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Abstract 

Colorectal cancer (CRC) is one of the most common carcinomas and the fourth leading cause of 
cancer-related death worldwide. One of the obstacles in the successful treatment of CRC is a high rate of 
recurrence. We aimed to construct weighted gene co-expression network analysis (WGCNA) to 
identify key modules and hub genes in association with recurrence in CRC patients. We firstly used the 
microarray data, GSE41258, to construct a co-expression network and identify gene modules. 
Furthermore, protein and protein interaction (PPI) network was also performed to screen hub genes. To 
validate the hub genes, an independent dataset GSE17536 was used for survival analyses. Additionally, 
another two databases were also performed to investigate the survival rates and expression levels of hub 
genes. Gene set enrichment analyses (GSEA) combined with gene ontology (GO) were performed to 
further explore function and mechanisms. In our study, the midnightblue module was identified to be 
significant, 15 hub genes were screened, four of which were identified as hub nodes in the PPI network. 
In the test dataset, we found higher expression of MYL9 and CNN1 were significantly associated with 
shorter survival time of CRC patients. GO analyses showed that MYL9 and CNN1 were enriched in 
“muscle system process” and “cytoskeletal protein binding”. GSEA found the two hub genes were 
enriched in “pathways in cancer” and “calcium signaling pathway”. In conclusion, our study demonstrated 
that MYL9 and CNN1 were hub genes associated with the recurrence of CRC, which may contribute to 
the improvement of recurrence-free survival time of CRC patients. 

Key words: colorectal cancer (CRC), weighted gene co-expression network analysis (WGCNA), recurrence, hub 
gene  

Introduction 
Human colorectal cancer (CRC) is a global cause 

of concern in terms of both morbidity and mortality. It 
is recognized as the third most common carcinoma 
and the fourth leading cause of cancer-related death 
in the world [1]. Although tremendous advances have 
been made for diagnosis and treatment of CRC, the 
burden of disease is still high [2]. One of the 
deficiencies in the completely cure of CRC is the poor 

prognosis, such as a high rate of tumor recurrence. It 
is estimated that 30% of patients with stage I–III and 
65% of patients with stage IV CRC suffer recurrence 
after curative treatment [3]. No matter whether 
patients have received a series of progressive 
adjuvant therapies, however, early detection of 
disease recurrence during follow-up period results in 
improved long-term outcomes in CRC patients [4-6]. 
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Therefore, knowledge of prognostic and predictive 
biomarkers for recurrence may effectively contribute 
to better guidance to selection of treatment strategy as 
well as improved prognosis. 

 With the discovery and progression of 
microarray technologies with high throughput, it is 
the fact that gene expression profiles have been 
widely applied in the research area of cancer. Most 
microarray analyses have attached value to the 
comparison between tumor and normal samples [7]. 
With the growing interest in bioinformatics analysis, 
weighted gene co-expression network analysis 
(WGCNA) has emerged as a novel approach to 
perform holistic microarray analyses, which is able to 
identify not only differentially expressed genes 
(DEGs), but also high degree of interconnection 
between genes [8]. In WGCNA, the basic concept is 
construction of co-expression modules, which are 
clusters of genes maintaining consistent expression 
patterns and even playing similar biological roles, and 
these modules are derived from the data of mRNA 
expression profiles by performing unsupervised 
hierarchical clustering [9-11]. In recent years, 
WGCNA has been successfully applied in the 
investigation of tumors, such as CRC. It has been 
reported that four key lncRNAs (RP11‐33O4.1, 
PCGF5, RP11‐164P12.5 and CTD‐2396E7.11) were 
found to participate in the development of colon 
adenocarcinoma (COAD) [12]. In addition, COL8A1 
was demonstrated to be related to prognosis and 
progression of COAD by constructing WGCNA as 
well [13]. With the exploration of a growing number 
of mRNA expression files of CRC in different 
databases, we get opportunities to analyze the mRNA 
expression data of genes derived from a variety of 
platforms and institutes [14]. Exploring more different 
potential biomarkers for different clinicopathological 
variables of CRC is of great significance. 

In our study, for purpose of improving the 
knowledge of biological mechanisms underlying 
recurrence of CRC, WGCNA was applied to identify 
hub genes associated with the recurrence of patients 
with CRC. 

Materials and Methods 
Data Collection 

The mRNA expression profiles of human CRC 
with contained clinical information of patients were 
downloaded from GEO online database. GSE41258 
and GSE17536 were two datasets performed on 
Affymetrix Human Genome U133A Array 
(HG-U133A). GSE41258 was used as a training set by 
constructing a co-expression network then identifying 
hub genes, which included 182 CRC samples and 54 

normal ones [15]. In addition, GSE17536 was used as 
an independent test dataset, including 177 CRC 
patients [16]. 

Data Preprocessing 
The “affy” package was used to preprocess and 

normalize the raw microarray data [17]. Microarray 
quality was evaluated by the methods of intuitive 
observation, averaging and data fitting [18]. First, we 
could obtain a grey-scale map by using the function of 
“image” in order to get a view of the signal intensity 
of microarray on the whole. Then, the “simpleaffy” 
package was conducted to get an overview diagram 
of quality assessment [19, 20]. Furthermore, data 
fitting was conducted by the “affyPLM” package. 
Finally, sample clustering was conducted to detect 
microarray outliers on the basis of distances between 
samples in Pearson’s correlation matrices and average 
linkage. The top 5000 varying genes were chosen for 
WGCNA. 

Construction of WGCNA 
R package “WGCNA” was conducted. First, an 

appropriate soft thresholding power was determined 
by the approximate scale-free topology criterion [21, 
22]. After that, the adjacency was transformed into 
topological overlap matrix (TOM), followed by 
calculation of corresponding dissimilarity (1-TOM) 
[23]. Then, identification of modules was accom-
plished through the method of dynamic tree cut. It 
was usually determined by hierarchically clustering 
genes with similar expression profile and using 1- 
TOM dissimilarity with a minimum size of 30 cut-off 
[24]. Finally, we selected a cutline for module dendro-
gram to merge modules for further analysis by calcu-
lating the dissimilarity of module eigengenes (MEs). 

Identification of Clinically Significant Modules 
ME and module significance (MS), two 

important parameters, were used to identify modules 
related to clinical traits of CRC patients. First, ME was 
the major component of a particular gene module, 
correlation between clinical features and MEs were 
calculated. Second, MS was regarded as the average 
value of gene significance (GS) in a particular module. 
Hence, the highest absolute MS was usually thought 
to be a persuasive indicator when selecting a clinically 
significant module. 

Identification of Hub Genes 
Hub genes were measured by the clinical feature 

relationship (cor.geneTraitSignificance > 0.2) and the 
absolute value of the Pearson’s correlation 
(cor.geneModuleMembership > 0.8), which showed a 
high network connectivity in a particular module [25, 
26]. Additionally, by uploading all genes in the 
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clinically significant module of interest to the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
database (https://string-db.org/) [27], protein and 
protein interaction (PPI) network was constructed 
with confidence > 0.4. In the PPI network, hub nodes 
were genes with connectivity degree ≥ 4 (node/edge). 
Collectively, genes in both co-expression network and 
PPI network were selected as candidate hub genes for 
further analysis. The DEGs with |log2fold change 
(FC)| > 1 and false discovery rate (FDR) < 0.05 were 
statistically significant in GSE41258 [28]. 

Validation of Hub Genes 
First, a test dataset, GSE17536, was used for 

survival analyses of above candidate hub genes. In the 
dataset, 177 samples were divided into low and high 
groups according to the medium value of the 
expression of genes. Then “survival” package in R 
was performed. The log-rank test was adopted to 
compare two groups [29]. Furthermore, Gene 
Expression Profiling Interactive Analysis (GEPIA) 
(http://gepia.cancer-pku.cn/) database was used to 
validate outcomes of survival analyses and gene 
expression levels [30]. Moreover, the Human Protein 
Atlas (https://www.proteinatlas.org/) database was 
used for immunohistochemistry (IHC) analysis. 

Function Enrichment Analysis 
To get further insight into the function of hub 

genes in the module of interest, we performed Gene 
Ontology (GO) enrichment analysis by loading 
"anRichment" package in R. P < 0.05 was set as the 
cut-off criterion. 

Gene Set Enrichment Analysis (GSEA) 
In the test dataset GSE17536, 177 samples with 

CRC were grouped into low and high groups, 
according to the median value of the expression levels 
of genes. To explore mechanisms of hub genes in 
CRC, GSEA [31] was performed and mapped into 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment database. c2.cp.kegg.v5.2.sym 
bols.gmt was selected in this study, which was used 
as reference gene sets. FDR < 0.05 was chosen as the 
cut-off criteria. 

Collection of clinical tissue samples 
30 paired CRC tissues and adjacent tissues were 

collected from the Department of General Surgery, 
Zhongnan Hospital of Wuhan University (Wuhan, 
China). The study was approved by the ethics 
committee of Zhongnan Hospital of Wuhan 
University, in accordance with the Declaration of 
Helsinki. Written informed consent was obtained 
from the enrolled patients. The samples were directly 
dissected and subjected to RNA extraction. 

Quantitative Real-Time PCR (qRT-PCR) 
Total RNA was extracted from 30 paired tissues 

with TRIzol reagent (Invitrogen, USA). Total RNA (1 
μg) was used to synthesize first-strand cDNA using a 
synthesis kit (Thermo Fisher Scientific, USA). The 
experiments were performed by using a Quant-
StudioTM 6 Flex Real-Time PCR instrument (ABI, 
USA) with SYBR® Premix Ex TaqTM II Mix (Takara, 
Japan). GAPDH was taken as the internal control. The 
relative mRNA expression levels were calculated 
using the 2−ΔΔCt method [32]. The gene specific 
primers were as follows: MYL9 (Forward 5’-GGATGT 
GATTCGCAACGCCTTTG-3’ and Reverse 5’-CGGTA 
CATCTCGTCCACTTCCT-3’); CNN1 (Forward 5’-CC 
AACGACCTGTTTGAGAACACC-3’ and Reverse 
5’-ATTTCCGCTCCTGCTTCTCTGC-3’); GAPDH 
(Forward 5’-AGAAGGCTGGGGCTCATTTG-3’ and 
Reverse 5’-GCAGGAGGCATTGCTGATGAT-3’). 

Results 
Data Preprocessing 

First, we performed an overview diagram of 
quality assessment of total 182 CRC samples (Fig. S1). 
It is recognized that the absolute value of GAPDH 
3’/5’ should not be greater than 1 [20]. Fig. S1c 
showed that GSM1012445 was unqualified. Further-
more, GSM1012445 was chosen for data fitting 
analysis. Weights plot, residuals plot, relative log 
expression (RLE) boxplot and normalized unscaled 
standard errors (NUSE) boxplot were shown (Fig. S2, 
S3 and Fig. 1). NUSE is more sensitive than RLE, it is 
suggested that the samples were unqualified when 
the NUSE deviated from 1. Therefore, our results 
showed that GSM1012286, GSM1012445, GSM10125 
29, GSM1012531, GSM1012533 and GSM1012651 (Fig. 
1a, c, d) were unqualified. Moreover, another three 
samples (GSM1012525, GSM1012326 and GSM10126 
04) were also removed by performing sample 
clustering (Fig. S4). To sum up, a total of nine samples 
should be removed from subsequent analyses in 
GES41258. 

Weighted Co-expression Network 
Construction and Key Modules Identification 

A total of 173 qualified CRC samples with 
clinical data were included. Using the R package, 
“WGCNA”, genes which showed similar expression 
patterns were divided into different modules (Fig. 2). 
In our work, β = 6 (scale free R2 = 0.89) was screened 
as the soft-thresholding (Fig. 3). Then, we identified 
16 modules and the network heatmap was shown 
(Fig. 4a, b). Relevance between key module and CRC 
recurrence was tested using two methods. Our results 
showed that the ME of the midnightblue module 
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possessed the highest correlation with tumor 
recurrence ((P = 5×10-4, R2 = 0.26), Fig. 4c). Moreover, 
we also indicated that the MS of the midnightblue 
module was the highest among all modules (Fig. 4d), 
which was considered to have more connection with 
tumor recurrence. Therefore, we identified the 
midnightblue module to be a clinically significant 
module of interest in association with CRC recurrence 
in the training set. 

Hub gene identification 
In our study, 15 genes were identified to be hub 

genes, which had high connectivity in the 
midnightblue module (Table 1). In addition, all genes 

in the midnightblue module were uploaded to the 
STRING database (Fig. S5). According to the PPI 
network, four hub genes were considered as hub 
nodes (MYL9, MYLK, CNN1 and DES) as well, which 
were also DEGs in GSE41258 (Table 1, Fig. 5a, b). 
Therefore, MYL9, MYLK, CNN1 and DES were 
candidate hub genes. Furthermore, all genes in the 
midnightblue module were enriched for GO analysis. 
Our results showed top 20 GO terms and indicated 
that hub genes were significantly enriched in “muscle 
contraction”, “muscle system process”, “contractile 
fiber part”, “cytoskeleton” and “cytoskeletal protein 
binding” (P < 0.05, Fig. 5c). 

 

 
Figure 1. The normalized unscaled standard errors (NUSE) of 182 CRC samples in GSE41258. CRC, colorectal cancer. 
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Figure 2. Sample dendrogram and the heatmap of trait indicators. The clustering was based on the expression data of GSE41258. The top 5,000 genes with the highest SD values 
were used for the analysis by WGCNA. The color intensity was proportional to tumor stage, metastasis and recurrence. WGCNA, weighted gene co-expression network 
analysis. 

 
Figure 3. Determination of the soft‐thresholding power in the WGCNA. a Analysis of the scale-free fit index for various soft-thresholding powers (β). b Analysis of the mean 
connectivity for various soft-thresholding powers. c Histogram of connectivity distribution when β = 6. d Checking the scale free topology when β = 6. WGCNA, weighted gene 
co-expression network analysis. 
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Figure 4. Identification of modules associated with the clinical traits of CRC. a Clustering dendrogram of genes based on a dissimilarity measure (1-TOM). b Topological overlap 
matrix plot. Genes in the rows and columns are sorted by the clustering tree. Different colors of horizontal axis and vertical axis represent different modules. The brightness of 
yellow in the middle represents the degree of connectivity of different modules. c Heatmap of the correlation between module eigengenes and clinical traits of CRC. d 
Distribution of average gene significance and errors in the modules associated with recurrence of CRC. CRC, colorectal cancer; TOM, topological overlap matrix. 

 

Table 1. Hub genes in the midnightblue module related with CRC 
recurrence 

Gene 
symbol 

Probe cor.geneModule
Membership 

Hub gene in 
PPI network 

DEG analysis 
|logFC| FDR 

MYL9 201058_s_at 0.943041082 Yes 1.617677 1.03E-14 
MYLK 202555_s_at 0.936476159 Yes 1.794758 7.82E-19 
CNN1 203951_at 0.906218239 Yes 2.713818 1.34E-19 
DES 202222_s_at 0.841739696 Yes 2.55989 7.76E-18 
HSPB8 221667_s_at 0.913958361 No 2.087421 3.09E-27 
SPARCL1 200795_at 0.900690649 No 1.531813 3.86E-21 
KCNMB1 209948_at 0.890620367 No 1.567299 7.39E-26 
KANK2 218418_s_at 0.880372051 No 1.084421 2E-20 
AOC3 204894_s_at 0.880033125 No 1.91461 3.38E-27 
CSRP1 200621_at 0.877492479 No 1.134281 1.7E-20 
PPP1R12B 201957_at 0.872867041 No 1.795588 1.33E-33 
PLN 204940_at 0.871769799 No 2.168066 4.12E-24 
SYNM 212730_at 0.858816617 No 2.828553 1.48E-26 
PDLIM3 209621_s_at 0.839725447 No 1.494531 3.86E-14 
FERMT2 214212_x_at 0.808484526 No 0.804553 9.87E-12 

Abbreviations: CRC, colorectal cancer; PPI, protein–protein interaction; DEG, 
differentially expressed gene; FC, fold change; FDR, false discovery rate. 

 

Validation of Hub Genes 
The four candidate hub genes (MYL9, MYLK, 

CNN1 and DES) were chosen for validation. 
GSE17536 was used as a test dataset for overall 
survival analyses. Our results discovered that patients 
who had higher expression of MYL9 and CNN1 
showed a significantly shorter overall survival time 
(MYL9 P=0.014; CNN1 P=0.02, Fig. 6a, c). More 
convincingly, GEPIA also indicated a decreased 
overall and disease-free survival rates in CRC patients 
with highly expressed (n=135) MYL9 and CNN1 
(MYL9 overall: P=0.0071, disease-free: P=0.021; CNN1 
overall: P=0.0089, disease-free: P=0.018, Fig. 6e-l). 
Moreover, GEPIA showed that mRNA expression 
levels of MYL9 and CNN1 in CRC tissues were both 
significantly lower than that in normal colon samples 
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(P<0.05, Fig. 7a, b), which were consistent with results 
of DEGs analysis in GSE41258 dataset. In addition, 
IHC demonstrated that the protein expression levels 
of MYL9 and CNN1 were also downregulated in CRC 
tissues (Fig. 7c, d). 

Gene Set Enrichment Analysis 
To obtain further insight into the mechanisms of 

MYL9 and CNN1 in CRC, GSEA was performed to 
search KEGG pathways enriched in MYL9 and CNN1 
highly expressed samples, respectively. Under the 
cut-off criteria FDR < 0.01, six common and 

representative functional gene sets were shown (Fig. 
8), such as “pathways in cancer”, “calcium signaling 
pathway” and “focal adhesion”. 

qRT-PCR analysis 
We further performed qRT-PCR to validate the 

mRNA expression of MYL9 and CNN1 in 30 paired 
fresh CRC tissues and adjacent tissues. Our 
experimental results showed that MYL9 and CNN1 
were highly expressed in adjacent tissues compared 
with CRC tissues (Fig. 9), which were consistent with 
results by microarray data. 

 
 
 

 
Figure 5. Identification of hub genes and GO analysis. a Protein–protein interaction network of the hub nodes. Nodes represent genes, and node size is correlated with 
connectivity of the gene by degree. b Volcano plot visualizing DEGs in GSE41258. The red dots represent all the up-regulated genes, the green dots represent all the 
down-regulated genes. c GO functional annotation genes in the midnightblue module. The x-axis represents the -log(P-value) of each term and the y-axis represents the GO 
terms. The size of the nodes is proportional to the number of genes. The red, green and blue color of the nodes represents biological process (BP), cellular component (CC) and 
molecular function (MF), respectively. GO, gene ontology; DEGs, differentially expressed genes. 
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Figure 6. Survival analysis of hub genes. (a-d) Survival analysis of the association between MYL9, MYLK, CNN1 and DES expression and overall survival rate in CRC patients 
(based on the test set of GSE17536). (e-h) Kaplan–Meier survival curves obtained from the GEPIA database indicated that CRC patients with higher expression of MYL9 and 
CNN1 had a shorter overall survival time. (i-l) Kaplan–Meier survival curves obtained from the GEPIA database indicated that CRC patients with higher expression of MYL9 and 
CNN1 had a shorter disease-free survival time. CRC, colorectal cancer. 

 

Discussion 
In recent years, a systems biology approach, 

namely, WGCNA, has been widely used to identify 
potential and novel biomarkers in different kinds of 
tumors, such as adrenocortical cancer, clear cell renal 
cell cancer, oral squamous cell cancer and CRC [33-35, 
13, 12]. By performing WGCNA, Gao et al. reported 
distinct gene modules existing only in CRC liver 
metastatic tissues, which were not found in 
non-metastatic CRC samples [36]. In addition, Liu et 
al. identified a novel prognostic maker, CENPA, 
which was associated with favorable survival 
outcome in CRC [14]. As far as we know, numerous 
publications using WGCNA paid more attention to 
biomarkers for tumor stage of CRC. Although the 
TNM staging system was used to predict the 
recurrence of tumors [37], which was usually thought 
to be positively correlated with recurrence rate, 

however, it was contentious in a proportion of 
patients with CRC [38]. Therefore, it is of great 
necessary to identify potential biomarkers which 
could not only predict the recurrence rate of CRC 
patients and make up for the deficiency of TNM 
staging system, but also have opportunities to identify 
high-risk patients at an earlier stage. 

Until now, few studies have investigated 
potential biomarkers for CRC recurrence by 
performing WGCNA. In this work, WGCNA was 
applied in analysis of mRNA expression dataset 
GSE41258 in order to identify hub modules and genes 
associated with clinical features, such as tumor 
recurrence, which might be expected to be used as 
recurrence-free indicators in the future. Then, an 
independent validation dataset, GSE17536, was used 
to confirm our findings. Based on the clinical features, 
such as tumor stage, tumor metastasis and tumor 
recurrence, we finally chosen the tumor recurrence of 
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CRC patients which was of interest to screen hub 
genes. The midnightblue module was identified, in 
which 15 genes were screened as hub genes; 
furthermore, four hub genes were also identified as 
hub nodes that showed a significant correlation with 
CRC recurrence. Among the four hub genes, MYL9 
and CNN1 were found to be significantly correlated 
to overall survival as well as disease-free survival 
time of CRC patients. To investigate potential 
function and mechanisms related to hub genes, GO 
and GSEA analyses were performed. As a result, we 
found that MYL9 and CNN1 may participate in “
pathways in cancer”, “calcium signaling pathway” 
and “focal adhesion”. 

Myosin light chain 9 (MYL9), a protein encoding 
gene, is able to module the ATPase activity of myosin 
heads and regulate muscle contraction [39]. It is well 
known that the phosphorylation of MYL9 plays a 
crucial role during the process of cell migration on 
solid substrates [40]. Studies have detected the 
expression of MYL9 in various tumors, revealing that 

it was upregulated in breast cancer as well as liver 
cancer, while downregulated in prostate cancer and 
bladder cancer [41-44], however, it is controversial in 
CRC. Yan et al. reported that MYL9 was 
downregulated in CRC and lower expression level of 
MYL9 resulted in a decreased survival rate in CRC 
patients [45]. Zhao et al. found that MYL9 was 
upregulated in the patients with early-onset CRC [46]. 
In our study, we confirmed that MYL9 was 
downregulated in CRC samples and patients with low 
expression level of MYL9 had an increased survival 
time. Calponin 1 (CNN1) is one of the modulators of 
actomyosin contraction, which is also known to be 
involved in cancer development [47, 48]. For instance, 
it has been reported that CNN1 expression could 
suppress ovarian cancer development [49]. As for 
CRC, CNN1 was demonstrated to be expressed at a 
higher expression level in normal colon tissue 
compared to CRC samples [50], which was consistent 
with our results. 

 

 
Figure 7. The expression levels of MYL9 and CNN1 in CRC. (a, b) GEPIA database showed lower mRNA expression levels of MYL9 and CNN1 in CRC tissues compared with 
normal colon tissues. (c, d) IHC analysis based on The Human Protein Atlas database indicated that the protein expression levels of MYL9 and CNN1 were lower in CRC tissues 
compared with normal colon tissues. CRC, colorectal cancer. IHC, immunohistochemistry. 
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Figure 8. Gene set enrichment analysis. Six common and representative functional gene sets enriched in CRC samples with both highly expressed MYL9 and highly expressed 
CNN1 were listed. CRC, colorectal cancer. 

 

 
Figure 9. Relative expression levels of the hub genes validated by qRT-PCR analysis 
in 30 paired CRC and adjacent tissues. a The mRNA expression levels of MYL9 were 
down-regulated in CRC tissues. b The mRNA expression levels of CNN1 were 
down-regulated in CRC tissues. CRC, colorectal cancer. 

 
Generally speaking, almost 50% patients may 

suffer from tumor recurrence within the first year 
after initial resection, which may be closely correlated 
to the prognosis. To our knowledge, this is the first 
study to identify two potential biomarkers, MYL9 and 
CNN1, which were associated with CRC recurrence 
by using the WGCNA algorithm. Interestingly, we 
found that MYL9 and CNN1 were dramatically 
decreased in CRC samples compared with normal 
samples in both GSE41258 and GEPIA database, 

however, our survival analyses showed that higher 
expression of MYL9 and CNN1 correlated with 
poorer prognosis of CRC. We speculated that MYL9 
and CNN1 may act as tumor suppressor genes in 
human bodies, however, with the development and 
progression of CRC, the two hub genes may be 
captured by tumor cells and turned to be harmful 
genes, therefore protecting tumor cells becomes the 
major role of MYL9 and CNN1. From another 
perspective, it is known that the stromal 
microenvironment in tumor tissue is different from 
the stroma of the corresponding normal tissue in 
many human cancers. Functionally, myosins are 
implicated in cell migration and adhesion, cells may 
exert force propelling the cell forward by contraction 
of actin cytoskeleton by activating of myosin II which 
is regulated by the phosphorylation of MYL9. As 
such, CNN1 is thought to play an essential role in 
organizing stable actin stress fibers. Additionally, 
GSEA found that the two hub genes were enriched in 
pathways in cancer. We therefore hypothesized that 
the phosphorylation of MYL9 or CNN1 is the key of 
cell migration process on solid substrates in tumor 
microenvironment but not in the normal stroma 
microenvironment, leading to the aggressive 
progression of CRC. Additionally, we also consider 
that the expressions of MYL9 and CNN1 are 
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downregulated in CRC because of the general 
dedifferentiation of cancer cells, but those cancer cells 
with higher expression of MYL9 and CNN1 may be 
better suited for migration and metastasis compared 
with lower expressed ones. In this context, it is not 
surprising to observe that the two hub genes were 
decreased in CRC but negatively correlated to 
survival. 

In conclusion, we identified two hub genes, 
MYL9 and CNN1, which were significantly related to 
the recurrence of CRC and may contribute to the 
improvement of recurrence-free survival time of CRC 
patients. 
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