ κmin. The
second 256 beads have κi = 1.806kBT ≈ κmin for this τ. In Figure

6, we plot results for κ0 = 0, 0.4353kBT, 0.8706kBT, and
3.842kBT, that is, three regions with κ0 < κmin and one with κ0 >

κmin. Results are binned into 8 bins of 64 beads each. In each
case, we find that the probability of finding the knot in the
region with κmin is higher. In other words, the knot prefers to
localize in the region where κ ≈ κ0. Furthermore, we find that
the probabilities are approximately those that would be
expected from the free energy calculations. For κ0 = 0 in
Figure 6, the ratio between the average of the first four bins and
that of the second four is 4.9 ± 0.5, giving an expected free
energy difference of 1.6 ± 0.1kBT. The minimum ΔFknotting(κ)
− ΔFknotting(0) for τ = 0.8kBT/σ in Figure 3a is −1.52 ±
0.02kBT.
To summarize, inspired by correlations between polymer

flexibility and knotting seen in biology, we have investigated
how the cost of forming a knot in a polymer under tension, τ,
depends on the polymer’s stiffness, controlled in our model by
κ. For high κ, our results agree with a simple expression
including only bending and tension, while for lower κ entropy
must also be taken into account. There is a nonzero minimum
of the free energy difference between unknotted and knotted
states at κ = κmin. The position of the minimum is seen to
depend on tension as κmin ∼ τ−0.5. We argue that κmin is
determined by the relative sizes of the knot and the bending
length and find that the number of polymer beads in the knot at
κmin is consistent with this argument. We considered knotted
polymers with two sections with different κ and found that the
knot is more likely to be found in the section with κmin.
Biological DNA is typically highly confined and in future

work it would be interesting to investigate the effect of

Figure 4. Minimum value κmin of ΔFknotting against the applied tension
τ for N = 256 (×, black) and N = 512 (○, red). The solid line is a fit to
the five data points for N = 256 with highest τ values, it has a slope of
−0.50 ± 0.01. Error bars were estimated by performing three
independent repeats of the simulations.

Figure 5. Number of bead in the knot at κmin, Nknot(κmin) against τ.
The solid line is a fit with a slope of −0.56 ± 0.02. Error bars were
estimated by performing two independent repeats of the simulations.

Figure 6. Probability density, ρ, of finding the knot at a given position
along the polymer under tension, τ = 0.8kBT/σ. For beads 256−511, κi
= 1.806kBT ≈ κmin, while for beads 0−255, κi = 0 (×, black), κi =
0.4353kBT (□, red), κi = 0.8706kBT (○, green), or κi = 3.842kBT (Δ,
blue). Error bars were estimated by performing three independent
repeats of the simulations.
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confinement on the results we have observed.28,29 It would also
be interesting to investigate how the position of cleavage sites
relative to regions of different flexibility affects the steady state
level of knotting,30 as well as looking into how the effect of
flexibility may combine with previously suggested topoisomer-
ase II guidance mechanisms.12 Finally, it would be intriguing to
investigate how nonuniform flexibility affects the diffusional
dynamics of a knot along a polymer.31,32
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