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Abstract
Behcet’s disease (BD) is a chronic vascular inflammatory disease. However, the etiology and molecular mechanisms under-
lying BD development have not been thoroughly understood. Gene expression data for BD were obtained from the Gene 
Expression Omnibus database. We used robust rank aggregation (RRA) to identify differentially expressed genes (DEGs) 
between patients with BD and healthy controls. Gene ontology functional enrichment was used to investigate the potential 
functions of the DEGs. Protein–protein interaction (PPI) network analysis was performed to identify the hub genes. Receiver 
operating characteristic analyses were performed to investigate the value of hub genes in the diagnosis of BD. GSE17114 and 
GSE61399 datasets were included, comprising 32 patients with BD and 26 controls. The RRA integrated analysis identified 
44 significant DEGs among the GSE17114 and GSE61399 CD4 + T lymphocytes. Functional enrichment analysis revealed 
that protein tyrosine/threonine phosphatase activity and immunoglobulin binding were enriched in BD. PPI analysis identi-
fied FCGR3B as a hub gene in the CD4 + T lymphocytes of BD patients. Our bioinformatic analysis identified new genetic 
features, which will enable further understanding of the pathogenesis of BD.
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Introduction

Behcet’s disease (BD) is a chronic recurrent vascular inflam-
matory disease that can involve all types of blood vessels 
throughout the mouth, skin, genitals, eyes, and important 
organs of the cardiovascular system, digestive tract, nerv-
ous system, and joints [1]. The distribution of BD exhibits 
distinct ethnic and regional differences. The prevalence of 
BD is high in the Mediterranean coast, the Middle East, and 
Southeast Asia, namely the “Silk Road” region, and low 
in Europe and America. The prevalence of BD in China 
is 14.0/100,000, which is very similar to that in Japan 

(13.5/100,000) [2]. However, the pathogenesis of BD is not 
clear, and previous studies have shown that the incidence of 
BD is mainly related to autoimmune, environmental, and 
genetic factors [3]. Fei et al. conducted the first genome-
wide association study (GWAS) of BD in Turkish popula-
tion. Although this study did not identify any significant loci 
at the GWAS level, it was a landmark study in understanding 
the genetics of BD [4]. To date, a total of 21 genetic sus-
ceptibility sites for BD have been identified at the GWAS 
significance level, including interleukin-23 receptor (IL23R) 
and interleukin-10 (IL10) [5]. Related studies have shown 
that several immune cells, such as natural killer cells, mono-
cytes, and B cells play an important role in the pathogenesis 
of BD [6]. The number of  CD4+ and  CD8+ T cells increased 
in circulating blood and inflammatory tissues of BD [7–9]; 
Th1 and Th17 cell numbers increased and caused inflam-
mation in the early stage of BD intestinal involvement [10]. 
The study of Immunochip array [11] and genotyping array 
[12–16] in BD showed that immune-mediated and genetic 
factors were key in its pathogenesis. Some novel susceptible 
genes, such as interferon γ receptor 1 (IFNGR1) [17], have 
been identified. Meanwhile, gene microarray technology [18, 
19] has been used to analyze the expression of genes in the 
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peripheral blood mononuclear cells of BD patients. How-
ever, the results of these microarrays are not ideal, owing 
to differences in analysis methods and sample sources. 
Bioinformatic analysis is an effective method for in-depth 
detection and mining of transcriptome data and is widely 
used in various diseases [20–22]. In this study, two mRNA 
microarray datasets were screened using the GEO database. 
In robust rank aggregation (RRA) analysis, the data were 
grouped according to CD14 + monocytes and CD4 + T lym-
phocytes to identify differentially expressed genes (DEGs). 
Subsequently, we used gene ontology (GO) function enrich-
ment analysis to explore the molecular mechanisms underly-
ing BD. Protein–protein interaction (PPI) network analysis 
was used to screen for key genes. Finally, a validation test 
was conducted to determine the key hub genes involved in 
the pathogenesis of BD. This study aimed to discover new 
DEGs involved in BD pathogenesis and explore the possible 
molecular mechanisms associated with CD4 + T lympho-
cytes in BD.

Materials and methods

Study design and data collection

GEO (http:// www. ncbi. nlm. nih. gov/ geo) is a common data-
base that hosts microarray, high-throughput sequencing, and 
chip data [23], and we employed it to search the related gene 
expression data using the following terms: “Behçet’s dis-
ease,” “Vasculitis,” “Gene expression,” “Homo sapiens,” and 
“Microarray.” The following inclusion criteria were used: (1) 
involvement of more than ten specimens; (2) total RNA was 
extracted from peripheral blood mononuclear cells; (3) gene 
expression data in CEL format were obtained from GEO; 
and finally, GSE17114 and GSE61399 [18] were selected. 
We used the “affy” package [24] for background correction, 
the “gcrma” package [25] for standardized processing, the 
“sva” package [26] to remove batch effect, and the “rsub-
read” package [27] for gene annotation. For comparing data 
before and after standardization, we used a box chart for 
visualization. Meanwhile, comparing data before and after 
removing the batch effect, we used principal component 
analysis (PCA) for visualization. In gene annotation, we had 
the following rules: (1) the average value of multiple probes 
matching the same genetic symbol was used and (2) genes 
or probes without corresponding genetic signs were deleted.

Differentially expressed gene screening

We divided the two GEO datasets into three different groups, 
because the GSE61399 dataset comprised CD14 + mono-
cytes and CD4 + T lymphocytes. We performed differential 
analysis using the “limma” package [28] to detect DEGs 

between BD and healthy controls, set P values ≤ 0.05 and 
|log2 fold change (FC)|≥ 0.5 as significant, and used the 
“ggplot2” package [29] to map the volcano.

RRA analysis

RRA is an effective tool for combining the results [30]. To 
reduce the differences and combine multiple microarray 
results, RRA analysis was used to identify typical DEGs. 
The specific steps of analysis were as follows: First, by ana-
lyzing the expression of FC between BD and control, we 
obtained the lists of upregulated and downregulated genes in 
each dataset. Second, we used the “robust rank aggregation” 
package [30] to aggregate the list of all sequenced genes in 
the datasets. We used the Benjamin and Hochberg false dis-
covery rate (FDR) method to generate the adjusted P-value 
and screened the significant genes with adjusted P < 0.5 and 
|log2FC|> 0.5.

Functional enrichment analysis

In order to investigate the role of DEGs in the pathogen-
esis of BD, we used the “clusterprofiler” package [31] to 
conduct GO functional enrichment analysis of important 
genes identified by RRA. In addition, we used the “clus-
terprofiler” package (cnetplot) for visualization. Our crite-
ria were adjusted at P < 0.05 and the false discovery rate 
(FDR) < 0.05.

PPI network analysis

STRING is an online database for predicting PPI [32]. First, 
we fed important genes from the above RRA analysis into 
the STRING database. Second, the results of STRING analy-
sis with an intermediate confidence of > 0.4 were collected. 
Third, we exported the TSV format data to the Cytoscape 
software (version 3.7.2) that is used to visualize the PPI 
network [33].

Diagnostic effectiveness evaluation

For diagnostic analysis, we selected GSE17114, GSE61399, 
and GSE61399 CD4 + T lymphocytes. We chose the data 
of this study for verification because GSE165254 [34] is 
sequencing data and the original data of GSE165254 can-
not be obtained. GSE70403 [19] only included patients with 
BD, not healthy controls. The receiver operator characteris-
tic (ROC) curves were diagramed and the area under curve 
(AUC) was measured to appraise the performance of each 
dataset (GSE17114, GSE61399, and GSE61399 CD4 + T 
lymphocytes) using the “pROC” package in R [35]. We 
defined the criteria to distinguish between different diag-
nostic values as follows: excellent accuracy (0.9 ≤ AUC  < 1), 
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reasonable accuracy (0.8 ≤ AUC  < 0.9), fair accuracy 
(0.7 ≤ AUC  < 0.8), poor accuracy (0.6 ≤ AUC  < 0.7), and 
insufficient accuracy (0.5 ≤ AUC  < 0.6) [36].

Results

Information of included microarrays

According to the previously established inclusion cri-
teria, GSE17114 and GSE61399 were included in this 
study; 32 BD patients and 26 controls were included in 
these two datasets. The clinical data of GSE17114 were 
relatively integrated, including 15 BD patients (women, 
53.3%; mean age, 37.07 ± 10.67 years; immunosuppres-
sors, 60.0%) and 14 healthy controls (women, 50.0%; 
mean age, 36.71 ± 13.00 years); however, the clinical data 
of GSE61399 did not provide information for the 17 BD 
patients and 12 healthy controls. The analyses of GSE17114 
and GSE61399 series were performed on the GPL570 plat-
form (Affymetrix Human Genome U133 Plus 2.0 Array). 
The RNA of the GSE17114 dataset was derived from 
peripheral blood mononuclear cells, whereas the RNA from 
the GSE61399 dataset was derived from CD14 + monocytes 
and CD4 + T lymphocytes. Detailed information on these 
datasets is shown in Table 1.

Identification of DEGs in BD

First, we used the “GCRMA” package to standardize the 
two-microarray datasets. Supplementary Fig. 6 shows the 
box plots before and after standardization. Second, we used 
a PCA diagram to visualize the results of removing the 
batch effect, as shown in Supplementary Fig. 7. In addi-
tion, we used the “limma” package to screen DEGs accord-
ing to the above criteria, and according to cell grouping, 
GSE61399 was divided into two groups (CD14 + monocytes 
and CD4 + T lymphocytes) for difference analysis. Volcano 
plots of the three groups from the two microarrays are shown 
in Fig. 1.

RRA integrated analysis of DEGs

We analyzed the integration of GSE17114 and GSE61399 
CD14 + monocytes and the integration of GSE17114 and 
GSE61399 CD4 + T lymphocytes, according to our data 
and rules set for RRA analysis. After the integrated anal-
ysis, no significant differences in the gene expressions of 
the GSE17114 and GSE61399 CD14 + monocytes were 
observed. However, 44 significant DEGs (16 upregulated 
and 28 downregulated) were identified (Supplementary 
Table 1) between GSE17114 and GSE61399 CD4 + T lym-
phocytes. The heatmap of the top 10 upregulated and 10 

Table 1  Characteristics of the enrolled microarray datasets

GSE ID BD Control Tissues Analysis type Platform Citation (PMID) Country Year

GSE17114 15 14 Peripheral blood 
mononuclear 
cells

Array GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human

No Portugal 2019

GSE61399 17 12 CD14 + monocytes 
and CD4 + T 
lymphocytes

Array GPL570 [HG-
U133_Plus_2] 
Affymetrix 
Human

25,410,656 USA 2014

Fig. 1  Volcano diagrams of the microarrays. Red points indicate the upregulated genes, while blue points indicate the downregulated genes. 
Gray points indicate genes without significant difference. A GSE17114; B GSE61399 CD4 + T lymphocytes; C GSE61399 CD14 + monocytes
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downregulated genes between GSE17114 and GSE61399 
CD4 + T lymphocytes is shown in Fig. 2.

Functional annotation

We used the 44 DEGs between GSE17114 and GSE61399 
CD4 + T lymphocytes to perform GO (molecular func-
tion) analysis. The results revealed that protein tyros-
ine/threonine phosphatase activity (GO:0,008,330; 
adjusted P-value = 0.013) and immunoglobulin binding 
(GO:0,019,865; adjusted P-value = 0.025) were significantly 
enriched for molecular function. We used a GO cneplot 
(Fig. 3) to visualize the GO terms.

Results of protein–protein interaction (PPI) network 
analysis

We performed the PPI network analysis using the STRING 
online database and the significant genes between 
GSE17114 and GSE61399 CD4 + T lymphocytes as input 
(Fig. 4). Cytoscape was used to visualize the results. In the 
PPI network, the genes located in the central node were 
recognized as key genes that may play crucial regulatory 

roles in BD. The results showed that the top six genes 
with the most connections which were FCGR3B, TLR7, 
CCL4, FCGR1B, TNFRSF8, KIR2DL3, and FCGR3B had 
the largest weight. Therefore, according to RAA and PPI 
analyses, FCGR3B was considered a hub gene.

The validation of FCGR3B gene

To validate the diagnostic value of FCGR3B in BD 
patients, we performed ROC analyses to investigate the 
sensitivity and specificity of FCGR3B for BD diagno-
sis. The ROC outcomes verified that FCGR3B could dif-
ferentiate between BD patients and healthy controls in 
GSE17114 (P < 0.05), with an AUC of 0.824 (Fig. 5). 
However, the diagnostic value of FCGR3B in GSE61399 
and GSE61399 CD4 + T lymphocytes was uncertain (Sup-
plementary Fig. 8A and 8B). This is due to the large dif-
ference in the sample size of BD CD4 + T lymphocytes in 
patients and healthy controls in GSE61399, causing some 
bias. Our results indicated that expression of FCGR3B was 
related to disease diagnosis and FCGR3B could be used as 
a biomarker in the diagnosis of BD.

Fig. 2  Heatmap of the robust 
rank aggregation (RRA) 
analysis. Heatmap of the top 10 
upregulated and 10 down-
regulated genes using the RRA 
method. Red and blue indicate 
high and low expression of 
genes in patients with BD, 
respectively
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Fig. 3  Gene ontology (GO) functional enrichment analysis (cneplot) of differentially expressed genes

Fig. 4  The outcomes of protein–protein interaction (PPI) network 
analysis

Fig. 5  Receiver operating characteristics of FCGR3B in GSE17114
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Discussion

BD is a common autoimmune disease and is diagnosed 
based on recurrent oral ulcers (recurrent at least 3 times 
within 1 year) [37]. Currently, there is no specific antibody 
for the diagnosis of BD. The diagnosis mainly depends on 
medical experience and the invasive skin acupuncture reac-
tion [37]. Thus far, the pathogenesis of BD has not been 
clarified. Relevant studies suggest that its pathogenesis may 
be the result of multiple effects of autoimmunity, external 
environmental factors, and genetic susceptibility [3]. Other 
studies have reported that BD patients show specific micro-
biota characteristics [38]. Therefore, there is an urgent need 
to better understand the pathogenesis of BD to formulate 
new strategies for the diagnosis and treatment of BD.

In the current study, based on the gene expression profiles 
obtained from GSE17114 and GSE61399 datasets, FCGR3B 
was identified as the key DEG between the CD4 + T lym-
phocytes of patients with BD and healthy controls using 
bioinformatic tools. We explored the biological processes 
of these DEGs using GO enrichment analysis. The results 
showed that DEGs were significantly correlated with protein 
tyrosine/threonine phosphatase activity and immunoglobulin 
binding. We performed PPI network analysis to identify core 
genes. Next, we performed ROC analysis to study the sensi-
tivity and specificity of core gene diagnosis of BD, and the 
results showed that the expression of FCGR3B was related 
to the diagnosis of BD CD4 + T lymphocytes.

The Fc receptor family for immunoglobulin (Ig)G 
(FCGRs) is mainly expressed on immune effector cells and 
modulates the response of IgG antibodies. Furthermore, 
FCGRs mainly mediate immune responses [39–41]. When 
the regulatory system involved in FCGR becomes dysfunc-
tional, it can lead to the onset or deterioration of autoim-
mune diseases [39, 40]. FCGRs include three high-affinity 
FCGRs (FCGRIa, FCGRIb, and FCGRIc) and five low-
affinity FCGRs (FCGRIIa, FCGRIIb, FCGRIIc, FCGRIIIa, 
and FCGRIIIb). The FCGR3B gene encodes FCGRIIIb 
(also known as CD16b), specifically expressed on neu-
trophils [42]. Previous studies demonstrated that FCGR3 
gene copy number variations (CNVs) and single nucleotide 
polymorphisms (SNPs) are associated with several diseases, 
especially autoimmune disorders, such as systemic lupus 
erythematosus [43–45], rheumatoid arthritis [45], ANCA-
associated systemic vasculitis (AASV) [43, 46, 47], sar-
coidosis [48, 49], and others [50]. Few hypotheses suggest 
that FCGRIIIb is primarily expressed on neutrophils, and 
hence its deficiency or variation may obstruct the clearance 
of immune complexes by neutrophils and enhance the pro-
inflammatory effect [47]. Relevant studies have shown that 
FCGR gene polymorphisms are related to BD, suggesting 
that FCGR genes may play a role in the pathogenesis of BD 

[51, 52]. Huang et al. studied the expression of FcγRIIb, 
FcγRI, and FcγRIII on monocytes, T cells, and other cells 
in patients with BD and showed that FcγR is abnormally 
expressed in BD monocytes and is associated with disease 
progression and might promote the over-activation of mono-
cytes in BD patients [53]. However, Black et al. found that 
there was no correlation between high or low copy number 
of FCGR3B and BD or its clinical features in the Iranian 
population [54]. Therefore, the exact role of FCGR3B in 
the pathogenesis of BD remains unclear. The aim of this 
study was to analyze the microarray data of GSE17114 and 
GSE61399 using bioinformatics, primarily using RRA, GO 
enrichment, and PPI network analyses. Our experiments 
showed that FCGR3B may be involved in the pathogenesis 
of BD CD4 + T lymphocytes. A relevant study has shown 
that Th1 and Th2 cytokines (IFN-γ and IL-4) differentially 
regulate the expression of FcγR isoforms with opposite 
functions, altering the balance of activating and inhibitory 
signals delivered by FcγRs present on phagocytes [55]. At 
the same time, previous studies have shown that T lympho-
cytes are the main infiltrating cell type of the local inflam-
matory foci in BD [56]. Another study showed that Th1 and 
Th17 cells cause inflammation through abnormal and per-
sistent cytokine production (IFN-γ, TNF-α, and IL-17) and 
cytotoxicity mediated by perforin and Fas ligands, leading 
to gastrointestinal mucosal damage in BD patients [10]. The 
counts of CD4 + and CD8 + T cells producing cytokines are 
increased in the circulating blood and inflammatory tissues 
of BD [7–9]. The verification test indicated that the expres-
sion of FCGR3B was related to BD diagnosis.

This study has some limitations. First, we did not conduct 
in vivo tests to verify the outcomes. Second, we need to fur-
ther study the definite mechanism of the immune response 
induced by FCGR3B. Finally, we did not explore the associ-
ation of FCGR3B with the serological phenotypes (autoanti-
body profiles) of patients with BD. Although bioinformatics 
can reveal the internal mechanism, the results of our study 
need to be further validated by in vivo and in vitro tests and 
medical analysis.

In summary, we have comprehensively provided a pro-
found understanding of the molecular changes in BD and 
identified FCGR3B as a hub gene. Moreover, GO enrichment 
analysis revealed that these DEGs were generally enriched in 
protein tyrosine/threonine phosphatase activity and immu-
noglobulin binding. However, the mechanism of action of 
FCGR3B has not been fully elucidated. More experiments 
are needed to verify the results, and more samples from 
patients with BD and healthy controls need to be collected 
for additional functional research.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12026- 022- 09270-3.

466 Immunologic Research (2022) 70:461–468

https://doi.org/10.1007/s12026-022-09270-3


1 3

Acknowledgements The authors would like to express special grati-
tude to the researchers of the datasets of GSE17114 and GSE61399.

Author contribution SC, XZ, HY, and YL conceived and designed the 
research. HL and HZ extracted the data and conducted quality assess-
ment. SC analyzed the data and wrote the paper. All the authors are 
accountable for all aspects of the study and attest to the accuracy and 
integrity of the results. All the authors contributed to the article and 
approved the submitted version.

Funding This work was supported by the National Natural Science 
Foundation of China Grants (No. 81770466; 81671618; 81871302 and 
81800435), by the Youth Plan of Beijing Hospital Management Center 
(QML20190602), by the Beijing outstanding young talents back-
bone individual project (2018000021469G242), by the National Key 
Research and Development Program of China (2018YFE0207300), 
by the CAMS Innovation Fund for Medical Sciences (CIFMS 2017-
I2M-3–001 and CIFMS 017-I2M-B&R-01), and by Beijing Key 
Clinical Specialty for Laboratory Medicine—Excellent Project (No. 
ZK201000).

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Mazzoccoli G, Matarangolo A, Rubino R, Inglese M, De Cata A. 
Behcet syndrome: from pathogenesis to novel therapies. CLIN 
EXP MED. 2016;16:1–12.

 2. Kocyigit BF, Akyol A. Bibliometric and altmetric analyses of 
publication activity in the field of Behcet's disease in 2010–2019. 
J KOREAN MED SCI. 2021;36:e207.

 3. Emmi G, Silvestri E, Squatrito D, D’Elios MM, Ciucciarelli L, 
Prisco D, et al. Behcet’s syndrome pathophysiology and potential 
therapeutic targets. INTERN EMERG MED. 2014;9:257–65.

 4. Fei Y, Webb R, Cobb BL, Direskeneli H, Saruhan-Direskeneli 
G, Sawalha AH. Identification of novel genetic susceptibility 
loci for Behcet’s disease using a genome-wide association study. 
ARTHRITIS RES THER. 2009;11:R66.

 5. Ortiz-Fernandez L, Sawalha AH. Genetics of Behcet's disease: 
functional genetic analysis and estimating disease heritability. 
Front Med (Lausanne). 2021;8:625710.

 6. Gul A. Behcet’s disease: an update on the pathogenesis. CLIN 
EXP RHEUMATOL. 2001;19:S6-12.

 7. Frassanito MA, Dammacco R, Cafforio P, Dammacco F. Th1 
polarization of the immune response in Behcet’s disease: a 

putative pathogenetic role of interleukin-12. Arthritis Rheum. 
1999;42:1967–74.

 8. Ilhan F, Demir T, Turkcuoglu P, Turgut B, Demir N, Godek-
merdan A. Th1 polarization of the immune response in uveitis in 
Behcet’s disease. CAN J OPHTHALMOL. 2008;43:105–8.

 9. Imamura Y, Kurokawa MS, Yoshikawa H, Nara K, Takada E, 
Masuda C, et al. Involvement of Th1 cells and heat shock protein 
60 in the pathogenesis of intestinal Behcet’s disease. CLIN EXP 
IMMUNOL. 2005;139:371–8.

 10. Emmi G, Silvestri E, Bella CD, Grassi A, Benagiano M, Cianchi 
F, et al. Cytotoxic Th1 and Th17 cells infiltrate the intestinal 
mucosa of Behcet patients and exhibit high levels of TNF-alpha in 
early phases of the disease. Medicine (Baltimore). 2016;95:e5516.

 11. Cortes A, Brown MA. Promise and pitfalls of the Immunochip. 
ARTHRITIS RES THER. 2011;13:101.

 12. Hughes T, Coit P, Adler A, Yilmaz V, Aksu K, Duzgun N, et al. 
Identification of multiple independent susceptibility loci in the 
HLA region in Behcet’s disease. NAT GENET. 2013;45:319–24.

 13. Ombrello MJ, Kirino Y, de Bakker PI, Gul A, Kastner DL, 
Remmers EF. Behcet disease-associated MHC class I residues 
implicate antigen binding and regulation of cell-mediated cyto-
toxicity. Proc Natl Acad Sci U S A. 2014;111:8867–72.

 14. Carapito R, Shahram F, Michel S, Le Gentil M, Radosavljevic 
M, Meguro A, et al. On the genetics of the Silk Route: associa-
tion analysis of HLA, IL10, and IL23R-IL12RB2 regions with 
Behcet’s disease in an Iranian population. Immunogenetics. 
2015;67:289–93.

 15. Gensterblum-Miller E, Wu W, Sawalha AH. Novel transcrip-
tional activity and extensive allelic imbalance in the human 
MHC region. J IMMUNOL. 2018;200:1496–503.

 16. Xavier JM, Davatchi F, Abade O, Shahram F, Francisco V, 
Abdollahi BS, et al. Characterization of the major histocom-
patibility complex locus association with Behcet’s disease in 
Iran. ARTHRITIS RES THER. 2015;17:81.

 17. Ortiz FL, Coit P, Yilmaz V, Yentur SP, Alibaz-Oner F, Aksu 
K, et al. Genetic association of a gain-of-function IFNGR1 
polymorphism and the intergenic region LNCAROD/
DKK1 with Behcet’s disease. ARTHRITIS RHEUMATOL. 
2021;73:1244–52.

 18. Tulunay A, Dozmorov MG, Ture-Ozdemir F, Yilmaz V, Eksioglu-
Demiralp E, Alibaz-Oner F, et al. Activation of the JAK/STAT 
pathway in Behcet’s disease. GENES IMMUN. 2015;16:170–5.

 19. Okuzaki D, Yoshizaki K, Tanaka T, Hirano T, Fukushima K, 
Washio T, et al. Microarray and whole-exome sequencing analysis 
of familial Behcet’s disease patients. Sci Rep. 2016;6:19456.

 20. Kim S, Rhee JK, Yoo HJ, Lee HJ, Lee EJ, Lee JW, et al. Bioinfor-
matic and metabolomic analysis reveals miR-155 regulates thia-
mine level in breast cancer. CANCER LETT. 2015;357:488–97.

 21. Liu J, Li Y, Gan Y, Xiao Q, Tian R, Shu G, et al. Identifica-
tion of ZNF26 as a prognostic biomarker in colorectal cancer 
by an integrated bioinformatic analysis. Front Cell Dev Biol. 
2021;9:671211.

 22. Topno R, Singh I, Kumar M, Agarwal P. Integrated bioinformatic 
analysis identifies UBE2Q1 as a potential prognostic marker for 
high grade serous ovarian cancer. BMC Cancer. 2021;21:220.

 23. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Toma-
shevsky M, et al. NCBI GEO: Archive for functional genomics 
data sets–update. NUCLEIC ACIDS RES. 2013;41:D991–5.

 24. Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy–analysis of 
Affymetrix GeneChip data at the probe level. Bioinformatics. 
2004;20:307–15.

 25. Gharaibeh RZ, Fodor AA, Gibas CJ. Background correction using 
dinucleotide affinities improves the performance of GCRMA. 
BMC Bioinformatics. 2008;9:452.

467Immunologic Research (2022) 70:461–468

http://creativecommons.org/licenses/by/4.0/


1 3

 26. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva 
package for removing batch effects and other unwanted variation 
in high-throughput experiments. Bioinformatics. 2012;28:882–3.

 27. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, 
faster, cheaper and better for alignment and quantification of RNA 
sequencing reads. NUCLEIC ACIDS RES. 2019;47:e47.

 28. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. 
Limma powers differential expression analyses for RNA-sequenc-
ing and microarray studies. NUCLEIC ACIDS RES. 2015;43:e47.

 29. Wickham H. ggplot2: elegant graphics for data analysis. New 
York: Springer-Verlag; 2016.

 30. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation 
for gene list integration and meta-analysis. Bioinformatics. 
2012;28:573–80.

 31. Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package 
for comparing biological themes among gene clusters. OMICS. 
2012;16:284–7.

 32. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, 
Pyysalo S, et al. The STRING database in 2021: customizable 
protein-protein networks, and functional characterization of 
user-uploaded gene/measurement sets. NUCLEIC ACIDS RES. 
2021;49:D605–12.

 33. Bauer-Mehren A. Integration of genomic information with 
biological networks using Cytoscape. Methods Mol Biol. 
2013;1021:37–61.

 34. Verrou KM, Vlachogiannis NI, Ampatziadis-Michailidis G, Mou-
los P, Pavlopoulos GA, Hatzis P, et al. Distinct transcriptional pro-
file of blood mononuclear cells in Behcet’s disease: insights into 
the central role of neutrophil chemotaxis. Rheumatology (Oxford). 
2021;60:4910–9.

 35. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, 
et al. PROC: an open-source package for R and S+ to analyze and 
compare ROC curves. BMC Bioinformatics. 2011;12:77.

 36. Swets JA. Measuring the accuracy of diagnostic systems. Science. 
1988;240:1285–93.

 37. Criteria for diagnosis of Behcet’s disease. International Study 
Group for Behcet’s Disease. Lancet. 1990;335:1078–80.

 38. Consolandi C, Turroni S, Emmi G, Severgnini M, Fiori J, Peano 
C, et al. Behcet’s syndrome patients exhibit specific microbiome 
signature. AUTOIMMUN REV. 2015;14:269–76.

 39. Takai T. Fc receptors and their role in immune regulation and 
autoimmunity. J CLIN IMMUNOL. 2005;25:1–18.

 40. Takai T. Roles of Fc receptors in autoimmunity. NAT REV 
IMMUNOL. 2002;2:580–92.

 41. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of 
immune responses. NAT REV IMMUNOL. 2008;8:34–47.

 42. Ravetch JV, Perussia B. Alternative membrane forms of Fc gamma 
RIII(CD16) on human natural killer cells and neutrophils. Cell 
type-specific expression of two genes that differ in single nucleo-
tide substitutions. J EXP MED. 1989;170:481–97.

 43. Qi Y, Zhou X, Bu D, Hou P, Lv J, Zhang H. Low copy numbers 
of FCGR3A and FCGR3B associated with Chinese patients with 
SLE and AASV. Lupus. 2017;26:1383–9.

 44. Santos VC, Grecco M, Pereira KM, Terzian CC, Andrade LE, 
Silva NP. Fc gamma receptor IIIb polymorphism and systemic 

lupus erythematosus: association with disease susceptibil-
ity and identification of a novel FCGR3B*01 variant. Lupus. 
2016;25:1237–43.

 45. Chen JY, Wang CM, Chang SW, Cheng CH, Wu YJ, Lin JC, 
et  al. Association of FCGR3A and FCGR3B copy number 
variations with systemic lupus erythematosus and rheumatoid 
arthritis in Taiwanese patients. ARTHRITIS RHEUMATOL. 
2014;66:3113–21.

 46. Alberici F, Bonatti F, Adorni A, Daminelli G, Sinico RA, Gre-
gorini G, et al. FCGR3B polymorphism predicts relapse risk in 
eosinophilic granulomatosis with polyangiitis. Rheumatology 
(Oxford). 2020;59:3563–6.

 47. Martorana D, Bonatti F, Alberici F, Gioffredi A, Reina M, Urban 
ML, et al. Fcgamma-receptor 3B (FCGR3B) copy number varia-
tions in patients with eosinophilic granulomatosis with polyangii-
tis. J Allergy Clin Immunol. 2016;137:1597–9.

 48. Wu J, Li Y, Guan W, Viken K, Perlman DM, Bhargava M. 
FCGR3A and FCGR3B copy number variations are risk factors 
for sarcoidosis. HUM GENET. 2016;135:715–25.

 49. Typiak M, Rebala K, Dudziak M, Slominski JM, Dubaniewicz 
A. Polymorphism of FCGR2A, FCGR2C, and FCGR3B genes 
in the pathogenesis of sarcoidosis. ADV EXP MED BIOL. 
2016;905:57–68.

 50. Dahmani CA, Benzaoui A, Amroun H, Zemani-Fodil F, Petit-Teix-
eira E, Boudjema A. Association study of copy number variants 
in CCL3L1, FCGR3A and FCGR3B genes with risk of ankylos-
ing spondylitis in a West Algerian population. INT J IMMUNO-
GENET. 2019;46:437–43.

 51. Aksu K, Kitapcioglu G, Keser G, Berdeli A, Karabulut G, Kobak 
S, et al. FcgammaRIIa, IIIa and IIIb gene polymorphisms in 
Behcet’s disease: do they have any clinical implications? CLIN 
EXP RHEUMATOL. 2008;26:S77-83.

 52. Zhang D, Qin J, Li L, Su G, Huang G, Cao Q, et al. Analysis of the 
association between Fc receptor family gene polymorphisms and 
ocular Behcet’s disease in Han Chinese. Sci Rep. 2018;8:4850.

 53. Huang L, Yu X, Li L, Liu J, Wu X, Zeng Y, et al. Aberrant Fcgam-
maRIIb and FcgammaRIII expression on monocytes from patients 
with Behcet's disease. CLIN IMMUNOL. 2020;219:108549.

 54. Black R, Lester S, Dunstan E, Shahram F, Nadji A, Bayat N, et al. 
Fc-Gamma receptor 3B copy number variation is not a risk factor 
for Behcet's disease. Int J Rheumatol. 2012;2012:167096.

 55. Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautes-
Fridman C, et al. Differential modulation of stimulatory and 
inhibitory Fc gamma receptors on human monocytes by Th1 and 
Th2 cytokines. J IMMUNOL. 2001;166:531–7.

 56. Charteris DG, Barton K, McCartney AC, Lightman SL. CD4+ 
lymphocyte involvement in ocular Behcet’s disease. Autoimmun-
ity. 1992;12:201–6.

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

468 Immunologic Research (2022) 70:461–468


	Identification of novel genes in Behcet’s disease using integrated bioinformatic analysis
	Abstract
	Introduction
	Materials and methods
	Study design and data collection
	Differentially expressed gene screening
	RRA analysis
	Functional enrichment analysis
	PPI network analysis
	Diagnostic effectiveness evaluation

	Results
	Information of included microarrays
	Identification of DEGs in BD
	RRA integrated analysis of DEGs
	Functional annotation
	Results of protein–protein interaction (PPI) network analysis
	The validation of FCGR3B gene

	Discussion
	Acknowledgements 
	References




