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Abstract
Bat communities in the Neotropics are some of the most speciose assemblages of 
mammals on Earth, with regions supporting more than 100 sympatric species with 
diverse feeding ecologies. Because bats are small, nocturnal, and volant, it is difficult 
to directly observe their feeding habits, which has resulted in their classification into 
broadly defined dietary guilds (e.g., insectivores, carnivores, and frugivores). Apart 
from these broad guilds, we lack detailed dietary information for many species and 
therefore have only a limited understanding of interaction networks linking bats and 
their diet items. In this study, we used DNA metabarcoding of plants, arthropods, and 
vertebrates to investigate the diets of 25 bat species from the tropical dry forests of 
Lamanai, Belize. Our results report some of the first detection of diet items for the 
focal bat taxa, adding rich and novel natural history information to the field of bat 
ecology. This study represents a comprehensive first effort to apply DNA metabar-
coding to bat diets at Lamanai and provides a useful methodological framework for 
future studies testing hypotheses about coexistence and niche differentiation in the 
context of modern high-throughput molecular data.
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1  | INTRODUC TION

High-throughput sequencing (HTS) has enabled novel insights into 
animal diets (e.g., De Barba et al., 2014; Shehzad et al., 2012). Prior to 
the advent of HTS, most investigations into animal diets relied on bulk 
fecal sorting and identification (e.g., Howell & Burch, 1973; Lopez & 
Vaughan, 2007; Medellin, 1988). Bulk sorting is contingent upon the 
ability to identify plants, vertebrates, and insects from fragments, 
which requires substantial taxonomic expertise and time. In addi-
tion, the utility of this approach is limited when the most taxonom-
ically informative portions of the diet item are not consumed (e.g., 
the elytra of beetles; Czaplewski et al., 2018). Recently developed 
molecular approaches known collectively as “DNA metabarcoding” 
have revolutionized investigations into animal ecology by providing 
methods that are fast, scalable, and customizable to particular di-
etary taxa of interest (De Barba et al., 2014; Tab erlet et al., 2007b; 
Riaz et al., 2011). DNA metabarcoding leverages universal primers 
to target many consumed taxa at once and is particularly useful for 
studying the diets of animals with elusive lifestyles that prevent 
the use of more traditional methods such as direct observation. For 
example, this approach has been used over the last decade to pro-
file the diets of species ranging from small, cryptic mammals such 
as voles (Soininen et al., 2009) to rare, highly vulnerable carnivores 
(Hacker et  al.,  2021; Havmøller et  al.,  2020). DNA metabarcoding 
therefore has the potential to both inform basic natural history and 
ecology for many mammals and elucidate key dietary requirements 
for others of conservation concern.

One group of mammals that greatly benefits from the increased 
dietary resolution of metabarcoding is the bats (Order: Chiroptera). 
Bats are a taxonomically and ecologically diverse clade of mammals, 
and yet, the detailed dietary ecology and natural history of many 
species remain poorly described (Simmons, 2005). The feeding hab-
its of bats are particularly difficult to directly observe because of 
their small body sizes, nocturnal foraging activity, habitat, and ability 
to fly (Kunz & Fenton, 2003; Simmons & Conway, 2003). Our un-
derstanding of the dietary ecology of this hyper-diverse clade has 
thus changed slowly since historical descriptions broadly classifying 
bats as insectivorous, frugivorous, nectarivorous, omnivorous, car-
nivorous, sanguivorous, or piscivorous (Allen, 1939; Gardner, 1977). 
In the intervening decades, ecologists and evolutionary biologists 
have further extended knowledge of dietary ecology for many 
species by studying aspects of functional morphology (Brokaw & 
Smotherman,  2020; Dumont et  al.,  2009; Murillo-García & De la 
vega, 2018; Santana et al., 2011), echolocation, and behavior (Arbour 
et  al.,  2019; Korine & Kalko,  2005), and also by bulk fecal sorting 
or isotopic niche analyses (García-Estrada et  al.,  2012; Howell & 
Burch, 1973; Lopez & Vaughan, 2007; Maynard et al., 2019; Oelbaum 
et al., 2019). While providing important evidence for general food 
habits, these methods are often more agnostic to a finer-scale niche 
partitioning. For example, functional morphology and behavior can 
discriminate between aerial-hawking and surface-gleaning insec-
tivores, but these methods lack the resolution necessary to deter-
mine which species of insects different bat species are eating, or to 

evaluate hypotheses about how aerial insectivores avoid competi-
tion for flying insects. Even macroscopic fecal analyses that permit 
identification of some dietary items (e.g., insects that have identifi-
able hard parts, plants with very small-seeded fruits) may miss others 
(e.g., soft-bodied prey, large-seed fruits, body fluids such as blood).

In light of these limitations, there have been many recent studies 
applying fecal DNA metabarcoding to the study of bat diets. Such 
DNA-based techniques are commonly used to study the diets of bats 
in temperate areas of the world, where most species feed nearly ex-
clusively on insects (Aizpurua et al., 2018; Galan et al., 2018; Wray 
et  al.,  2018). In contrast, this technique is less frequently used to 
inventory the diets of the more trophically diverse tropical bats (but 
see Hayward, 2013). This method has the power to fundamentally 
revise our understanding of feeding habits of tropical bat species. For 
example, DNA barcoding showed that Glossophaga soricina, a species 
traditionally assumed to be a nectar specialist owing to its special-
ized morphology, actively takes insects during some seasons of the 
year, making it functionally omnivorous (Clare et  al.,  2014). DNA 
metabarcoding has also characterized the diets of single species of 
tropical bats, including common vampire bats (Desmodus rotundus), 
leading to a revised understanding of prey choice in human-altered 
landscapes (Bohmann et al., 2018; De Oliveira et al., 2020).

Few studies leverage the power of DNA metabarcoding to doc-
ument the diets of multitrophic assemblages of bats, which often 
include sympatric fruit, nectar, insect, and blood-feeding species. To 
address this knowledge gap, we sampled fecal material from 25 eco-
logically diverse species of bats from the tropical dry forests of the 
Lamanai Archaeological Reserve, Orange Walk District, Belize, to 
profile their diets using DNA metabarcoding of invertebrates, verte-
brates, and plants. We also apply network theory to analyze patterns 
in the ecological assemblage of bats at Lamanai. Network-based 
approaches provide helpful statistical tools to measure system-
wide attributes of ecological communities. For example, through 
the generation of null interaction network models, it is possible to 
test hypotheses about diet specificity in the observed community 
(Dormann et al., 2009). Such approaches have been used in the past 
to describe various ecological networks from pollinator assemblages 
to army ant diets (Chacoff et al., 2012; Hoenle et al., 2019), but to 
our knowledge have not been applied to multitrophic mammal com-
munities. Our results give a first look into the network structure of 
the Lamanai bat community and provide novel, taxon-level insights 
into the diets of 25 bat species, encompassing representatives of all 
major ecological guilds.

2  | METHODS and MATERIAL S

2.1 | Sample collection

We collected fecal samples from bats captured in and around the 
Lamanai Archaeological Reserve in Orange Walk District, Belize 
(17.75117°N, 88.65446°W), from April to May 2018 under Belize 
Forest Department Permit WL/2/1/18(16). All field protocols 



7476  |     INGALA et al.

followed the recommendations for humane capture and handling of 
live mammals outlined by the American Society of Mammalogists 
(Sikes et  al.,  2016) and were approved by the American Museum 
of Natural History Animal Care and Use Committee (AMNH 
IACUC-20180123). For a total of 13 nights, we deployed 5–10 
ground-level mist nets and 1–2 harp traps within the Lamanai 
Archaeological Reserve (Figure 1). Captured bats were placed into 
individual clean cloth holding bags. We collected fecal samples 
using sterilized forceps directly from the bottom of holding bags. 
Each sample was placed into a sterile-barcoded tube and immedi-
ately submerged in liquid nitrogen. Between uses, holding bags were 
washed in an industrial laundry to minimize cross-contamination 
between sampling sessions. Forceps were twice sterilized between 
uses with DNA-Away solution (Molecular Bioproducts, Inc., San 
Diego, CA) and water. In total, we collected 80 guano samples from 
25 species (Table 1). Samples were shipped frozen to the American 
Museum of Natural History (AMNH) and stored at −80°C prior to 
DNA extraction.

2.2 | DNA extraction

For each sample, we performed extractions using several fecal pel-
lets (up to 0.25 g total). We extracted total DNA using the QIAamp 
PowerFecal DNA Kit (MO BIO Laboratories, Qiagen Co.) following 
the manufacturer's instructions with the following alterations; prior 
to homogenization, we incubated fecal samples in the provided lysis 
solutions for 10 min at 70°C. Next, we disrupted the fecal material in 
a Fisherbrand Bead Mill 24 Homogenizer (Fisher Scientific) at 6 m/s 
for 1–2  min, until the fecal slurry was fully homogenized. At the 
elution step, we eluted with 55°C PCR-grade water and incubated 

columns for two minutes prior to centrifugation. In addition to our 
samples, we extracted one “blank” water sample per extraction 
kit. Purified DNA extracts were preserved at −25°C prior to library 
preparation.

2.3 | Metabarcode library preparation

We amplified plant, invertebrate, and vertebrate DNA using three 
sets of previously developed universal primers (Table 2). We tar-
geted the P6 loop of the chloroplast trnL gene for plants (Taberlet 
et al., 2007) and the mitochondrial 16S mtDNA for invertebrates 
(De Barba et  al.,  2014). For the four bat species known or sus-
pected to eat vertebrates—Noctilio leporinus, Trachops cirrho-
sus, Chrotopterus auritus, and Mimon cozumelae—we also used a 
universal vertebrate primer targeting the 12S-V5 mitochondrial 
region (Table  2; Riaz et  al.,  2011). Though short, these mini-
barcodes have been shown to be both taxonomically discrimina-
tory and low in bias and have undergone extensive validation for 
the specific purpose of fecal metabarcoding. Because both the 
16S and 12S universal primers co-amplify host DNA, we used 
a mammal-specific blocking primer in all master mixes targeting 
16S (De Barba et  al.,  2014), and custom host-specific blocking 
primers for the four bat fecal extracts amplified with 12S uni-
versal primers (Table 2). Blocking primers have high specificity to 
host sequences but contain a 3′-end C3 modifier that prevents 
amplification, leading to decreased representation of host se-
quences by the final round of PCR (Vestheim & Jarman, 2008). 
Briefly, we used the software ecoPrimers (Riaz et al., 2011) to de-
sign the host-specific 12S blocking primers from publicly avail-
able bat 12S sequences on NCBI GenBank. Following in silico 

F I G U R E  1   Map depicting field site 
location within Belize, Central America 
(diamond). Inset: one of the focal species 
of the study, Glossophaga soricina
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blocking primer design, we checked the alignments of each primer 
with host 12S sequences and 12S sequences from hypothesized 
prey taxa, ensuring that there would be a sufficient number of 3′ 
mismatches to prevent coblocking of prey DNA. All nonblocking 
primer constructs contained Illumina adapters for use with the 
Nextera XT Index Kit (Illumina Inc.). We amplified each target 
region in separate 20 μl reactions per fecal sample containing 1× 
Kapa HiFi HotStart ReadyMix, 1× of each primer, 10× of block-
ing primer, and 2 μl DNA extract (De Barba et al., 2014; Smith & 
Peay, 2014). Cycling protocols for all primers followed DeBarba 
et al.  (2014): an initial denaturation step of 15 min at 95°C, fol-
lowed by 55 cycles of 30 s at 94°C, 90 s at 55°C, and no elonga-
tion step (De Barba et  al.,  2014). Three PCR-negative controls 
(one per amplicon plate) were performed to check for contami-
nation and were pooled together prior to indexing. Amplicons, 
including extraction and PCR-negative controls, were checked 
on a 2% agarose gel prior to indexing to confirm amplification of 

target fragments and check for contamination. At no point was a 
visible band detected for any negatives, indicating low amounts 
of ambient contamination.

Following the initial amplicon PCR, we cleaned and size-selected 
each PCR using AMPure XP beads at a ratio of 1.8–2.0×, which 
retains fragments of approximately 100  bp or larger (Agencourt 
Biosciences). Purified amplicons were indexed using the Nextera XT 
series of barcodes in an 8-cycle PCR following the manufacturer's 
recommendations (Illumina Inc). Indexed amplicons were cleaned 
with AMPure XP beads prior to normalization, and fragment size 
was checked on a Bioanalyzer DNA High Sensitivity Chip (Agilent 
Technologies). Finally, we normalized all amplicons to a final concen-
tration of 4.5  nM and pooled aliquots of each sample. Amplicons 
were sequenced on Illumina MiSeq platform (Illumina) at the 
Bioinformatics and Computational Genomics Laboratory at the City 
University of New York using v2 2 × 150 bp chemistry and a 20% 
PhiX spike-in.

TA B L E  1   Species sampled, including number of individuals and their dietary assessments in the literature and as a result of this study

Family Taxon
n
(65)

A priori Diet (Allen, 1939; 
Gardner, 1977)

Empirical Diet (this 
study)

Emballonuridae Rhynchonycteris naso 4 Insects Insects

Mormoopidae Mormoops megalophylla 1 Insects Insects, Plants

Pteronotus mesoamericanus 4 Insects Insects, Plants

Molossidae Molossus nigricans 8 Insects Insects

Natalidae Natalus mexicanus 2 Insects Insects

Phyllostomidae Artibeus intermedius 1 Fruit, likely also insects Mostly fruit with some 
insects

Artibeus jamaicensis 3 Fruit, Insects Mostly fruit with some 
insects

Artibeus lituratus 5 Fruit, Insects Mostly fruit with some 
insects

Dermanura phaeotis 1 Fruit Fruit

Dermanura watsoni 3 Fruit Fruit

Carollia perspicillata 2 Fruit, Flowers, Insects Fruit, Insects

Carollia sowelli 10 Fruit, Insects Mostly fruit

Chrotopterus auritus 1 Insects, Vertebrates, possibly fruit Insects, Fruit

Gardnernycteris keenani 1 Insects Insects

Glossophaga soricina 3 Fruit, Insects, Nectar, Pollen Mostly fruit, nectar, or 
pollen

Lophostoma evotis 2 Insects, possibly fruit Mostly plant material, 
some insects

Mimon cozumelae 1 Insects, Vertebrates, maybe plants Insects, Plants

Sturnira parvidens 3 Fruit Fruit

Trachops cirrhosus 1 Insects, Vertebrates, possibly some 
fruit

Insects, Arachnids, Plants

Vespertilionidae Bauerus dubiaquercus 1 Insects Insects, Plants

Eptesicus furinalis 2 Insects Insects

Myotis elegans 2 Insects Insects

Myotis pilosatibialis 1 Insects Insects

Rhogeessa aeneus 2 Insects Insects
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2.4 | Molecular OTU analysis

Raw data were first preprocessed and demultiplexed with the MiSeq 
Reporter Generate FASTQ workflow (Illumina). Primer sequences 
were trimmed from forward and reverse sequence reads using 
Cutadapt v. 1.4.2 (Martin,  2011). Next, we used OBITools v. 1.01 
(Boyer et al., 2016) to quality-filter, join, and taxonomically annotate 
paired-end reads. Briefly, we first constructed reference databases 
for the 16S, 12S, and trnL genes using the in silico ecoPCR tool and 
the EMBL 141 release (Boyer et al., 2016; Kanz et al., 2005). Next, 
we aligned and joined paired-end reads using the illuminapairedend 
command, and filtered the dataset of any sequences that could not 
be successfully aligned (mode!  =  “joined”). This step resulted in a 
total of 2,476,777 aligned reads across the full dataset. Reads were 
further dereplicated using the obiuniq command and denoised by 
retaining only those sequences that were between 30 and 150 bp 
in length and had a count >2 in the dataset. Finally, we cleaned the 
sequences of PCR errors using the obiclean command, specifying to 
keep only those sequences with no variants with a count greater 
than 5% of their own count (−r 0.05 option). This step left a total 
of 24,584 molecular operational taxonomic units (MOTUs), or non-
variant sequences, for downstream taxonomic classification. Using 
the ecotag command, we assigned taxonomy to the dataset in three 
separate steps (plants, invertebrates, and vertebrates) and tabulated 
the 90% matching MOTU hits. After filtering all MOTUs that were 
not classified at least to the taxonomic level of Order, we were left 
with a total of 824 MOTUs encompassing invertebrates and plants; 
there were no hits assigned to vertebrates. Finally, we manually cu-
rated the MOTUs and removed only a few spurious hits (e.g., marine 
decapods) and any 12S sequences identified as host DNA. The mini-
mum identity match for the dataset was 90.2%, while the highest 
was 100%. The mean match identity was 97.1%, indicating a well-
annotated final dataset.

All preprocessing steps were carried out in R version 4.0 
using the following packages: phyloseq v. 1.32.0 (McMurdie 
& Holmes,  2013), vegan v 2.5.6 (Oksanen et  al.,  2017), mi-
crobiome v 1.10.0 (Lahti et  al.,  2017-2020), microbiomeSeq 
(Ssekagiri et al., 2017), and decontam v. 3.8 (Davis et al., 2018) (R 
Development Core Team, 2016). We began by filtering the data-
set of potential contaminants identified in negative control using 
the “frequency” method implemented in decontam. This step elim-
inated the extraction negative control sample. Next, we further 
filtered the dataset to retain only samples with a minimum of 
four unique observed MOTUs, resulting in a total dataset of 65 
samples. To account for differences in library size, we scaled the 
dataset using the “log10 + 1” method (Lahti et al., 2017-2020) and 
used this transformed feature table for all subsequent analyses. 
To test for differences in MOTU composition among guilds, we 
performed nonmetric multidimensional scaling (NMDS) on the 
Bray–Curtis and Jaccard distance matrices. We performed per-
mutational ANOVA (PERMANOVA) on both distances to account 
for differences both weighted by abundance (Bray–Curtis) and 
due to unweighted presence/absence (Jaccard). Next, we used TA
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the R package bipartite v 2.15 (Dormann et al., 2014) to visualize 
the dietary network and to calculate and create adjacency plots. 
Finally, we aggregated observations together by bat species and 
computed dietary specialization indices by calculating both the 
Shannon diversity index (computed at the MOTU level) and the 
H′2 specialization index for each species (Blüthgen et  al.,  2006; 
Shannon, 1948). To test whether dietary specialization in our ob-
served network differs from expectations under a null model, we 
generated 100 null networks using the “vaznull” method, which 
randomizes links while preserving the connectance structure of 
the observed network (Vázquez et  al.,  2007). We compared the 
mean Shannon diversity and H′2 values of our community with 
those of the nulls using a one-sample t test after checking the 
null estimates for normality. To assess within-species variation for 
species with multiple observations, we computed the local con-
tribution to beta diversity (LCBD; Legendre & De Cáceres, 2013; 
Ssekagiri et  al.,  2017), which considers the uniqueness of each 
sample to the overall variation in community composition for each 
group.

3  | RESULTS

3.1 | Community-level dietary attributes

Of the 80 collected samples, 65 passed quality-filtering steps and 
were retained in the final analyses. In the quality-filtered dataset, we 
recovered 811 dietary MOTUs split across both invertebrate (617) 
and plant (194) taxonomic orders. We did not identify any nonhost 
vertebrates in the final dataset. The average number of MOTUs per 
sample was 2,630 (range: 7–94,791). Of the top 25 overall most fre-
quent taxa, the most frequently observed invertebrate orders were 
the Hemiptera, Coleoptera, Lepidoptera, and Diptera. The most 
common plant orders were the Rosales, Piperales, and Sapindales. 
We used nonmetric multidimensional scaling (NMDS) to visualize 
the separation among traditional dietary guilds in the community 
(Figure  1). Using PERMANOVA, we found that traditional dietary 
guilds (Bray–Curtis: F3,64  =  2.38, r2  =  0.09, p  =  0.001; Jaccard: 
F3,64  =  1.86, r2  =  0.08, p  =  0.001) and individual species (Bray–
Curtis: F20,64  =  1.54, r2  =  0.39, p  =  0.001; Jaccard: F20,64  =  1.36, 
r2 = 0.37, p = 0.001) had significantly different dietary compositions. 
Because PERMANOVA can sometimes be affected by nonhomo-
geneity of dispersion for unbalanced sampling schemes (Anderson 
& Walsh,  2013), we also performed a permutational dispersion 
test, which was significant (F3,61 = 46.19, Nperm = 999, p = 0.001). 
However, upon visual inspection of the ordination we determined 
that intragroup dispersion alone was not likely to be driving the dif-
ferences between feeding guilds, due to the presence of only two 
outlier species skewing within-group heterogeneity of dispersion 
(Figure 2).

We constructed bipartite networks to visualize dietary con-
nections between each bat species and the invertebrate and plant 
dietary components summarized to taxonomic Order (Figure  3). 

The community was characterized overall by a high number of in-
frequent connections. A few of the most frequent associations in 
the community were between Molossus nigricans and both bee-
tles (Coleoptera) and true bugs (Hemiptera). Coleoptera were also 
frequently associated with C. auritus, M. cozumelae, and Rhogeessa 
aeneus. True flies (Diptera) were most often associated with the 
small periaquatic insectivore Rhynchonycteris naso, while moths 
and butterflies (Lepidoptera) showed many associations with the 
insectivores Myotis elegans, Myotis pilosatibialis, and Natalus mexi-
canus. The spiders (Araneae) and roaches (Blattodea) were nearly 
exclusively associated with T.  cirrhosus and Eptesicus furinalis, 
respectively.

Plant dietary components were classified into a smaller number 
of taxonomic orders (Figure 3). All species of fig-eating bats in the 
genus Artibeus showed frequent associations with the Rosales (the 
order that contains fig trees and fruits of Cecropia spp.), but we also 
detected plants of the order Sapindales, a diverse order that includes 
citrus fruits, mangos, and mahogany, in the diet of Artibeus lituratus. 
Plants of the Piperales were often detected in the diets of Carollia 
sowelli, Carollia perspicillata, Sturnira parvidens, and the omnivorous 
G. soricina. The two species of the genus Dermanura had frequent 
interactions with both Piperales and Rosales.

Given the complexity of the bipartite interactions, we gen-
erated an adjacency matrix to visualize possible modules within 

F I G U R E  2   NMDS ordination of molecular bat diets from 
Lamanai. Each dot represents an individual fecal sample. Points 
are colored according to dietary guild as shown in Table 1. Lower 
right depicts PERMANOVA results of host guild on the Bray–Curtis 
distance matrix
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this community. The adjacency matrix defined a total of eight 
modules in the community (Figure  4). Two models contained all 
of the primarily fruit-feeding bats, while other modules contained 
all of the insectivorous or carnivorous species. Four modules con-
tained only a single taxon, highlighting the unique food items de-
tected for these four species—E. furinalis, M. nigricans, R. naso, and 
T. cirrhosus.

The bat community observed at Lamanai was significantly dif-
ferent in both specialization (H′2observed  =  0.765, t  =  −5520.4, 
df = 99, p-value < 0.001) and Shannon diversity (Shanobserved = 3.05, 

t = 1,439.8, df = 99, p-value < 0.001) compared with 100 null bipar-
tite networks.

3.2 | Fine-scale associations between 
bats and insects

Order-level diet information is known for many insectivorous bat spe-
cies, but finer taxonomic information about prey insects is often lacking. 
We therefore also described the associations between bats and their 

F I G U R E  3   Bipartite network showing associations between bats (left) and invertebrate and plant diet items summarized at the level of 
taxonomic Order (right). Connecting bar width represents the frequency of observation between each bat and each dietary item
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insect prey at the level of taxonomic Family. We created additional bi-
partite networks to resolve detection within the four most commonly 
detected groups of arthropods consumed (Coleoptera, Hemiptera, 
Lepidoptera, and Diptera) Within the Coleoptera, the most frequently 
detected associations were between just a few families (Figure 5). For 
example, M.  cozumelae was often associated with the click beetles 
(Elateridae), while we detected a wide variety of beetle families in the 
feces of M. nigricans, most notably the false click beetles (Eucnemidae) 
and the weevils (Curculionidae). Pteronotus mesoamericanus was fre-
quently associated with the glow worm beetles (Phengodidae). Other 
invertebrate families identified as components of bat diets at Lamanai 
were the Coccinellidae, Noteridae, Cerambycidae, Chrysomelidae, 
Hydrophilidae, and Ptilodactylidae.

Dietary interactions between bat species and true bugs, 
the Hemiptera, were similarly dominated by a few common and 
many less common interactions (Figure  6). Molossus nigricans was 
most often associated with stink bugs (Pentatomidae), leafhop-
pers (Cicadellidae), seed bugs (Rhyparochromidae), and red bugs 
(Pyrrhocoridae). Eptesicus furinalis was commonly associated with 
the shield bugs (Acanthosomatidae). The family Aphididae, which 
contains both flying and flightless aphids, was detected in the feces 
of many aerial insectivores, but most notably R. naso.

Moths and butterflies (Lepidoptera) are common prey of aerial-
hawking bats and, as expected, constituted a common component of 
the diets of insectivorous species at Lamanai (Sierro & Arlettaz, 1997; 
Figure 7). Myotis pilosatibialis had many associations with this insect 
order, in particular with the pierid (Pieridae), ermine (Yponomeutidae), 
geometer (Geometridae), tussock (Lymantriidae), and owlet moths 
(Noctuidae). Myotis elegans overlapped with M. pilosatibialis in feeding 
on most of these families, but was not associated with Lymantriidae, 
and was instead associated with Tortricidae and Saturniidae, whereas 
M. pilosatibialis was not. The other small vespertilionid in our dataset, 
R. aeneus, overlapped with both Myotis species in dietary resources. 
We did not detect moths very often in the feces of E. furinalis, show-
ing only a weak association with Saturniidae. We detected noctuid and 
crambid moths in the feces of Mormoops megalophylla, and few inter-
actions with skippers (Hesperiidae) and tortrix moths (Tortricidae). The 
only member of the bat family Natalidae in our dataset, N. mexicanus, 
was distinct in its strong associations with silk moths (Bombycidae) and 
snout moths (Pyralidae), only overlapping with other bat species in less 
frequent interactions. A diverse assemblage of moths were detected 
in M. nigricans feces, which overlapped with identified diet items for 
many other bat species. The only association of family Psychidae, the 
bagworm moths, was with a frugivorous bat, Dermanura watsoni.

F I G U R E  4   Adjacency matrix summarizing community subgroups according to detected dietary items. Bat species are shown along the 
vertical axis, and plant and invertebrate Orders are shown along the horizontal axis. Boxes demarcate groupings, and darker blue squares 
represent more frequent associations
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Finally, we summarized interactions between bat species and 
various families of true flies (Diptera; Figure 8). Diptera were most 
frequently observed in the feces of R.  naso, particularly nonbiting 
midges of the family Chironomidae. Other common fly families in 
the diets of Lamanai bats were the gall gnats (Cecidomyiidae), mos-
quitoes (Culicidae), and the fruit flies (Tephritidae). Rhynchonycteris 
naso, S.  parvidens, P.  mesoamericanus, and C.  perspicillata feces 
were positive for the DNA of obligate ectoparasites of the family 
Streblidae, in particular members of the genus Trichobius.

3.3 | Within-species variation

We assessed within-species variation in diet detection for the 15 bat spe-
cies for which we had sampled multiple individuals. We found that the 
relative abundance of the top 10 MOTUs was fairly consistent across sam-
ples from within the same species. In fact, of more than 50 samples, only 
three individuals were determined to be significantly different in dietary 
beta diversity compared with their conspecifics (Figure 9). These three in-
dividuals belonged to the species E. furinalis, G. soricina, and R. naso.

F I G U R E  5   Bipartite network for the beetles (Coleoptera). Connecting bar width represents the frequency of observation between each 
bat (left) and each dietary item (right)
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4  | DISCUSSION

Using DNA metabarcoding, we created novel fine-scale dietary in-
formation for 25 species of bats from Lamanai, Belize. Overall, our 
results largely support traditional guild assignments, with frugi-
vores and insectivores being readily distinguishable in beta diversity 
(Figure 1). However, we also identified cases with substantial guild 
overlap as reported in previous stable isotope analyses of the same 
community (Oelbaum et  al.,  2019). For example, the carnivorous 

bats were contained completely within the ellipse area of the in-
sectivores, likely because these species—C. auritus, T. cirrhosus, and 
M. cozumelae—are opportunistic gleaning predators that readily take 
insects (Whitaker & Findley, 1980). Several frugivorous species also 
overlapped with the insectivore ordination space, which is consist-
ent with previous reports that some of these species, in particular 
C. sowelli and C. perspicillata, consume insects during some parts of 
the year (Bonaccorso et al., 2007; Herbst, 1986). The only species 
we classified as omnivorous (based on Clare et al., 2014), G. soricina, 

F I G U R E  6   Bipartite network for the true bugs (Hemiptera). Connecting bar width represents the frequency of observation between each 
bat (left) and each dietary item (right)
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nested within the frugivore guild ellipse area, suggesting that during 
late April–early May at this site, G.  soricina may feed primarily on 
plants. Previously, G. soricina has been shown to take insects (Clare 
et al., 2014), but it is likely that populations of these bats vary con-
siderably in their level of insectivory between seasons and across 
their geographic range.

Using bipartite networks and visualization of the resulting ad-
jacency matrix, we found that the bats of Lamanai, Belize, are 
broadly divisible into primarily plant-feeding or arthropod-feeding 
guilds (Figures  2,3). The major split within plant-feeding bats was 
driven mostly by the frequency of association with the Rosales 
versus Piperales. The “Rosales” module contained members of 

F I G U R E  7   Bipartite network for the moths (Lepidoptera). Connecting bar width represents the frequency of observation between each 
bat (left) and each dietary item (right)
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the genus Artibeus, which is consistent with previous reports that 
these bats specialize on the fruits of Cecropia (Rosales: Urticaceae) 
and Ficus (Rosales: Moraceae) species (Morrison,  1978; Lopez & 
Vaughan,  2007). Our dataset only contained two individuals of 
this species, so we acknowledge that additional replicates might 
change this module assignment. Lophostoma species have tradition-
ally been considered to be insectivorous (Table  1). Nevertheless, 
there are anecdotal reports of the entire stomach contents of some 

individuals consisting of pollen or plant material during April, sug-
gesting that these bats may be seasonally omnivorous (Goodwin & 
Greenhall, 1961; Howell & Burch, 1973). Longitudinal dietary anal-
yses are needed to confirm whether Lophostoma evotis often uses 
plants as a food resource, or whether the identification of plant DNA 
results from trophic carry-up from its insect prey. The other plant-
feeding group was discriminated primarily by many interactions with 
the Piperales and Solanales and contained bat species well known 

F I G U R E  8   Bipartite network for the flies (Diptera). Connecting bar width represents the frequency of observation between each bat 
(left) and each dietary item (right)
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to feed on Piper and Solanum fruits, such as C. sowelli, C. perspicil-
lata, and S.  parvidens (Howell & Burch,  1973). Overall, species as-
signments in the two plant-feeding modules are similar to those 
previously recovered for the Lamanai bat community using isotopic 
methods (Oelbaum et al., 2019).

Taxonomic information about the insect prey of tropical bats re-
mains lacking (but see Emrich et al., 2014). Our adjacency analysis 
suggests the presence of six groups among the insectivorous and 
carnivorous bats of Lamanai, Belize (Figure 4). Four of these groups 
were composed of single taxa—E. furinalis, R. naso, M. nigricans, and 
T. cirrhosus. The diet of E. furinalis is poorly known, but there is ev-
idence that they feed primarily on hemipterans, coleopterans, and 
lepidopterans (Aguiar & Antonini,  2008). In our study, E.  furinalis 
was unique among the species sampled due to its association with 
Blattodea (Figures  3,4). Rhynchonycteris naso was uniquely associ-
ated with chironomid midges, which were more frequently detected 
compared with those of other bat species (Figure 8). Previous isoto-
pic characterizations of R. naso diet suggest that these bats occupy 
a key niche within Belizean bat communities (Oelbaum et al., 2019), 
likely the result of this species' unique roosting and foraging ecology. 
R. naso can typically be found roosting on exposed surfaces over-
hanging bodies of water (Fenton et al., 2001) and forage more exten-
sively on small aquatic insects than other aerial insectivores (Becker 
et al., 2018). In another case of ecologically specialized morphology 
and behavior, the large body size and high aspect ratio wings of 
M. nigricans suggest that they forage at great height in open areas, 
giving them access to different insects not likely to be consumed by 

bats foraging in cluttered habitat (Aldridge and Rautenbach, 1987). 
We found M. nigricans to have a diverse diet and detected the high-
est quantity and diversity of arthropods of any studied bat species 
in the Lamanai community (Figure 2). However, we detected a signif-
icant relationship between the number of sampled individuals and 
the number of MOTUs for each species, so we suspect that further 
sampling of this community is needed to determine large-scale pat-
terns in dietary diversity (Alberdi et al., 2019; Zinger et al., 2019).

Finally, T. cirrhosus was also found to be unique in its dietary as-
sociations at Lamanai; this was principally driven by the detection 
of spiders, notably the banana spiders (Trechaleidae: Cupiennius) 
and the crab spiders (Thomisidae) (Figure 2). However, we also only 
captured a single Trachops individual, so we caution against over-
interpreting these results. Trachops cirrhosus has previously been 
reported to eat arachnids (Bonato et  al.,  2004; Leal et  al.,  2018), 
though they are well known for eating frogs (Ryan & Tuttle, 1983; 
Tuttle et al., 1982). Our data are consistent with a previous report 
of T.  cirrhosus feeding at a high trophic level as indicated by δ15N 
isotopes (Oelbaum et al., 2019). Spiders are known to be enriched in 
δ15N compared with other arthropods (Girard et al., 2011), suggest-
ing that stable isotopes may be unable to discriminate between ver-
tebrate prey and nitrogen-enriched arthropods in the diets of some 
species. We did not identify any vertebrate prey in the feces of the 
carnivorous bats in our dataset, and considering the specificity of 
our host-blocking primers and the fact that host 12S DNA did am-
plify, we interpret this result as a lack of detection of vertebrate prey 
rather than an instance of off-target blocking. A potential drawback 

F I G U R E  9   Intraspecific variation in diet for species with individual replicates (n = 15). Facets are organized by bat species, and each bar is 
an individual bat. Black circles indicate local contribution to beta diversity (LCBD) value for each individual relative to the rest of the group. 
Sample names in bold indicate significantly different LCBD at p <.05. Species codes: ARJA—Artibeus jamaicensis, ARLI—Artibeus lituratus, 
CAPE—Carollia perspicillata, CASO—Carollia sowelli, DEWA—Dermanura watsoni, EPFU—Eptesicus furinalis, GLSO—Glossophaga soricina, 
LOEV—Lophostoma evotis, MONI—Molossus nigricans, MYEL—Myotis elegans, NAME—Natalus mexicanus, PTME—Pteronotus mesoamericanus, 
RHAE—Rhogeessa aeneus, RHNA—Rhynchonycteris naso, STPA—Sturnira parvidens
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of metabarcoding is that it provides a snapshot in time, where species 
not consumed on the night of sampling will not be detected in the 
diet. It is therefore possible that carnivorous species simply did not 
consume vertebrates on the night we sampled them. Alternatively, 
the elevated nitrogen ratios of carnivorous bats such as T. cirrhosus 
reported in Oelbaum et al. (2019) may have been at least in part the 
result of nitrogen enrichment in arachnid prey. These data suggest 
that molecular surveys of carnivorous bat diets are needed to deter-
mine the frequency of vertebrate prey in the diet, whether there is 
significant variation from night to night and/or between individual 
bats in what prey is taken, and whether their prey preferences vary 
across the year in this strongly seasonal environment. We postulate 
that during late April– early May, the dry season in Belize, the avail-
ability of frogs and other periaquatic vertebrate prey may be limited.

The last two groups of the community were somewhat consis-
tent with the division between aerial hawkers and surface glean-
ers (Figure  4). One group contained the species M.  megalophylla, 
M. elegans, M. pilosatibialis, and N. mexicanus. This grouping is sup-
ported by the high number of observations of Lepidoptera, con-
sistent with previous reports of moths and beetles in the fecal 
material of these animals (Table 1; Rolfe et al., 2014; Torres-Flores 
& López-Wilchis, 2019; Whitaker & Findley, 1980). The other multi-
species insectivore group contained Baeurus dubiquercus, C. auritus, 
Gardnernycteris keenani, M. cozumelae, P. mesoamericanus, and R. ae-
neus. This grouping combined bat species that fall across the aerial 
hawker (e.g., P. mesoamericanus and R. aeneus) and surface gleaner 
(e.g., M.  cozumelae, C.  auritus) modes. However, a previous study 
found the isotopic niche spaces of M. cozumelae and C. auritus over-
lapped completely (Oelbaum et al., 2019), and a previous study of the 
diet of G. keenani has also reported large beetle fragments, further 
supporting this module (Whitaker & Findley, 1980). Likewise, beetles 
have been demonstrated to be important parts of the diets of vari-
ous Pteronotus species (Rolfe et al., 2014; Salinas-Ramos et al., 2015), 
although it has been reported that P. mesoamericanus in Costa Rica 
feeds mostly on Lepidoptera and Diptera (de Oliveira et al., 2020). 
The diet of R. aeneus remains poorly known, but our results suggest 
these bats may prey on moths in the family Lymantriidae (tussock 
moths) and flying beetles of the Order Staphylinidae (Figure 5).

Overall, our groupings are broadly consistent with prior data on 
the diets of bat species (Leal et al., 2018; Lopez & Vaughan, 2007; 
Sánchez & Giannini, 2018; Whitaker & Findley, 1980); one notable 
exception is that our data show that many insectivorous species 
have associations with plants. While this may be due to detection 
of plant material “carried up” through arthropod prey, many of the 
bat species in our dataset have historical reports of pollen or seeds 
in fecal material. For example, up to 13% of the fecal mass of M. pi-
losatibialis and 12% of that of T. cirrhosus collected between 1972 
and 1974 in Panama and Costa Rica was composed of unidentified 
seeds (Whitaker & Findley, 1980), similar to the few associations we 
detected between these species and plants in our study (Figure 3). 
In a similar set of cases, we also detected associations between 
frugivorous bats and several families of arthropods (Figures  5–
8). Some of these associations may be explained by facultative 

insectivory, cases in which bats morphologically and/or behaviorally 
specialized for frugivory may opportunistically take insects (Clare 
et al., 2014; Herrera et al., 2002; Lopez & Vaughan, 2007). Artibeus 
and Dermanura species have been shown to obtain their nutrition 
nearly exclusively from plant material regardless of season (Herrera 
et al., 2002), yet we detected associations between them and several 
families of arthropods (Figures 5-8). Our data support the hypothe-
sis that members of the genera Artibeus and Dermanura are obligate 
frugivores, but members of these groups may occasionally or inci-
dentally take insects. Further molecular dietary analysis can confirm 
whether this is the case across their geographic range and across 
different seasons.

An important consideration for DNA metabarcoding is that to 
truly know dietary niche breadth for any species requires many rep-
licates. Because of our limited sample size (65 samples for 25 spe-
cies), we do not intend to present these data as the definitive niche 
breadths for any species. Given that we detected variation in diet 
among individuals of the same species (Figure 9), we caution over 
interpretation of these results without further research into this sys-
tem. One study on Miniopterus schreibersii diet estimated that more 
than 30 samples would be needed to capture > 90% of the MOTU 
diversity at a given site (Aizpurua et al., 2018). In spite of the limited 
number of samples, our study elucidates previously unrecognized 
trophic connections and serves as a roadmap for testing hypotheses 
about niche differentiation in cryptic tropical mammal communities. 
Still, we recognize that DNA metabarcoding is limited in a few key 
ways. First, it is not directly possible to tell whether identified diet 
components were directly consumed by bats or whether they were 
initially consumed by prey insects and only secondarily detected in 
bat guano. We also must acknowledge that we did not use a posi-
tive control reference library of local Belizean plants, animals, and 
insects to compare our MOTUs against, which limits our ability to 
assess the robustness of our taxonomic assignments. However, be-
cause our analyses are robust to taxonomic uncertainty (i.e., the lack 
of a good species-level match moves the taxonomic assignment up a 
level in the hierarchy), we believe that the higher taxonomies of our 
results are likely to be fairly accurate. In the future, it will be nec-
essary to expand upon this study with more samples and a curated 
reference for positive controls.

Another potential limitation to our approach is that it is limited to 
a snapshot in time. Metabarcoded feces represent, at most, a sam-
pling of individual dietary components over a one- or two-night pe-
riod. In addition, primer bias is a concern that applies to any use of 
“universal” barcodes, as some consumed taxa may not be detected 
depending on which primers are used (Piñol et al., 2015). While this is 
a valid limitation for long-term ecological questions, we suggest that 
a DNA metabarcoding approach may be more suitable than isotopic 
data for addressing certain ecological and evolutionary questions be-
cause of, rather than in spite of, the relatively short temporal scale 
captured using this method. A previous study of vampire bats in the 
Lamanai area failed to find links between diet inferred from stable 
isotopes and gut microbiome turnover (Ingala et al., 2019), but this 
might be because isotope data record diet averaged over a relatively 
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long timespan. DNA metabarcoding may be the most appropriate and 
powerful research technique for linking diet to changes in gut micro-
biomes because it captures diet on a temporally comparable scale to 
the rate of turnover in bacterial communities (David et al., 2014; Voigt 
et al., 2012). Future work could explicitly test the suitability of using 
long- and short-term diet inference methods for addressing these and 
other novel questions in ecology and evolution.

5  | CONCLUSIONS

In this study, we created the first multitrophic molecular dietary in-
ventory for a Neotropical small mammal community by leveraging 
the power of a DNA metabarcoding approach. Applying network 
theory, we found that each bat species varied considerably in their 
associations with invertebrate and plant groups, with no two spe-
cies completely overlapping in detected food items. Our results pro-
vide necessary fine-scale information about bat diets that can be 
expanded upon with more replicates to test hypotheses about niche 
structure and competition in tropical mammal communities. In sum-
mary, our work provides a framework for understanding ecological 
diversity and can be applied to other species with cryptic habits 
whose diets are poorly known.
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