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Abstract: In the recent decades, algae have proven to be a source of different bioactive compounds
with biological activities, which has increased the potential application of these organisms in food,
cosmetic, pharmaceutical, animal feed, and other industrial sectors. On the other hand, there is a
growing interest in developing effective strategies for control and/or eradication of invasive algae
since they have a negative impact on marine ecosystems and in the economy of the affected zones.
However, the application of control measures is usually time and resource-consuming and not
profitable. Considering this context, the valorization of invasive algae species as a source of bioactive
compounds for industrial applications could be a suitable strategy to reduce their population,
obtaining both environmental and economic benefits. To carry out this practice, it is necessary to
evaluate the chemical and the nutritional composition of the algae as well as the most efficient
methods of extracting the compounds of interest. In the case of northwest Spain, five algae species are
considered invasive: Asparagopsis armata, Codium fragile, Gracilaria vermiculophylla, Sargassum muticum,
and Grateulopia turuturu. This review presents a brief description of their main bioactive compounds,
biological activities, and extraction systems employed for their recovery. In addition, evidence of
their beneficial properties and the possibility of use them as supplement in diets of aquaculture
animals was collected to illustrate one of their possible applications.
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1. Introduction

Invasive alien species (IAS), also known as exotic or non-native species, are plants
or animals that have been introduced, intentionally or not, into regions where it is not
usual to find them [1,2]. This situation often leads to negative consequences for the new
host ecosystem, generally related to the community biodiversity reduction, changes in
the abundance of the species and in the population’s configuration across the habitats,
as well as trophic displacements that can trigger other cascade effects [3]. Spanish law
42/2007, of 13 December, on Natural Heritage and Biodiversity, defines IAS as “species
that are introduced and established in an ecosystem or natural habitat, which are an agent
of change and a threat to native biological diversity, either by their invasive behavior, or
by the risk of genetic contamination”. IAS usually present high growth and reproduction
rates, the ability to prosper in different environments, the capacity to use several food
sources, and the ability to tolerate a wide range of environmental conditions. All these
factors, along with the lack of natural predators, make these organisms more difficult to
control and allow them to succeed in colonizing new ecosystems [3,4]. In addition, these
species may feed on natural species or may carry pathogens for native organisms and even
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humans [5]. The invasion of non-native species also entails economic cost, which have
been estimated at $1.4 trillion in the last decade [6].

Among marine IAS declared in Europe, around 20–40% are macroalgae (seaweeds) [7],
a term that refers to several species of multicellular and macroscopic marine algae, includ-
ing different types of Chlorophyta (green), Phaeophyta (brown), and Rhodophyta (red)
macroalgae. Non-native seaweeds are particularly prone to become invasive due to their
high reproductive rates, the production of toxic metabolites, and their perennial status that
makes them more competitive than native species [1]. Several species periodically become a
major problem, causing red tides, fouling nets, clogging waterways, and changing nutrient
regimes in areas near to fisheries, aquaculture systems, and desalination facilities [1,4].
In the last years, the presence of invasive macroalgae in the northwestern marine areas
of Spain has become a common problem due to growing globalization, climate change,
aquaculture, fisheries, and marine tourism [8]. However, their proliferation could also offer
new opportunities since the recovery of the algal biomass and their novel applications in
different economic sectors could increase their added value. Obtaining natural compounds
with biological properties of interest for both the food and the pharmaceutical industries is
one of these possible applications. The aim of the present work is to summarize the existing
knowledge about the bioactive compounds of the principal invasive species affecting the
Galician coasts (northwest Spain).

2. Possible Exploitation of the Invasive Species

The exploitation of macroalgae is a growing industry with several applications, in-
cluding human food and animal feed, biorefinery, fertilizers, production of phycocolloids,
and obtaining compounds with biological properties [6,9]. Several applications are briefly
discussed below.

2.1. Food Industry

Macroalgae have been consumed since ancient times in many countries around the
world, mainly in the Asian regions. Nevertheless, their consumption has increased in
the last decades in western countries, which has been attributed to the high nutritional
values of macroalgae and their health benefits [10,11]. Some of the most consumed
macroalgae are nori or purple laver (Porphyra spp.), kombu (Laminaria japonica), wakame
(Undaria pinnatifida), Hiziki (Hizikia fusiforme), or Irish moss (Chondrus crispus), which can
be consumed in different food formats (salads, soups, snacks, pasta, etc.) [11,12]. Still, most
of them are considered an innovative niche product. Macroalgae are also widely used in
the food industry to produce phycocolloids (polysaccharides of high molecular weight
composed mostly of simple sugars), mainly alginates, agars, and carrageenans, which are
frequently used as thickeners, stabilizers, as well as for probiotics encapsulation, gels, and
water-soluble films formation [6,13]. Furthermore, diverse molecules present in algae have
been shown to exert several bioactivities, such as antioxidant, anti-inflammatory, antimicro-
bial, and antiviral effects. These bioactive compounds (mainly proteins, polyunsaturated
fatty acids, carotenoids, vitamins, and minerals) may play important roles in functional
foods (e.g., dairy products, desserts, pastas, oil derivatives, or supplements) with favorable
outcomes on human health [14]. Other applications of algae in the food industry include
their use as colorant agents and the extraction of valuable oils (such as eicosapentaenoic
acid, docosahexaenoic acid, and arachidonic acid) [15].

2.2. Biofuel

The development of algal biofuels (“third-generation biofuels”) has been considered
an option to reduce the use of petroleum-based fuels and avoid competition between food
and energy production for arable soil, since macroalgae grow in water. These organisms
do not contain lignin, thus they are good substrates for biogas production in anaerobic
digesters, while fermentable carbohydrates are fit for bioethanol production. Although the
production of bioenergy from macroalgae is not economically feasible nowadays, several
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measures have been proposed to achieve a rational production cost in the future [16]. On
the other hand, microalgae are considered a more suitable source to produce biodiesel due
to the greater ease of controlling the life cycle and increasing the reproduction rate [17].
Microalgae biomass can be used for electricity generation or biofuel production after the
lipid extraction. It has shown 80% of the average energy content of petroleum. The lipid
content is highly dependent on the microalgae species and the cultivation conditions,
thus not all species will be profitable, and choosing appropriate microalga strain is cru-
cial [18]. Some microalgae used to produce biofuel are Chlorella spp., Dunaliella salina,
Haematococcus pluvialis, Spirulina platensis, Porphyridium cruentum, Microcystis aeruginosa,
and Scenedesmus obliquus [19].

2.3. Therapeutic and Cosmetic Products

The use of macroalgae for therapeutic purposes has a long history, but the search for
biologically active substances from these organisms is quite recent. Numerous studies have
demonstrated the biological properties of macroalgae extracts and compounds, including
antioxidant, anti-inflammatory [20], antithrombotic, anticoagulant and coagulant [21],
antimicrobial [22], and anticancer [23]. In addition, macroalgae have been demonstrated
to exert biological properties applicable to cosmetic products, such as photo-protection,
anti-aging, or anti-cellulite (Table 1). Considering this range of activities, macroalgae
extracts and compounds have been considered for different pharmacologic and cosmetic
products [24]. Regarding cosmetics, brown and red seaweeds are usually employed.
The interest of these species lies in their content in cosmeceuticals ingredients, such as
phlorotannins, polysaccharides, and carotenoid pigments [25]. These compounds are
incorporated into cosmetics due to their bioactivities, their capacity to improve organoleptic
properties, and their capacity to stabilize and preserve the products [26].

Table 1. Properties and applications of extracts and compounds isolated from algae in the cosmetic field.

Treatment Specie Compound Result Ref.

Skin aging

Alaria esculenta Extract Decline the amount of progerin in aged fibroblasts at the lowest
tested concentration (not for younger cells) [27]

Phaeodactylum
tricornutum Ethanol extract Protecting the skin from the adverse effects of UV exposure;

preventing and/or delaying the appearance of skin aging effects [28]

Hizikia fusiformis Fucosterol Inhibit metalloproteinase-1 expression [29]

Ecklonia stolonifera Phlorotannins Inhibit metalloproteinase-1 expression [30]

Sunscreen

Halidrys siliquosa Phlorotannins UV-filter activity [31]

Brown seaweeds Phlorotannins Protective effect against photo-oxidative stress [32]

Corallina pilulifera Phenolic compounds Anti-photoaging activity and inhibition of matrix
metalloproteinase [33]

Sargassum spp. Fucoxanthin Protective effect on UV-B induced cell damage [34]

Sargassum confusum Fucoidan Suppress photo-oxidative stress and skin barrier perturbation in
UVB-induced human keratinocytes [35]

Macrocystis pyrifera,
Porphyra columbina Acetone extracts In vivo UVB-photoprotective activity [36]

Moisturizer

Fucus vesiculosus Fucoidan Inhibition of hyaluronidase enzyme [37]

Laminaria japonica 5% water:propylene
glycol (50:50) extracts

Hydration with the alga extract increased by 14.44% compared
with a placebo [38]

Rhizoclonium
hieroglyphicum

Polysaccharides and
amino acids Similar moisturizing effects to hyaluronic acid and glycerin [39]

Whitening

Nannochloropsis oculata Zeaxanthin Antityrosinase activity [40]

Laminaria japonica Fucoxanthin Antityrosinase activity [41]

Arthrospira platensis Ethanol extract Antityrosinase activity [42]

Hair care
Chlorella spp. Intact microalga cells Soften and make flexible both skin and hair [43]

Ecklonia cava Dioxinodehydroeckol Promote hair growth [44]
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2.4. Fertilizer and Animal Feed

Currently, the negative environmental impacts of synthetic fertilizers have been iden-
tified. Thus, the use of organic fertilizers, including macroalgae, has been proposed as
a suitable alternative to reduce the impact on the environment [45,46]. In fact, macroal-
gae have been used since ancient times as fertilizers, and several beneficial effects have
been described, such as enhancement of crops growth and yield, increased resistance
against abiotic and biotic stresses, or nutrient intake [46–48]. The biostimulant effects of
macroalgae have been attributed to diverse biological compounds such as plant hormones,
phlorotannins, and oligosaccharides [48].

Regarding animal feed, macroalgae have been employed for this purpose since ancient
times as feed but also as nutritious supplements [49]. Several studies have evaluated the
positive effects of macroalgae-enriched food, both for terrestrial animals [50] and specially
in aquaculture animals [51–54].

3. Main Invasive Species of Northwest Spain and Their Bioactive Compounds

According to the Spanish Catalogue of IAS of Algae [55], there are 14 species of
invasive seaweeds in Spain which can be divided into: (i) red species: Acrothamnion preissii,
Asparagopsis armata, Asparagopsis taxiformis, Grateloupia turuturu, Lophocladia lallemandii,
and Womersleyella setacea; (ii) brown species: Gracilaria vermiculophylla, Sargassum muticum,
Stypopodium schimper, and Undaria pinnatifida; and (iii) green species: Caulerpa taxifolia,
Codium fragile, and Caulerpa racemosa. In addition, there are also invasive diatoms, such
as the Didymosphenia geminata, also known as rock snot or didymo (Table 2). However,
it should be noted that this catalogue is a dynamic instrument subjected to continuous
changes and updating. Most of these invasive species are originally from the Indo-Pacific
Ocean (Western Australia, New Zealand, and Japan), and it is thought that they have been
introduced into the Spanish coasts through the Suez Canal. Maritime traffic, ballast water,
fishing nets, trade of oysters, aquaculture, and fouling are considered the main routes of
dispersion [8,56–58].

Table 2. Invasive algae species in Spain: taxonomy, origin, geographical distribution, and principal uses.

Specie Taxonomy Native
Distribution

Distribution in
Spain

Other Regions in Which
They Are Invasive Principal Uses

Red species

Acrothamnion
preissii

Phylum: Rhodophyta
Class: Florideophyceae

Orden: Ceramiales
Family: Ceramiaceae

Western
Australia All Spain

Temperate coastlines on
the Pacific coast of North

America and western
coasts of Europe

- Unknown

Asparagopsis
armata

Phylum: Rhodophyta
Class: Florideophyceae

Orden: Bonnemaisoniales
Family: Bonnemaisoniaceae

Indo-Pacific
Ocean All Spain Mediterranean, Portugal,

and Ireland
- Pharmaceutical

potential as antibiotic

Asparagopsis
taxiformis

Phylum: Rodophyta
Class: Rhodoplayceae
Orden: Nemaliales

Family: Bonnemaisoniaceae

Australia and
New Zealand Except Canarias Portugal - Human consumption

- Antifungal

Grateloupia
turuturu

Phylum: Rhodophyta
Class: Florideophyaceae
Orden: Halymeniales

Family: Halymeniaceae

Pacific Ocean All Spain North America, Europe,
and Oceania

- Human consumption
- Fertilizer

Lophocladia
lallemandii

Phylum: Rhodophyta
Class: Florideophyceae

Order: Ceramiales
Family: Rhodomelaceae

Indo-Pacific
Ocean All Spain Mediterranean - Unknown

Womersleyella
setacea

Phylum: Rhodophyta
Class: Rhodophyceae
Order: Ceramiales

Family: Rhodomelaceae

Indo-Pacific
Ocean All Spain Mediterranean - Unknown
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Table 2. Cont.

Specie Taxonomy Native
Distribution

Distribution in
Spain

Other Regions in Which
They Are Invasive Principal Uses

Brown species

Gracilaria
vermiculophylla

Phylum: Rhodophyta
Class: Florideophyceae
Orden: Gracilariales

Family: Gracilariaceae

North-east
Pacific All Spain Europe and North

America

- Animal feed
- Biofuels
- Fertilizer

- Human consumption

Sargassum
muticum

Phylum: Ochrophyta
Class: Phaeophyceae

Order: Fucales
Family: Sargassaceae

Indo-Pacific
Ocean All Spain

Pacific Coast of North
America, North Sea,

Portugal, and the
Mediterranean

- Animal feed
- Food additive

- Pesticide

Stypopodium
schimperi

Phylum: Ochrophyta
Class: Phaeophyceae
Order: Dictyotales

Family: Dictyotaceae

Indo-Pacific
Ocean and Red

Sea
All Spain Africa and Southwest

Asia - Unknown

Undaria
pinnatifida

Phylum: Heterokontophyta
Class: Phaeophyceae
Order: Laminariales
Family: Alariaceae

Asia All Spain Europe - Human consumption
- Animal feed

Green species

Caulerpa
taxifolia

Phylum: Chlorophyta
Class: Bryopsidophyceae

Orden: Bryopsidales
Family: Caulerpaceae

Tropical area All Spain
Mediterranean,

California, and southern
Australia

- Laboratory use

Codium fragile

Phylum: Chlorophyta
Class: Chlorophyceae

Orden: Codiales
Family: Codiaceae

North of the
Pacific Ocean
and coast of

Japan

All Spain Widespread in the
Mediterranean - Human consumption

Caulerpa
racemosa

Phylum: Chlorophyta
Class: Bryopsidophyceae

Orden: Bryopsidales
Family: Caulerpaceae

Tropical areas Except Canarias Mediterranean: from
Spain to Turkey - Human consumption

Diatoms

Didymosphenia
geminata

Phylum: Ochrophyta
Class: Bacillariophyceae

Orden: Cymbellales
Family: Gomphonemataceae

Boreal and alpine
regions of North

America and
Northern Europe

All Spain New Zealand and
Patagonia, South America - Ornamental

The use of some algae (e.g., Caulerpa racemosa) as ornamental species in aquariums has
also contributed to their proliferation [59,60]. Among these species, only five are considered
invasive (*) or potentially invasive (**) in Galicia (northwest Spain): Asparagopsis armata**,
Codium fragile subs. tomentosoides*, Grateloupia turuturu**, Sargassum muticum*, and
Gracilaria vermiculophylla*. Galician waters also feature the presence of two other exotic in-
vasive species, though they do not appear in the regulation of Real Decreto (RD) 1628/201;
these are Gymnodinium catenatum and Bonamia ostreae [61].

For many years, non-native species of algae have been considered threats, thus a series
of methods to eradicate them from non-endemic areas have been developed and optimized.
However, the marine biomass, including invasive macroalgae, is currently the focus of
several industries, such as pharmaceutical, food, cosmetic, and biotechnological industries,
due their biological activities, e.g., antioxidant, antimicrobial, anti-inflammatory, anticancer.
The aim of these industries is to revalorize invasive macroalgae as a source of extracts
and compounds with industrial interest [8]. Although many studies have evaluated the
biological properties of various extracts of A. armata, C. fragile, G. turuturu, S. muticum,
and G. verniculophylla, in some cases, the bioactive compounds responsible for this activity
have not yet been identified. In the following paragraphs, the current knowledge about
target compounds for industrial applications and the bioactive compounds identified in the
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macroalgae species considered invasive in Galicia are compiled. They are also summarized
in Table 3.

3.1. Polysaccharides

In the case of A. armata, the polysaccharides derived from sulfated galactans have
shown strong antiviral effects against human immunodeficiency virus (HIV), inhibiting
its reproduction [62]. A study confirmed the inhibition of herpes simplex virus type 1 by
different extracts of numerous red algae, including A. armata. Although the authors did not
identify the compounds involved in the activity, the good results of the water extract were
attributed to water-soluble polysaccharides [63]. Mannitol has been also identified in the
ethanolic extract of A. armata, in a concentration of 34.70 mg/100 g of dry macroalgae [64].

In the case of C. fragile, several bioactivities have been attributed to its sulfated polysac-
charides (SPs). The administration of this type of compounds reduced the oxidative damage
associated with diabetes mellitus and obesity in several animal models without any cy-
totoxic effect [65,66]. Recently, a study stated that SPs from C. fragile scavenge effectively
freed radicals in vitro and suppressed the oxidative damage caused by H2O2 in Vero cell
cultures and in zebrafish [67]. It has also been reported that SPs from C. fragile increased the
coagulation time of human blood in a dose-dependent manner according to the methods
activated partial thromboplastin time (APTT) [68,69], thrombin time (TT), and prothrombin
time (PT) [69]. SPs from C. fragile inhibited HeLa cells proliferation [70] by stimulating
tumor necrosis factor (TNF)-related apoptosis-inducing ligand, a promising anticancer
target [71].

Table 3. Main compounds and bioactive compounds reported for the invasive macroalgae in northwest Spain.

Bioactive
Compounds

Invasive Macroalgae
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Asparagopsis armata Codium fragile Gracilaria
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Phenolic
compounds Not specified Flavonoids,

tannins

Gallic acid, Protocatechuic
acid, Gentisic acid,

Hydroxybenzoic acid,
vVnillic acid, Syringic acid

Hydroxybenzoic acid,
Gallic acid, Vanillic
acid, Protocatechuic

acid, Caffeic acid,
Syringic acid,
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Coumaric acid,
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Other
compounds

Halogenated compounds,
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propanone (±) form,
Halogenated carboxylic acids,

Dibromoacetic acid,
Bromochloroacetic acid,

Dibromoacrylic acid,
Halogenated alkanes,
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Dibromochloromethane

Serine protease Long chain aliphatic
alcohols

Tetrapernyltaluquinol
meroterpenoid with a

chrome moiety
Squalene

Reference [72–74] [75,76] [77] [78] [79,80]

Finally, these compounds also show immune-stimulating properties in both in vitro
and in vivo models. Sulfated galactan obtained from C. fragile stimulated murine
macrophages RAW264.7 cell line, increasing the levels of nitric oxide and both pro-
inflammatory and anti-inflammatory cytokines, which are fundamental for the host im-
mune response [81–83]. In head kidney cells, SPs had a stimulatory effect on immune
genes, including interleukin (IL)-1β, IL-8, TNF-α, interferon (IFN)-γ, and lysozyme [84].
Immuno-stimulant properties have been also observed in human peripheral blood den-
dritic cells and T cells, which were activated by SPs. This suggests that these compounds
could be candidates for products aimed to enhance human immune system [85].

S. muticum is a source of several valuable polysaccharides, such as fucoidans, algi-
nate, guluronic and mannuronic acids, laminarin, and their derivatives [86]. Alginate
obtained from S. muticum has been demonstrated to possess anticancer properties, stim-
ulating cell death in A549 cells (epithelial lung adenocarcinoma), PSN1 cells (pancreatic
adenocarcinoma), HCT- 116 cells (colon carcinoma), and T98G cells (glioblastoma) [87].

Finally, G. vermiculophylla and G. turuturu are being used in the phycocolloid industry
for obtaining agar and carrageenan, respectively, turning them into valuable matrixes [88,89].
Recently, polysaccharide extracts from G. turuturu have shown antimicrobial properties
against Escherichia coli and Staphylococcus aureus [90].
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3.2. Lipids

Starting with A. armata, it has been reported that these macroalgae contain some
sterols such as cholesta-5,25-diene-3,24-diol, (3β,24S)-form [91], palmitic and stearic fatty
acids, and cholestanol [64]. Recently, different crude extracts and fractions of this species
were demonstrated to present antibacterial and antifouling properties. In the crude ex-
tract and most active fractions, several compounds were identified, including hexade-
canoic, dodecanoic, octadecanoic, and tetradecanoic acids, which may be involved in this
activity [92,93].

Regarding C. fragile, clerosterol (a derivative of cholesterol) was found in several
extracts. This compound shows antioxidant properties, since it attenuated UVB-induced
oxidative damage in human immortalized keratinocyte HaCaT cells and BALB/c mice
models, reducing lipid and protein oxidation [94]. In addition, clerosterol stimulated
apoptosis in A2058 human melanoma cells [95] and modulated several apoptotic factors in
human leukemia cells [96]. Recently, a study observed that C. fragile displayed neuropro-
tective effects on neuroblastoma cell line SH-SY5Y. In the most bioactive fractions, several
lipid compounds, among others, were identified. Although more research is needed, the
authors considered that lipids are involved in the neuroprotective effect [97].

G. vermiculophylla contains high quantity of cholesterol (473.2 mg/kg dry weight),
cholesterol derivatives, long-chain aliphatic alcohols, and monoglycerides, including 1-
tetradecanol, 1-hexadecanol, 1-octadecanol, 1-eicosanol, and 1-docosanol [77]. Other
lipids of great interest for nutraceutical and biotechnological industries include phospho-
lipids, glycolipids, and eicosapentaenoic acid, present in high levels in this alga [79]. For
example, three sphingolipids (gracilarioside, and gracilamides A and B) isolated from
G. vermiculophylla (accepted name of G. asiatica) showed moderate cytotoxic effects against
human A375-S2 melanoma cell line [98].

3.3. Proteins

To our knowledge, only G. vermiculophylla presents bioactive compounds of protein
nature. This alga can absorb UV-A and UV-B radiations and decrease free radicals-induced
effects, resulting from its high content in mycosporine-like amino acids [99].

3.4. Pigments

Siphonaxanthin from C. fragile has shown anticancer properties, stimulating the apop-
tosis of A549 lung cancer cells and modulating apoptotic factors in human leukemia
cells [95,96]. Moreover, the anti-angiogenic effect of siphonaxanthin has been described in
human umbilical vein endothelial cells as well as in a rat aortic ring angiogenic model [100],
which suggests that this biomolecule could be an alternative to prevent pro-angiogenic
diseases such as cancer. In addition, this alga also contains β-carotene [76].

In recent years, fucoxanthin has received a great deal of interest from the scientific
community and industry due to the many beneficial health properties attributed to it,
including anti-inflammatory [101]. Fucoxanthin extracted from S. muticum inhibited the
lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and inhib-
ited the expression of pro-inflammatory cytokines [102,103].

At industrial scale, G. turuturu is also used to produce R-phycoerythrin, a pink-purple
pigment soluble in water present in large quantities, which presents diverse biological
properties and potential industrial applications [89,104].

3.5. Vitamins

Different vitamins have been identified in the selected macroalgae, except in A. armata.
In C. fragile, high levels of tocopherols have been reported (1617.6 µg/g lipid), including
α, β, γ, and δ tocopherol and γ-tocotrienol [76]. G. vermiculophylla showed a considerable
α-tocopherol content (28.4 µg/g of extract) [105]. Regarding G. turuturu, a chemical
analysis revealed the presence of α-tocopherol and phytonadione (vitamin K1) [80]. Finally,
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S. muticum contains high amounts of α- and γ- tocopherol, 218 and 20.8 µg/g of extract,
respectively [105].

3.6. Phenolic Compounds

Phenolic content has been evaluated in several species, although not all the studies
have identified the target compounds. In the case of A. armata, phenolic content was
determined by the Folin–Ciocalteu spectrophotometry method, which showed that it rep-
resented 1.13 ± 0.05% of dry weight [106]. Different extracts of C. fragile also contain
phenolic compounds, mainly flavonoids and, to a lesser extent, tannins. These com-
pounds showed a correlation with the antioxidant activity of the macroalgae [75]. The
previous study of Farvin and Jacobsen (2013) identified several phenolic acids in both
G. vermiculophylla aqueous extracts (gallic, protocatechuic, hydroxybenzoic, vanillic, sy-
ringic, and salicylic acids) and ethanolic extracts (gallic, protocatechuic, and gentisic acids).
In correspondence with its content in phenolic compounds, a high antioxidant capacity has
been demonstrated for these macroalgae according to the 2,2-Diphenyl-1-picrylhydrazyl
(DPPH) and the ferric antioxidant power (FRAP) methods. In addition, G. vermiculophylla
extracts inhibited lipid peroxidation [105]. Finally, some authors have reported the pres-
ence of phenolic compounds in S. muticum, including (ordered from highest to lowest
concentration): hydroxybenzoic and gallic acids, p-hydroxybenzaldehyde, vanillic acid,
3,4-dihydroxybenzaldehyde and protocatechuic, ferulic, p-coumaric, caffeic, syringic, and
chlorogenic acids [107]. Several bioactivities of S. muticum, such as antioxidant, antimi-
crobial, anticancer, or anti-inflammatory, have been attributed to the presence of phenolic
compounds with high antioxidant capacity, particularly to phlorotannins (e.g., phlorogluci-
nol, diphlorethol, bifuhalol), which are exclusively found in marine seaweed [78,108–111].

3.7. Other Minor Compounds

The invasive species A. armata presents high levels of halogenated secondary metabo-
lites with recognized antibiotic activity [112]. They act as chemical defense against grazers
and epibiota [113] and may be suitable for a wide range of applications [114,115]. For
instance, the major metabolites bromoform and dibromoacetic acid, along with dibro-
mochloromethane, bromochloroacetic acid, and dibromoacrylic acid, have shown high
antifouling potential [72–74]. They can decrease the density of six bacteria strains on
the algae surface: two marine (Vibrio harveyii and V. alginolyticus) and four biomedi-
cal strains (Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermis, and
Escherichia coli) [116]. Recently, several brominated compounds, such as tribromomethanol,
were found in the crude extract and fractions of A. armata, which showed antimicrobial
antifouling potential [92,93].

A serine protease extracted from C. fragile was demonstrated to exert in vitro and in vivo
anticoagulant and fibrinogenolytic activity [117]. Finally, it was found that G. turuturu con-
tains squalene, which was reported to exert several beneficial activities [80].

4. Current Strategies to Obtain Bioactive Compounds from Algae

Algae have been considered as potential sources for the extraction of bioactive com-
pounds with applications in food, cosmetic, pharmaceutical, or other industrial sectors.
However, one of the most limiting steps when referring to obtaining bioactive compounds
from natural sources is the extraction system, and, thus, upscale and downstream pro-
cesses in the case of its industrial application [118]. Table 4 summarizes some examples of
extraction techniques applied for the recovery of bioactive compounds from the studied
invasive species.

For the final purpose of extracting bioactive compounds, several techniques of pre-
treatments and extraction have been thoroughly described. Traditionally, pretreatments
consist of using hot air drying, chemical treatments with acids, salts, or surfactants. Never-
theless, novel extraction techniques (explained below) have also been successfully applied
as pretreatments for algae [119].



Mar. Drugs 2021, 19, 178 10 of 21

4.1. Conventional Extraction Techniques

Conventional extraction techniques were deeply investigated during the past decades
for their easiness of application and low requirements, but, also for this reason, they
continue to be the most used [120]. As it can be seen in Table 4, the techniques that have
been more frequently applied are maceration, Soxhlet, and heat assisted extraction (HAE).
These methodologies are applied using different solvents, heat, and/or stirring in some
cases. Moreover, in the case of Soxhlet extraction, the recircularization of the solvent during
longer time periods is aimed at improving the extraction yield [121]. Additionally, heat
favors the mass transfer of the bioactive compounds to the solvent through the disruption
of cell walls [122].

Table 4. Extraction techniques for obtaining bioactive compounds from the invasive macroalgae in northwest Spain.

Method Conditions Compounds Activities Model/Assay Ref.

Asparagopsis armata

Soxhlet

Chloroform-methanol (3:2),
dichloromethane (100%),

methanol (100%), and water
(100%), 8 h

- Anti-Herpes Simplex Virus
and cytotoxicity Neutral red dye method on Vero cells. [63]

Mac Hexane, dichloromethane,
and ethanol

Halogenated
compounds Antiprotozoal Leishmania donovani promastigotes

cultures [123]

Mac 0.025 g/mL; methanol, 16 h,
20 ◦C

Phenolic
compounds

Antioxidant and
neuroprotective

DPPH, CCA, ICA. AChE, BuChE,
TYRO inhibition.

In vivo MTT assay on SH-SY5Y cells
on H2O2 induced cytotoxicity.

[124]

HAE 0.04 g/mL; distilled water,
5 h, 96 ◦C Polysaccharides Anti-HIV

Human immunodeficiency virus
(HIV) induced syncytium formation

on MT4 cells.
[62]

PLE
Dichloromethane methanol

(1:1; v:v); 75 ◦C, 1500 psi,
7 min (×2)

Phenolic
compounds

Antioxidant and
cytotoxicity

Radical-scavenging activity (DPPH).
Reducing activity. Daudi, Jurkat and

K562 cell lines.
[106]

Codium fragile

Mac
80% methanol (×3).

Butanol and ethyl-acetate
fractions.

Clerosterol Antioxidant and
anti-inflammatory

In vivo MTT assay on human
keratinocyte HaCaT cells irradiated
with UVB and BALB/c mice models.

Expression of pro-inflammatory
proteins and mediators

[94]

Mac Hexane, ethyl, and
methanol (×3) - Antioxidant and

anti-hypertensive
DPPH and ABTS inhibition

In vitro ACE inhibitory assay [75]

Mac 80% methanol - Anti-inflammatory Lipopolysaccharide-stimulated
RAW 264.7 [125]

Mac 80% methanol - Anti-cancer Human breast cancer cell line
MDA-MB-231 [126]

HAE 0.02 g/mL; water, 12 h,
60 ◦C Polysaccharides Anticoagulant APTT assay on human blood [68]

HAE 10 vol, distilled water, 1 h,
95 ◦C - Anti-inflammatory and

anti-edema

LPS-stimulated RAW 264.7 and
carrageenan-induced paw edema in

male Sprague-Dawley rats.
[127]

HAE Ethanol 96% (v/v), 3 h,
70 ◦C (×3) - Anti-inflammatory LPS-stimulated RAW 264.7. [128]

HAE Distilled water, 4 h, 90 ◦C. -
Anti-inflammatory,

alleviation of cartilage
destruction

Primary chondrocytes cells,
osteoarthritis rat model. [129]

Gracilaria vermiculophylla

Mac
0.1 g/mL; water or ethanol,

96%, 12 h, room
temperature.

Phenolic
compounds Antioxidant

In vitro assays (DPPH, FRAP, ferrous
ion-chelating) and liposome model

system.
[105]

Soxhlet 0.3 g/mL; ethyl acetate;
72 h. - Antimicrobial Strains of S. enteritidis, P. Aeruginosa

and L. innocua [121]
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Table 4. Cont.

Method Conditions Compounds Activities Model/Assay Ref.

Grateloupia turututu

S/L
1/20 ratio (w/v), water,

20 min, phosphate buffer
(20 mM, pH 7.1)

- Antibacterial European abalone pathogen
Vibrio harveyi [130]

Sargassum muticum

Mac 0.01 g/mL; 80% methanol,
24 h, RT. Fucoxanthin Anti-inflammatory LPS-stimulated RAW 264.7

macrophages [103]

Mac 0.1 g/mL; Water or ethanol,
96%, 12 h, RT.

Phenolic
compounds Antioxidant

In vitro assays (DPPH, FRAP, ferrous
ion-chelating) and liposome model

system
[105]

Mac Dichloromethane or
methanol, 1:4 (w/v), 12 h.

Phenolic
compounds

Antioxidant and
cytoprotective effect

In vitro assays (DPPH and ORAC)
Protective effect on MCF-7 cells [131]

HAE Methanol:water (1:10), 3 h,
65 ◦C (×3)

Chromane
meroterpenoid Photodamage attenuation Human dermal fibroblasts [132]

SFE CO2, 10% ethanol, 15.2
MPa, 60 ◦C, 90 min (static) - Antioxidant Not reported [133]

PLE
Ethanol:water (95:5);

160 ◦C, 10.3 MPa, 20 min
(×2)

Phlorotannins Antiproliferative HT-29 adenocarcinoma colon cancer
cells [134]

UAE
Water at S/L ratio of 1:20;
5–30 min, RT (25 ◦C), 5 A,

150 W and 40 Hz.
Alginate Cytotoxic effect A549, HCT- 116, PSN1, and T98G cells [87]

Autohydrolisis 96% ethanol -
Antioxidant,

anti-inflammatory and
anti-irritant

In vitro assays (FRAP, DPPH and
ABTS). Reconstructed human

epidermis test method. Irritability
assays with the Episkin test.

[108]

Autohydrolisis

RT, formaldehyde 1% (15 h),
sulfuric acid 0.2 N (4 h),

and sodium carbonate 1%
(15 h).

Phlorotannins Anti-tumor and
anti-inflammatory

A549, HCT-116, PSN1, and T98G cells.
Neutrophils’ oxidative burst oxidation

of luminol.
[78]

Extraction method: PLE: pressurized liquid extraction; S/L: solid–liquid; SFE: supercritical fluid extraction; UAE: ultrasound assisted extrac-
tion; Mac: maceration; RT: room temperature. Assays: DPPH: 1,1-Diphenyl-2-picrylhydrazyl; ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid; CCA: copper chelating activity; ICA: iron chelating activity; AChE: acetylcholinesterase; BuChE: butyrylcholinesterase;
TYRO: tyrosinase; ACE: angiotensin converting enzyme; APTT: activated partial thromboplastin Time; ORAC: oxygen radical absorbent
capacity; FRAP: ferric antioxidant power. Cell lines: Vero: African green monkey kidney cell line; MT4: leukemia cell line; HaCaT: aneuploid
immortal keratinocyte cell line; RAW 264.7: murine macrophage cell line; MCF-7: human breast cancer cell line; A549: adenocarcinomic
human alveolar basal epithelial cells; HCT-116: human colon cancer cell line; PSN1: human pancreatic cancer cell line; T98G: glioblastoma
cell line.

4.2. Novel Extraction Techniques

On the other hand, emerging or novel techniques are also increasing as new methods
directed towards a more sustainable process, with lower times and energy consumption
or higher yields. Among them, some examples must be highlighted: microwave assisted
extraction (MAE), ultrasounds assisted extraction (UAE), pressurized liquid assisted ex-
traction (PLE), enzyme assisted extraction (EAE), high pressure assisted extraction (HPAE),
pulsed electric field (PEF), supercritical fluid extraction (SFE), and hydrothermal lique-
faction. At last, new options are being explored that combine approaches of different
techniques [119]. Table 4 shows some of the examples when these techniques have been
applied on invasive species.

Considering the information collected, obtaining processes of bioactive compounds
from these invasive species utilizes a wide range of conventional and novel sample prepa-
ration and extraction techniques. Once the extraction has been performed, it is necessary to
characterize and quantify the compounds present in the extract. To carry out this process,
the most used techniques are based on chromatographic methods [135]. These methods
are regularly evolving and currently coupled to different detectors. Nuclear magnetic
resonance, mass spectrometry, vibrational spectrometry, or a combination of several tech-
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niques are some of the approaches currently applied. All of them are focused on separating,
detecting, characterizing, and quantifying those bioactive molecules as well as elucidating
their structures and their function on the metabolic pathways they are involved in [136].

5. Algae as Supplement of Diets in Aquaculture

Aquaculture has grown very fast in the last decades, reaching expansion rates higher
than other major food production sectors. By 2016, the aquaculture relevance as an animal
protein source was underlined by its huge global production that reached nearly 80 million
tons. Among the European countries, Spain is expected to reach more than 0.3 Mt of
annual production [137]. This exponential growth has been prompted by the low feed
conversion ratio that aquaculture species exhibit, 1.1–1.6 kg of feed/kg of edible fish,
against livestock, which can reach maximum ratios of 9 kg of feed/kg of beef [138,139].
However, for the aquaculture sector to continue growing at a constant rate, the supply of
nutrients and feed will have to grow at a similar rate [140]. Finding appropriate ingredients
to substitute the limited marine resources generally used in aquaculture feeds has been
challenging the sector for decades. Therefore, it is necessary to develop new and more
sustainable food sources for aquaculture use. In this sector, macroalgae has been proposed
as a possible protein source in the fish feed but also as a source of bioactive compounds,
which may improve the nutritional values and exert beneficial effects on animal health,
including antioxidant, antimicrobial, or positive effects on immune system [141]. Invasive
algae may be possible candidates for these uses. This kind of exploitation will permit
obtaining compounds from sustainable sources for industrial application while reducing
the population of invasive species, providing double profit. However, several limitations of
the use of macroalgae species in aquaculture feeds have been identified. For example, from
a nutritional point of view, it would be necessary to eliminate compounds that may be anti-
nutritive or to develop methods to reduce polysaccharides to increase the digestibility [142].
In addition, in some cases, knowledge gaps about the compounds involved in the observed
effects and the mechanisms of action still persist. Therefore, the use of some species in
aquaculture is still limited, and more research is necessary before their application.

Regarding the selected invasive algae species, different examples along the scientific
literature reported their beneficial effects in the nutrition of several aquaculture animals.
The use of A. armata, under the commercial powder presentation named after Ysaline®100,
was assessed for the development of Sparus aurata larvae. Among the experimental pa-
rameters analyzed—growth, survival, anti-bacterial activity, microbiota quantification,
digestive capacity, stress level, and non-specific immune—the last three were not affected
when A. armata-based feed was utilized. Besides, this diet significantly reduced the amount
of Vibrionaceae present in water and larval gut and enhanced growth rate. It was sug-
gested that mortality produced when high concentrations of A. armata-based feed were
used will improve if lower amounts are used until 10 days after hatching, promoting a
safer rearing environment [143]. Recently, extracts of A. armata were used to supplement
the fed of the whiteleg shrimp (Penaeus vannamei). The results showed that the formula-
tion increased the survival rate in presence of Vibrio parahaemolyticus (causative agent of
acute hepatopancreatic necrosis disease) and reduced the food contamination caused by
fungus [144].

As previously mentioned, a recent study stated the protective effect of SPs extracted
from C. fragile against free radicals. These molecules were demonstrated to suppress the
oxidative damage induced by oxygen peroxide in the main fish live model, zebrafish.
Embryos at 7–9 h post-fertilization stage were incubated with different concentrations
of SPs from C. fragile for 1 h and then exposed to the pro-oxidant agent for another 14 h.
Obtained results indicated that the pre-treatment of zebrafish with C. fragile SPs can protect
animals against oxidative stress by reducing reactive oxygen species, minimizing cell
death and lipid peroxidation. This antioxidant capacity of C. fragile SPs can be relevant
for the development of innovative fishmeal [67]. In another study, C. fragile SPs exerted
immuno-stimulating effects on olive flounder (Paralichthys olivaceus), up-regulating the
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expression of interleukins 1β and 8, TNF-α, interferon-γ, and lysozyme genes, all of them
involved in the immune response. Thus, this species could be used as feed additive to
improve the immune system of the fish [84].

G. vermiculophylla has been repeatedly tested in experimental diets, especially aimed at
freshwater fish species such as rainbow trout (Oncorhynchus mykiss). The apparent digestibil-
ity coefficient for trout of proteins and lipids from a G. vermiculophylla based diet was like
that of the reference diets [145]. Additionally, another work in which G. vermiculophylla was
utilized for designing experimental diets for rainbow trout demonstrated some benefits for
animal health that also reflect an economical benefit for improving the quality of the finally
commercialized product. The inclusion of this invasive alga in 5% doubled the flesh iodine
levels, which ultimately improved the fillet color intensity and juiciness since it enhanced
the carotenoid deposition, which can be also associated with a better conservation of the
final product for the antioxidant properties related to carotenoid pigments [146]. In another
study, the inclusion of 5% of this species in the diet of O. mykiss was reported to enhance the
immune system of the animals by increasing lysozyme, peroxidase, and complementing
system activities, which play a key role in the defense against pathogens [147]. Finally, the
effect of supplementation of heat-treated G. vermiculophylla was evaluated in gilthead sea
bream (Sparus aurata) submitted to acute hypoxia and successive recovery. Compared to
the control, the dietary inclusion of the macroalgae reduced the antioxidant stress caused
by the hypoxia, and the survival rate was higher [148]. More recently, the immunomodu-
latory effect of G. vermiculophylla has been evaluated in the shrimp Litopenaeus vannamei.
Co-culture with diverse macroalgae species (including G. vermiculophylla) improved the
immune response of the shrimps against the pathogen V. parahaemolyticus and white spot
virus, increasing the production of hemocytes and the activity of superoxide dismutase
(SOD) and catalase (CAT) compared to control [149].

Very scarce information regarding the development of experimental diets formulated
with S. muticum has been found. However, at least one study performed its inclusion and
tested its effect in African catfish, Clarias gariepinus. As in previous works, they added
5% of alga and fed animals for 12 weeks. In the skin of fish fed with probiotics diet, an
improved glutathione S-transferase (GST) and SOD activity and less CAT activity were
recorded, whereas in the livers from fishes fed with S. muticum, a better oxidative status
with improved GST and CAT activities were displayed. This positive effect on antioxidant
enzyme activity has been suggested to ultimately improve the resistance of animals against
bacterial infections [150]. Other species belonging to the Sargassum genus have been
described as immunomodulators and growth promoters for great sturgeon (Huso huso) and
as immunobooster for shrimp (Fenneropenaeus chinensis) to which they also provide specific
resistance to vibriosis [151,152].

Finally, experimental diets aimed to feed cultivated hybrid abalone cross (Haliotis rubra
and Haliotis laevigata) were designed using several macroalgae, i.e., G. turuturu together
with Ulva australis and/or U. laetevirens. Treatment applied for 12 weeks period provided
a significant higher growth rate of abalone in terms of length and weight. Besides, it
improved abalone health and its nutritional composition, since animals showed, by the
end of the assay, tissues with higher carbohydrate/protein ratio, ash content, and lower
lipid amount [153]. Other studies in which G. turuturu mixed with P. palmata was used
as feed for the European abalone Haliotis tuberculate demonstrated that the combination
of algae did not produce animals’ mortality, and it improved growth rates (in length and
weight) while increasing the final content of lipid in the abalone [154]. Besides, in another
work, the capacity of G. turuturu was underlined for inhibiting, in a quantity of 16%, the
growth of the main pathogen of the H. tuberculata, that is, Vibrio harveyi [130]. Therefore,
the inclusion of this invasive alga in experimental diets may provide nutritional value to
abalone but also antibacterial activity which ultimately reduces mortalities.
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6. Future Perspectives and Conclusions

According to the compiled studies, Asparagopsis armata, Codium fragile subs. tomentosoides,
Grateloupia turuturu, Sargassum muticum, and Gracilaria vermiculophylla can be considered
as alternative sources of bioactive compounds which could be further used for industrial
applications. Thus, revalorization strategies will make it possible to obtain new compounds
from sustainable sources but also reduce the population of invasive species, generating
a double benefit. Nevertheless, two key concerns limit their further use. From the scien-
tific and the technological points of view, more research is still required to increase the
profitability of the extraction process. Therefore, the applicability of different techniques
needs to be further investigated to assess which is the most favorable process, comparing
both conventional and modern extraction techniques. In addition, in some cases, it is still
necessary to identify the specific compounds responsible for the observed activities and
to determine their action mechanisms. Nevertheless, the development of invasive algae
harvesting methods generates a series of drawbacks. The main one is that the revalorization
of invasive algae could lead to an increase of their populations instead of eliminating them
due to the economic benefits that could be obtained from their use. In fact, this economic
revenue would not be difficult to achieve, since these invasive algae are often characterized
by a high reproductive rate. Considering this drawback, the collection of invasive species
should be subjected to a strict policy. A principle that should be considered is that the only
legal collectors of invasive algae should be those companies whose activity is reduced by
the presence of these organisms (e.g., shellfish catchers/farmers, inshore fishermen, diving
companies, etc.). This would prevent the harvesters themselves from “planting” more
invasive algae to further increase their profits.
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