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ABSTRACT High-affinity terminal oxidases (TOs) are believed to permit microbial res-
piration at low oxygen (O2) levels. Genes encoding such oxidases are widespread, and
their existence in microbial genomes is taken as an indicator for microaerobic respira-
tion. We combined respiratory kinetics determined via highly sensitive optical trace O2

sensors, genomics, and transcriptomics to test the hypothesis that high-affinity TOs are
a prerequisite to respire micro- and nanooxic concentrations of O2 in environmentally
relevant model soil organisms: acidobacteria. Members of the Acidobacteria harbor
branched respiratory chains terminating in low-affinity (caa3-type cytochrome c oxi-
dases) as well as high-affinity (cbb3-type cytochrome c oxidases and/or bd-type quinol
oxidases) TOs, potentially enabling them to cope with varying O2 concentrations. The
measured apparent Km (Km(app)) values for O2 of selected strains ranged from 37 to
288nmol O2 liter21, comparable to values previously assigned to low-affinity TOs.
Surprisingly, we could not detect the expression of the conventional high-affinity TO
(cbb3 type) at micro- and nanomolar O2 concentrations but detected the expression of
low-affinity TOs. To the best of our knowledge, this is the first observation of micro-
aerobic respiration imparted by low-affinity TOs at O2 concentrations as low as 1 nM.
This challenges the standing hypothesis that a microaerobic lifestyle is exclusively
imparted by the presence of high-affinity TOs. As low-affinity TOs are more efficient at
generating ATP than high-affinity TOs, their utilization could provide a great benefit,
even at low-nanomolar O2 levels. Our findings highlight energy conservation strategies
that could promote the success of Acidobacteria in soil but might also be important for
as-yet-unrevealed microorganisms.

IMPORTANCE Low-oxygen habitats are widely distributed on Earth, ranging from the
human intestine to soils. Microorganisms are assumed to have the capacity to
respire low O2 concentrations via high-affinity terminal oxidases. By utilizing strains
of a ubiquitous and abundant group of soil bacteria, the Acidobacteria, and combin-
ing respiration kinetics, genomics, and transcriptomics, we provide evidence that
these microorganisms use the energetically more efficient low-affinity terminal oxi-
dases to respire low-nanomolar O2 concentrations. This questions the standing hy-
pothesis that the ability to respire traces of O2 stems solely from the activity of high-
affinity terminal oxidases. We propose that this energetically efficient strategy
extends into other, so-far-unrevealed microbial clades. Our findings also demonstrate
that physiological predictions regarding the utilization of different O2 concentrations
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based solely on the presence or absence of terminal oxidases in bacterial genomes
can be misleading.

KEYWORDS terminal oxidase, oxygen, acidobacteria, kinetics, transcriptomics

Oxygen (O2) has a high redox potential (E09 = 10.82 V), which, together with its
ubiquity, makes it a favorable electron acceptor for energy generation. The con-

centration of O2 across numerous microbial habitats can vary from saturation to anoxia
(1). It is believed that aerobic microorganisms meet these fluctuating conditions by
harboring low- and high-affinity terminal oxidases (TOs), presumably allowing them to
use a wide range of O2 concentrations.

Terminal oxidases, which mediate the final redox reaction in the electron transport
chain (ETC) during aerobic respiration, are grouped into three superfamilies: (i) heme-
copper oxidases (HCOs), (ii) cytochrome bd-type oxidases, and (iii) alternative oxidases.
HCOs are multisubunit complexes and function as cytochrome c or as quinol oxidases,
contributing to energy conservation, the generation of a proton motive force, O2 scav-
enging, and maintaining redox homeostasis (2, 3). Based on overall amino acid similar-
ities of the catalytic subunits and differences of the proton channels, the HCO super-
family is classified into three families: A (subfamilies A1 and A2), B, and C (4). Family A
oxidases have a low affinity for O2, with a reported Michaelis-Menten constant (Km) for
O2 of 200 nmol O2 liter21 (5). HCO families B and C are considered high-affinity TOs
with high catalytic activity at low O2 concentrations but reduced proton-pumping effi-
ciency (6), with Km values for the family C cbb3-type oxidases of 7 to 40 nmol O2 liter21

(7–9). The high-affinity cytochrome bd-type oxidase encoded by the cydAB genes
(10–12) has reported Km values of 3 to 8 nmol O2 liter21 (13). Cytochrome bd-type oxi-
dases do not pump protons across the membrane but contribute to proton motive
force by using electrons from the extracytoplasmic side and protons from the cytoplas-
mic side (11).

High-affinity TOs are believed to sustain energy conservation at diminishing concen-
trations by enabling respiration at trace amounts of O2 (i.e., micromolar O2 concentra-
tions) (14–16). Although there has been some suggestion that low-affinity TOs are present
at micromolar O2 concentrations in addition to high-affinity TOs (5), it remains unclear if
the low-affinity TOs can actively and even solely contribute to respiration at these O2 con-
centrations. At nanomolar O2 concentrations, microorganisms transition from aerobic res-
piration to anaerobic-based metabolism (substrate-level phosphorylation or anaerobic
respiration), referred to as the Pasteur point (17, 18). To the best of our knowledge, gene
expression-based investigations of terminal oxidases at nanomolar O2 concentrations are
scarce (e.g., Gong et al. reported expression at O2 levels of#200nmol [19]), and therefore,
it is mostly speculated that the high-affinity terminal oxidases are primarily responsible
for energy production at low-nanomolar O2 concentrations.

In soil, O2 availability can be spatially and temporally dynamic, depending on the
edaphic properties and microbial activity (20, 21). As such, microbial survival in soil is
dependent on the ability to adapt to changes in local O2 conditions. Environmental
data and genome surveys suggest that both low- and high-affinity TOs are widely dis-
tributed in soils (16). Acidobacteria represent one of the most abundant and phyloge-
netically diverse phyla in soils worldwide (22–24) and are assigned a central role in car-
bon mineralization and plant polymeric carbon degradation (25, 26). Genes encoding
high- and low-affinity TOs have been identified in several genomes of the phylum
Acidobacteria (27), suggesting the capacity to respire across a wide gradient of O2 con-
centrations. As respiratory flexibility can be attained through branched respiratory
chains that terminate in multiple oxidases with different affinities for O2 (15), this facet
might be key to their ecological success in soil.

Using Acidobacteria as model soil organisms, we explored respiratory kinetics and
evaluated their gene expression using whole-transcriptome sequencing and reverse
transcription-quantitative PCR (RT-qPCR) across decreasing low-micromolar to nano-
molar O2 concentrations. As such, we could test the hypothesis that at micro- to
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nanomolar O2 concentrations, aerobic respiration is mediated by high-affinity TOs. Our
data demonstrate that O2 concentrations down to the nanomolar level can be respired
by low-affinity TOs, an unexpected physiological response, suggesting that the ability
to respire O2 under micro- to nanooxic conditions is not exclusively based on the pres-
ence and activity of high-affinity TOs.

RESULTS
Distribution of low- and high-affinity terminal oxidases. Five acidobacterial strains

were chosen to explore their respiratory kinetics, and of these strains, three were cho-
sen to explore their TO expression patterns across nanomolar O2 concentrations. All
strains harbored branched respiratory chains terminating in multiple oxidases (Fig. 1;
see also Data Set S1 in the supplemental material). They differed in their distributions
of low- and high-affinity TOs (complex IV) as well as of complexes III (cytochrome bc1
complex and/or alternative complex III [ACIII]) (Fig. 1; Data Set S1).
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FIG 1 Schematic representation of electron (e2) flow in the predicted branched electron transport chains among the acidobacterial strains and organization of
the respiratory genes in the respective genomes. The low- and high-affinity terminal oxidases of complex IV are depicted in blue and green, respectively.
Complex III is depicted in gray (alternative complex III [ACIII]) or brown (cytochrome bc1 complex [bc1]). The quinone/quinol pools and cytochrome c are
depicted as Q/QH2 and cyt c, respectively. The catalytic subunits of terminal oxidases are in boldface type. The dashed line in panel a indicates the electron
flow via two possible bc1 complexes. Locus tags of the genes are listed in Data Set S1 in the supplemental material.
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Acidobacteriaceae bacterium KBS 83 and Terriglobus sp. strain TAA 43 harbored mul-
tiple homologs of only low-affinity TOs; Acidobacteriaceae bacterium KBS 83 encoded
three A1 caa3 HCOs and one A2 caa3 HCO (Fig. 1a), whereas Terriglobus sp. TAA 43 had
one A1 caa3 HCO and two A2 caa3 HCOs encoded (Fig. 1b). Terriglobus roseus KBS 63
had two homologs of A2 caa3 HCOs (Fig. 1c), Edaphobacter sp. strain TAA 166 had one
A1 caa3 HCO and one A2 caa3 HCO (Fig. 1d), and Acidobacterium capsulatum 161 had
one A1 caa3 HCO encoded (Fig. 1e). In addition to low-affinity TOs, T. roseus KBS 63,
Edaphobacter sp. TAA 166, and A. capsulatum 161 also harbored high-affinity TOs: T.
roseus KBS 63 had a cbb3 type (C HCO) (Fig. 1c), Edaphobacter sp. TAA 166 had a bd
type (Fig. 1d), and A. capsulatum 161 had both types (Fig. 1e).

There was consistent gene synteny for the A1 caa3 HCO, A2 caa3 HCO, C cbb3 HCO,
and bd-type quinol oxidases and the adjacent complex III genes among the acidobac-
terial strains (Fig. 1). Genes for the A1 caa3 HCO were always located in an operon
upstream of the genes encoding the bc1 complex (described here as a “superoperon”)
(Fig. 1). The A2 caa3 HCO also occurred in a superoperon with the genes encoding
ACIII, instead of the bc1 complex, and were located downstream of the ACIII genes
(Fig. 1). Additional, single homologs of either the A1 or A2 caa3-type oxidases were
detected in the genomes of Acidobacteriaceae bacterium KBS 83 (Fig. 1a), Terriglobus
sp. TAA 43 (Fig. 1b), and T. roseus KBS 63 (Fig. 1c). T. roseus KBS 63 (Fig. 1c) and A. cap-
sulatum 161 (Fig. 1e) contained cbb3 operons consisting of genes for cbb3 subunits N
and O as well as an additional cco gene of unknown function. Edaphobacter sp. TAA
166 (Fig. 1d) and A. capsulatum 161 (Fig. 1e) contained both cydA and cydB subunits
for the bd-type quinol oxidase.

Assessment of O2 respiratory kinetics. We determined the O2 respiration rates
and population apparent Km (Km(app)) values for the five acidobacterial strains with dif-
fering distributions of high- and low-affinity TOs in exponential phase (non-energy lim-
ited) with only O2-limiting respiration rates (Fig. 2). All strains followed Michaelis-
Menten-type kinetics. Acidobacteriaceae bacterium KBS 83 and Terriglobus sp. TAA 43,
both harboring only low-affinity TOs, had Km(app) values for O2 of 1666 11 nmol O2

liter21 (Fig. 2a) and 2506 5 nmol O2 liter21 (Fig. 2d), respectively. The maximum popu-
lation respiration rate (Vmax) of Acidobacteriaceae bacterium KBS 83 was on average
3556 12 nmol O2 liter21 h21, and the maximum respiration rates per cell (Rmax) pro-
gressively decreased over time from 9.8 to 6.86 0.4 fmol O2 cell21 h21 (Fig. 2a;
Table S1). The Vmax of Terriglobus sp. TAA 43 was 9986 6 nmol O2 liter21 h21, and the
Rmax was constant at 2.66 0.02 fmol O2 cell21 h21 (Fig. 2d).

For T. roseus KBS 63 and Edaphobacter sp. TAA 166, harboring both low- and either a
cbb3- or bd-type high-affinity TO, the Km(app) values were 1136 24nmol O2 liter21 and
2886 34nmol O2 liter21, respectively (Fig. 2b and e). The Vmax values of T. roseus KBS 63
and Edaphobacter sp. TAA 166 (2016 35 and 6046 69nmol O2 liter21 h21, respectively)
as well as their Rmax values (0.386 0.07 fmol O2 cell21 h21 and 0.166 0.02 fmol O2 cell21

h21, respectively) were stable throughout the incubations (Fig. 2b and e). The Km(app) value
for A. capsulatum 161, harboring one low-affinity and both types of high-affinity TOs,
decreased from 996 14 to 376 2nmol O2 liter21 (Table S2), with a final Km(app) value 1
order of magnitude lower than the values of the other investigated strains (Fig. 2c). In
addition, the Vmax and Rmax of A. capsulatum 161 progressively increased during the whole
period of measurements from 2,1506 156 to 3,6096 430nmol O2 liter21 h21 (Table S2)
and from 0.176 0.01 to 0.266 0.03 fmol O2 cell21 h21, respectively (Fig. 2c). The respira-
tion rates rose to a maximum as O2 concentrations increased and then descended to a
nonzero asymptote. Additionally, the velocity curves saturated rapidly, compared to the
other strains (Fig. 2e).

Differential gene expression due to changing O2 concentrations. Of the five
strains, we selected three that encompass different combinations of low- and high-af-
finity TOs to compare changes in gene expression levels when exposed to different,
decreasing O2 concentrations. Transcriptome analysis of Acidobacteriaceae bacterium
KBS 83, T. roseus KBS 63, and A. capsulatum 161 showed that in the course of the time
series, 5,121 (93% of all annotated genes), 4,239 (97%), and 3,321 (97%) genes,
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respectively, were transcribed at least at one time point across the O2 concentrations
(Table S5).

The decrease from 10 to 0.1mmol O2 liter21 had the greatest impact on the tran-
scriptomes of all three strains, with the highest number of significantly differentially
expressed genes observed (Fig. 3a). Among 1,602 (31%) differentially expressed genes
of Acidobacteriaceae bacterium KBS 83, 16% were upregulated and 15% were downre-
gulated upon the transition from 10 to 0.1mmol O2 liter21 after cells equilibrated for 60
min at each respective O2 concentration (Fig. 3b). For T. roseus KBS 63 and A. capsula-
tum 161, 38% (20% upregulated and 18% downregulated) and 81% (41% upregulated
and 40% downregulated), respectively, were differentially expressed upon this transi-
tion from 10 to 0.1mmol O2 liter21 (Fig. 3b). Comparatively, there were few to no signif-
icant expression changes when transitioning from 0.1 to 0.001mmol O2 liter21 regard-
less of the equilibration time at the lower O2 concentration; similar patterns were
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observed in the transcriptome of T. roseus KBS 63 when transitioning from 0.001 to
0mmol O2 liter21 (Fig. 3a). The comparison between 10 and 0.001mmol O2 liter21

revealed the same overall transcription pattern as that for the transition from 10 to
0.1mmol O2 liter21 (Fig. 3). During these incubations, O2 was decreased in a stepwise
manner from 10mmol O2 liter21 to anoxic conditions (,0.0005mmol O2 liter21) (Fig. 4).
Below 0.01mmol O2 liter21, Acidobacteriaceae bacterium KBS 83, harboring only low-af-
finity TOs, consumed O2 at a respiration rate lower than the rate at which O2 was sup-
plied, causing concentrations to never drop to anoxic conditions (Fig. 4a).

In contrast, strains harboring both low- and high-affinity TOs (T. roseus KBS 63 and A.
capsulatum 161) consumed all the supplied O2 at our lowest provided rate (i.e., 5.1mmol
O2 min21 [T. roseus KBS 63] and 10.1mmol O2 min21 [A. capsulatum 161]). Their O2 uptake
rates were higher than the O2 inflow rate, thereby creating an apparent anoxic environ-
ment below our detection limit of 0.0005mmol O2 liter21 (Fig. 4c and e).

Transcriptional responses of branching electron transport chain key genes and
terminal oxidases to decreasing O2 concentrations. We further explored the tran-
scriptional changes of TOs (complexes III and IV) of the ETC by focusing on key func-
tional genes of these complexes (Fig. 4; Data Set S2).

(i) Acidobacteriaceae bacterium KBS 83. Continuous expression of two out of the
four low-affinity caa3-type cytochrome c oxidases, one of the bc1-A1 caa3 superoperons
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and the ACIII-A2 caa3 superoperon, was observed across all investigated O2 concentra-
tions, even after exposure to 0.001mmol O2 liter21 for an extended period of time
(Fig. 4b; Data Set S2); similar patterns were observed by RT-qPCR (Fig. S1a). All genes
of superoperon ACIII-A2 caa3 exhibited significantly lower expression levels at 0.001
than at 10mmol O2 liter21 (P, 0.05), yet the catalytic subunit ctaD of the A2 HCO was
consistently highly expressed across O2 concentrations and not significantly downre-
gulated (Fig. 4b). In contrast, ctaD of the A1 HCO complex together with petC of the
bc1 complex were significantly upregulated at 0.001mmol O2 liter21 (P, 0.05). The
transcription level of the electron-receiving subunit II (ctaC) was higher than that of
the rest of the bc1-A1 caa3 superoperon and remained high upon transitions to lower
O2 concentrations (Fig. 4b); the same responses were observed within the first 10 min
after shifts of oxygenation by RT-qPCR (Fig. S1a). We still observed gene expression 15
min after the O2 supply was ceased (Fig. S1a). Even then, the O2 concentration did not
fall below 0.01mmol O2 liter21 (Fig. 4a), and Acidobacteriaceae bacterium KBS 83 was
still expressing its TOs after 3 h at 0.01mmol O2 liter21 (Fig. 4b). Of the other complexes
IV, only ctaE that encodes subunit III of the single complex IV exhibited high expression
levels (Fig. 4b).

(ii) T. roseus KBS 63. The expression levels (transcripts per million [TPM]) of the cat-
alytic subunit of the cbb3-type high-affinity TO (ccoN) across the investigated O2 con-
centrations were low (Fig. 4d; Data Set 2) and too low for reliable quantification by RT-
qPCR (Fig. S1b). The catalytic subunits of both low-affinity A2 HCO TOs (ctaD) exhibited
the highest expression levels and were transcribed at significantly higher levels
(P, 0.0001) at 0.001 than at 10mmol O2 liter21 (Fig. 4d). All other genes of the ACIII-A2
caa3 superoperon were also upregulated (Fig. 4b). After a shift to anoxic conditions,
the single ctaD gene was still expressed and upregulated (Fig. S1b).

(iii) A. capsulatum 161. The cbb3-type high-affinity TO was transcribed at low levels
at 10mmol O2 liter21 and was significantly downregulated (P, 0.0001) at all subse-
quent lower concentrations (down to 0.001mmol O2 liter21) (Fig. 4f; Data Set S2).
Expression of the cbb3-type high-affinity TO by RT-qPCR was seen from 10 to 0.1mm O2

but only for 10 min at this concentration as measured by RT-qPCR (Fig. S1c). In con-
trast, the bd-type TO (cydAB) was expressed at all investigated O2 concentrations (10 to
0.001mmol O2 liter21). The relative abundance of cydA transcripts was very high under
all O2 tensions (58-fold higher than that of the rpoB gene) (Data Set S2). RT-qPCR
showed a clear and significant (P# 0.05) upregulation of the catalytic subunit cydA
(Fig. S1c). Furthermore, cydA transcription levels were always high, even under anoxic
conditions. The ctaD gene, encoding the catalytic subunit of the low-affinity A1 HCO,
was continuously transcribed across all O2 concentrations as detected by transcriptom-
ics and RT-qPCR (Fig. 4f; Fig. S1c). However, the proportion of ctaD transcripts
decreased under anoxic conditions (Fig. 4f).

DISCUSSION

Members of an abundant soil phylum, the Acidobacteria, respire environmentally
relevant micro- and nanomolar O2 concentrations with the use of low-affinity TOs.
Respiratory kinetics were determined using highly sensitive optical sensors, which
allowed us to study the O2 kinetics with a high degree of accuracy. Our findings extend
the current knowledge on O2 kinetics to species outside the Proteobacteria.

Acidobacteria harbor branched respiratory chains terminating in multiple
complexes IV with either low or high affinities for O2. Branched ETCs terminating in
differing terminal electron acceptors (such as O2, NO3, or NO2) are typically found in
bacteria, providing flexibility when exposed to various environmental conditions (14,
15). Enzymatic redundancy in using a single electron acceptor (such as O2) can provide
additional flexibility due to varying substrate affinities, allowing the microorganism to
respire most efficiently across different concentrations, as seen in organisms living at
the oxic-anoxic interface (28–34). This flexibility extends to our investigated soil acido-
bacterial strains, as many of them have branched ETCs that terminate in multiple com-
plexes IV with either low or high affinities for O2 (Fig. 1). Furthermore, in select strains,
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genes for complex IV were detected in superoperons together with genes for complex
III, either bc1 or alternative complexes III (Fig. 1), as previously seen in other members
of the Acidobacteria and further phyla (35, 36), potentially functioning as respiratory
supercomplexes (37–39). Although the physiological relevance of supercomplexes is
still unclear (40), we suggest that this physical association might provide additional
metabolic flexibility in the acidobacteria. The close association could allow a more
favorable transfer between complexes, bypassing soluble electron carriers (39).
Nevertheless, follow-up investigations will be needed to elucidate the advantage of
the supercomplexes. The complex IV genes were also found independent from com-
plex III genes in three strains (Fig. 1).

The conventional high-affinity cbb3-type TO does not actively contribute to the
capacity to respire O2 at nanomolar concentrations. High-affinity TOs are historically
believed to enable respiration and provide the capacity for energy conservation at
trace concentrations of O2, a physiology that was shown to be widespread among bac-
teria and archaea of diverse environments, as suggested by genome surveys (16). Yet
in the investigated acidobacterial strains, the cbb3-type high-affinity TO did not impart
the capacity to respire O2 at nanomolar concentrations. In our experimental setup,
strains harboring high-affinity TO genes had the potential to develop low apparent Km
values by expressing these TO genes under O2-limited conditions, as in our incuba-
tions, the cells were exposed to multiple oxic-to-anoxic gradients over a 24-h period.
Furthermore, our investigated strains harbor the minimal core, the CcoNO protein
dyad (41), for the functionality of the enzyme (Fig. 1). Expression of the cbb3-type oxi-
dase could not be detected below 10mmol O2 liter21 in both strains T. roseus KBS 63
and A. capsulatum 161 (Fig. 4), although they indeed consumed O2 down to (apparent)
anoxia. Compared to reported Km(app) values for O2 of Proteobacteria strains harboring
cbb3-type oxidases measured by the same method (42), the Km(app) value of T. roseus
KBS 63 was high (113 nmol O2 liter21) (Fig. 2b). This further provides evidence for the
activity of the low-affinity oxidase(s) and suggests that it might be used for respiration
in environments with low O2 concentrations, such as the heterogeneous soil environ-
ment. O2 fluctuations in soil are dynamic, and exposure to low-nanomolar O2 concen-
trations might be temporally limited to short intervals (43). Therefore, we hypothesize
that the investment in the expression of a less-energy-efficient TO (the high-affinity
cbb3 type) (44, 45) will not provide any competitive advantage for these investigated
time intervals. At this time, it is unclear if the cbb3-type oxidase has lost its function to
generate proton motive force in these strains. Alternatively, cbb3 TO expression in T.
roseus KBS 63 and A. capsulatum 161 could be triggered by other factors, such as nutri-
ent limitation or carbon depletion, as recently reported for Shewanella oneidensis (46).

Utilization of acidobacterial bd-type oxidases at nanomolar O2 concentrations.
The bd-type oxidases are another type of high-affinity TO, which are less efficient at
creating the charge gradient for ATP generation as they do not pump protons across
the membrane but generate a proton motive force by transmembrane charge separa-
tion (12). Expression data showed a clear and significant upregulation of the catalytic
subunit cydA gene as O2 concentrations decreased in A. capsulatum 161 (Fig. 4f; see
also Fig. S1c in the supplemental material). This suggests that the bd-type oxidase con-
tributed to the respiratory activity under trace O2 conditions. In contrast, the cbb3 type
was transcribed only at low levels at 10mmol O2 liter21 and was significantly downre-
gulated (P , 0.0001) at all subsequent lower concentrations (Fig. 4f; Fig. S1c).
However, the use of the bd-type oxidase for respiration activity appears to be strain de-
pendent. In another strain harboring a high-affinity bd-type oxidase (Edaphobacter sp.
TAA 166), the expression of cydA could not be detected at any examined O2 concentra-
tion; rather, the low-affinity TOs were expressed across these O2 concentrations (RT-
qPCR data not shown). Here, the bd-type oxidase could be contributing to physiologi-
cal functions other than respiratory O2 reductions, such as reactive oxygen species
(ROS) stress, iron deficiency, or nitric oxide stress responses (11, 12, 47).

Although the bd-type oxidases are not as efficient at creating a charge gradient,
these oxidases have functional and structural characteristics that favor a faster electron

Microaerobic Respiration via Low-Affinity Oxidases

July/August 2021 Volume 6 Issue 4 e00250-21 msystems.asm.org 9

https://msystems.asm.org


flux than cbb3-type oxidases (11, 12), which could be advantageous under conditions
with plentiful reducing potential stemming from carbon surplus. For instance, they
receive electrons directly from the quinol pool and thereby take a shortcut through
the branched ETC, bypassing any complexes III (Fig. 1). In support of this conjecture,
bd-type oxidase genes were found to be more prevalent in environments where car-
bon is in excess, such as host-associated environments and carbon-rich forest soils
compared to carbon-poor agricultural soils (16). As our investigated conditions were a
combination of carbon surplus and O2 limitation, we therefore hypothesize that this
selected for the utilization of the bd-type oxidase compared to the cbb3 type in A. cap-
sulatum 161.

The strain expressing the bd-type oxidase under low O2 concentrations (A. capsula-
tum 161) was the only one that was inhibited by high O2 concentrations at its maxi-
mum respiration rate (Rmax) (Fig. 2c) (.250 nmol O2 liter21). Furthermore, its Km(app)

value decreased over multiple oxic-anoxic shifts (n=17) within 24 h, indicating a need
for less substrate and, therefore, an adaptation to these conditions. This temporal ki-
netic development was previously observed for marine Proteobacteria (42). The final
estimated Km(app) value of A. capsulatum 161 (37 nmol O2 liter21) suggests a mixed activ-
ity of low- and high-affinity TOs (Fig. 2c), with its high-affinity TO contributing a large
portion of the Km(app) value. This respiratory kinetic activity of A. capsulatum 161 sug-
gests that this strain can use different O2 concentrations due to its enzymes’ O2 affin-
ities. Presumably, this strain has a different strategy to exploit microoxic niches com-
pared to the other investigated strains, which also could be advantageous in the soil
when exposed to spatiotemporal gradients and diffusion limitations.

Acidobacterial low-affinity TOs are used at nanomolar O2 concentrations.
Acidobacterial low-affinity caa3-type HCOs are functioning at previously unknown
nanomolar O2 concentrations, as shown in the investigated strains (Fig. 4; Fig. S1). The
use of low-affinity A HCOs at low concentrations of O2 is energetically favorable, as
they have more free energy available for driving proton translocation due to poor O2

binding (44, 45) and a more efficient, and thus favorable, gating for proton leakage
(44) than high-affinity TOs. High-affinity C HCOs typically exhibit higher catalytic activ-
ity at lower O2 concentrations due to a different redox-driven proton-pumping mecha-
nism that allows an increased electron transfer rate and a faster reduction of O2 (48).
Still, these high affinities come with a reduced proton-pumping efficiency (6, 44).

Many of the genes for the A2 caa3 HCO in T. roseus KBS 63 were not only expressed
across varying O2 concentrations but in some cases also even upregulated at lower O2

concentrations (Fig. 4d; Fig. S1b). A continuous expression of low-affinity caa3-type
TOs at low O2 concentrations was previously reported in aerobic marine bacterial spe-
cies (19, 49); however, in that study (19), the high-affinity cbb3-type TO was upregu-
lated at ,0.2mmol O2 liter21. In our study, we did not observe any measurable contri-
bution via transcriptomics or qPCR of the high-affinity cbb3-type TO in any of the
strains at 10 to 0.001mmol O2 liter21, although we cannot completely rule out the pos-
sibility of a minor contribution (undetectable with our current methods) of the cbb3-
type TO. Likewise, it is conceivable that high-affinity cbb3-type TOs function only at
extremely low concentrations of O2 (,1 nmol O2 liter21), which we currently cannot es-
tablish, maintain, and measure in the laboratory. Nevertheless, it appears that at the
low O2 concentrations (down to 1 nmol O2 liter21) investigated in this study, T. roseus
KBS 63 definitely prioritizes the low-affinity TOs. The energetic advantage of the low-af-
finity TOs might explain the strategy of T. roseus KBS 63 to invest in the high expression
and upregulation of A2 caa3 HCOs, compared to its cbb3-type high-affinity TO (Fig. 4d;
Fig. S1b).

In contrast, Acidobacteriaceae bacterium KBS 83 harbored only low-affinity TOs
(caa3 type) and was able to respire at O2 concentrations of 10mmol O2 liter21 and
lower. Below 0.01mmol O2 liter21, it consumed O2 at a respiration rate lower than the
rate at which O2 was supplied, causing concentrations not to reach anoxic conditions
(Fig. 4a). However, complete consumption to anoxia was reached during the kinetics
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measurement experiments, reflecting the capacity to respire O2 at trace concentra-
tions. This difference could be explained by a lower cell density in the incubations for
transcriptome analysis, not allowing these incubations to reach anoxia during the time
course of the incubations simply due to cell number. Alternatively, O2 diffusion could
explain this discrepancy; this is unlikely as it was not observed in other incubations of
the investigated acidobacteria. Efficient energy conservation (generating more ATP/
electron) would be a vital survival strategy in times of substrate limitation in environ-
ments such as soil. It therefore might be an advantage to use low-affinity TOs even at
nanomolar O2 concentrations as they, despite their lower reaction rate, ultimately drive
more charges across the membrane per mole of O2, making them more efficient in
energy conservation.

It appears that the capacity of Acidobacteriaceae bacterium KBS 83 to respire O2

under low concentrations was limited, as seen by the decreasing Vmax and Rmax over
time (Table S1). Its Km(app) value (166 nmol O2 liter21) is lower than and in contrast to
the previously reported Km value for the caa3-type oxidase of Pseudomonas aeruginosa
(4,300 nmol O2 liter21) (8) but in the same range as the one for the low-affinity cyto-
chrome bo3 ubiquinol oxidase of Escherichia coli (200 nmol O2 liter21) (5). Although it is
difficult to compare Km values across studies as the determined Km values can differ
dramatically depending on the applied approach (8, 50), we want to stress the fact
that one has to be careful with historically set benchmarks that propagate in the litera-
ture. The determined Km(app) values of our study represent ecophysiologically relevant
estimates as we used whole populations and intact cells as well as highly sensitive op-
tical sensors with an extremely low detection limit.

Conclusion. Microorganisms frequently have to cope with changing O2 tensions;
therefore, having the flexibility to use a wide range of O2 concentrations is beneficial
(16). Here, we show that members of a dominant and ubiquitous soil phylum (22, 24,
26), the Acidobacteria, have branched ETCs that terminate in multiple oxidases (high-
and low-affinity TOs), providing them with respiratory flexibility and adaptability to
environmental changes (14–16). More specifically, their low-affinity TOs are functioning
at nanomolar O2 concentrations, presumably providing a great benefit for soil acido-
bacteria as they are more efficient in generating ATP than high-affinity TOs (44). We
hypothesize that this strategy could be employed by other bacterial clades in soil as
well as other habitats. Follow-up work is needed to ascertain if respiration at nanomo-
lar O2 concentrations allows biomass production or population growth in the long run
during exposure to such low O2 levels. In addition, low O2 concentrations and nutrient-
rich conditions selected for the expression of the high-affinity bd-type oxidase rather
than the cbb3 type, which presumably provides a more optimal balance of substrate
oxidation and ATP production under these conditions. Follow-up studies are needed
to elucidate the conditions under which acidobacterial cbb3-type TOs are employed for
respiration. Our results extend the current knowledge on the respiratory flexibility of
the prevalent Acidobacteria, which could help explain their success in the heterogene-
ous soil environment.

“Microaerobes” were previously defined as microorganisms that harbor high-affinity
TOs in their genomes, either alone or in combination with low-affinity TOs, and use
them to respire O2 in microoxic environments (16). However, “microoxic” or subatmo-
spheric concentrations of O2 could be anything below 21% (vol/vol) O2, and within this
range, the response of TOs can vary dramatically. In our study, we pushed microoxic to
nanooxic conditions and explored the transcriptional response combined with enzyme
kinetics to obtain a state-of-the-art assessment of their response to O2 tension. We
detected high- and low-affinity TOs in multiple acidobacterial genomes and respiration
at nanomolar O2 concentrations across the investigated strains. Yet our gene expres-
sion data did not indicate any detectable contribution of the cbb3-type high-affinity
TOs at these O2 concentrations; only one strain had contributions from the high-affinity
bd-type TO. This suggests that the capability for microaerobic respiration in these acid-
obacteria is not solely due to the presence and associated activity of high-affinity TOs.
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Instead, the acidobacterial microaerobic lifestyle seems to also be imparted by low-af-
finity caa3-type TOs that enable them to respire O2 at nanomolar concentrations. This
illustrates that the presence of a high-affinity TO in a genome is not a prerequisite for
microaerobic respiration. To that end, we would like to amend the definition of micro-
aerobe to encompass microorganisms that are capable of respiring O2 under microoxic
conditions via the utilization of high- or low-affinity TOs. Furthermore, these findings
demonstrate that it can be challenging to make predictions on the ecophysiology and
lifestyle of microorganisms based solely on their genomic information, even for a pro-
cess as well studied as aerobic respiration.

MATERIALS ANDMETHODS
Strains and growth conditions. Five chemoorganotrophic strains of the family Acidobacteriaceae,

Acidobacteriaceae bacterium KBS 83 (DSM 24295), Terriglobus sp. TAA 43 (LMG 30954; DSM 24187),
Terriglobus roseus KBS 63 (NRRL B-41598T; DSM 18391), Edaphobacter sp. TAA 166 (LMG 30955; DSM
24188), and Acidobacterium capsulatum 161 (ATCC 51196; DSM 1124), were grown in vitamins and salts
base (VSB) medium (51, 52) amended with 10mM glucose as the sole carbon source at pH 6 or 5 (A. cap-
sulatum 161). Additional information on the strains was reported previously (27, 52–54).

Setup and incubation for respiratory kinetic parameters. The details of the setup and experimen-
tal procedure were previously described (34, 42, 55). Briefly, the incubations were conducted in custom-
made 500- or 1,100-ml glass bottles, which had been sequentially rinsed with a solution containing 0.1
M NaOH, 0.1 M HCl, and autoclaved water to prevent contamination. A continuous flow of N2 was main-
tained while filling the bottles with N2-purged medium and subsequent sealing with ground-glass stop-
pers. Exponential-phase acidobacterial cells were injected into these bottles (2 to 3 replicates/strain),
while glass-coated magnetic stirrers homogenized the suspension. The O2 concentration was optically
determined every 20 s by luminescence-based O2 sensors (Lumos) with sensor spots (measurement
range, 0.5 to 1,500 nmol O2 liter

21) (56) glued onto the inside of the bottles. Bottles were incubated at
room temperature and shielded from light for 24 h. Air-saturated water (4 to 5ml) was repeatedly
injected into the bottles after anoxia was reached by cell respiration, with peak concentrations ranging
from 600 to 1,620 nmol O2 liter

21. One milliliter of the cell suspension was collected and fixed with 1%
glutaraldehyde (Sigma-Aldrich, St. Louis, MO, USA) to determine cell numbers as described previously
(42). After the incubations were completed, O2 sensors were calibrated with oxygenated water and so-
dium dithionite.

Calculation of kinetic parameters. O2 consumption rates were calculated from linear regression of
O2 concentrations over time in intervals of 6 min from the highest O2 concentration down to anoxia.
Kinetic parameters, the apparent half-saturation constant (Km(app)) and the maximum respiration rate
(Vmax) of the Michaelis-Menten equation, were estimated by performing nonlinear parametric fits on the
respiration-versus-O2-concentration curves for each replicate. Vmax and Km(app) were varied iteratively until
the best fit was obtained by least-square fits using Solver in Microsoft Excel (57). Maximum respiration
rates per cell (Rmax) were calculated by dividing the population respiration rate (Vmax) by cell numbers.
Michaelis-Menten plots of respiration rates versus O2 concentrations were obtained by fitting a
Michaelis-Menten model to the data using the equation V = (Vmax � [O2]) � (Km 1 [O2])

21, where V is the
rate, Vmax is the maximum rate (nanomoles of O2 per liter per hour), Km is the half-saturation constant
(nanomoles of O2 per liter), and [O2] is the substrate concentration (nanomoles of O2 per liter).
Additional modifications of the Michaelis-Menten equation and further corrections can be found in Text
S1 (Supplemental Materials and Methods 1) and Tables S1 and S2 in the supplemental material.

Transcriptional profiling incubations. Acidobacteriaceae bacterium KBS 83, T. roseus KBS 63, and A.
capsulatum 161 were grown in biological quadruplicates in glass bottles (Schott) containing 1 liter of
VSB minimal medium amended with 10mM glucose under fully aerated conditions. Once cells reached
exponential phase, they were transferred into HCl-sterilized and autoclaved-water-rinsed glass bottles
equipped with internally preglued sensing spots. Incubations were run for 225 min and split into four
discrete, declining O2 concentrations (10mmol O2 liter21, 1mmol O2 liter21, 0.1mmol O2 liter21, and
0.001mmol O2 liter

21) down to anoxia (0mmol O2 liter
21 is,0.0005mmol O2 liter

21) obtained by purging
with N2-air mixtures (Table S3). O2 concentrations were monitored by two Lumos systems with different
sensitivity ranges (0.5 to 1,500 and 10 to 20,000 nmol O2 liter

21) (56). At every time point (Table S3), 30
to 50ml of the culture was collected for RNA extractions by syringes prefilled with a phenol-stop solu-
tion (58). The sensor spots were calibrated after the incubations with oxygenated water and sodium
dithionite. Additional details can be found in Text S1 (Supplemental Materials and Methods 2).

RNA extraction and purification. Total RNA was extracted from frozen cell pellets using an acidic
phenol-chloroform–isoamyl alcohol protocol as described previously (59), with mechanical disruption
(FastPrep-24 bead beater; MP Biomedicals, Heidelberg, Germany). The extraction supernatant was puri-
fied using standard chloroform-isoamyl alcohol purification, and RNA was precipitated using a polyethyl-
ene glycol (PEG) solution and RNA-grade glycogen by centrifugation (21,130� g for 1 h at 4°C).
Coextracted DNA was digested using a Turbo DNA-free kit (Thermo Fisher), and complete DNA removal
was verified by failure to obtain quantitative PCR (qPCR) amplification products with the purified RNA
template, targeting the rpoB gene encoding the b subunit of the DNA-directed RNA polymerase, under
the qPCR conditions described in Table S4. A more detailed protocol can be found in Text S1
(Supplemental Materials and Methods 3).
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Primer design, cDNA synthesis, RT-qPCR, and data analysis. Specifications of the newly designed
primers targeting the catalytic subunits (subunit I) of the TOs are listed in Table S4. See Text S1
(Supplemental Materials and Methods 4) for details on primer design, cDNA synthesis, reverse transcrip-
tion-qPCR (RT-qPCR), and data analysis.

Transcriptome sequencing. Triplicate total RNA samples of Acidobacteriaceae bacterium KBS 83, T.
roseus KBS 63, and A. capsulatum 161 from selected O2 concentrations and time points were sent to the
Vienna BioCenter Core Facilities. rRNA was depleted using the New England BioLabs (NEB) Ribo-Zero
rRNA removal kit for bacteria. Sequencing was performed on an Illumina NextSeq 550 system, resulting
in a total of 36 samples with 8.2 million to 18.2 million 75-nucleotide reads each.

Transcriptome data processing and statistical analyses. Raw reads were trimmed of sequencing
adapters and low-quality 39 ends using BBduk (BBtools v37.61; https://jgi.doe.gov/data-and-tools/
bbtools/) with default parameters and error corrected using the Bayes-Hammer module of SPAdes as-
sembler version 3.13.0 (60). Any reads mapping to either SILVA small-subunit (SSU) or large-subunit
(LSU) release 132 (61) or the 5S rRNA database (62) with a sequence identity of .70% (performed with
BBmap and BBtools; https://jgi.doe.gov/data-and-tools/bbtools/) were removed from the data set. The
remaining reads were mapped to the publicly available genomes of the acidobacterial strains (53). The
RNA reads per gene were summarized using the featureCounts tool from the Subread package v1.6.2
(63). Based on the generated read count tables, transcripts per million were calculated in R v3.6.0.
Differential expression analyses, such as calculations of log2 fold changes of relative transcript abundan-
ces and the significance of these changes, were performed in DESeq2 v1.26.0 using default parameters
and a P value cutoff of 0.05 (64).

Data availability. The raw transcriptomic reads are available under BioProject accession number
PRJNA635786. The code and pipelines used for data analysis are available upon request.
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