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Abstract

Anticipating the increase in water demand in an urban area requires us to properly under-

stand daily human movement driven by population size, land use, and amenity types among

others. Mobility data from phones can capture human movement, but not only is this hard to

obtain, but it also does not tell where the population is going. Previous studies have shown

that amenity types can be used to predict people’s movement patterns; thus, we propose

using crowd-sourced amenity data and other open data sources as reasonable proxies for

human mobility. Here we present a framework for predicting water consumption in areas

with established service water connections and generalize it to underserved areas. Our

work used features such as geography, population, and domestic consumption ratio and

compared the prediction performance of various machine learning algorithms. We used 44

months of monthly water consumption data from January 2018 to July 2021, aggregated

across 1790 district metering areas (DMAs) in the east service zone of Metro Manila.

Results show that amenity counts reduce the mean absolute error (MAE) of predictions

by 1,440 m3/month or as much as 5.73% compared to just using population and topology

features. Predicted consumption during the pandemic also improved by as much as

1,447 m3/month or nearly 16% compared to just using population and topology features. We

find that Gradient Boosting Trees are the best models to handle the data and feature set

used in this work. Finally, the developed model is robust to disruptions in human mobility,

such as lockdowns, indicating that amenities are sufficient to predict water consumption.

Introduction

Understanding and having an accurate prediction of water consumption dynamics are vital to

form sustainable water systems management and develop efficient decision support systems

and policies, which benefit both government and water concessionaires. Predicting water con-

sumption helps daily operations, short-term and long-term planning, system maintenance,

and business expansion. Accurate predictions of water consumption significantly reduce

energy costs in pumping water and benefit the consumers with adequate volumes of water
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supply at reasonable pressures. Failure to anticipate demand increases may result in supply

shortages, such as the crisis that happened in 2019 in Metro Manila, Philippines [1].

Researches in predicting water consumption are often city- and time-specific where predic-

tions are demonstrated on selected locations or district metering areas (DMA) of selected cities

for a specific period [2–9]. Most works conducted short-term forecasts (hourly, daily, and

weekly) to optimize pumping schedules and resolve disputes by detecting anomalous con-

sumption. These approaches are feasible in areas with real-time water consumption monitor-

ing, typically through automatic meter reading (AMR) devices [7] but may not be applicable

in areas lacking such sensors.

Medium-term predictions (1–10yrs) are usually applied to account for the change in the

number of consumers, while long-term forecasts (20–30yrs) are used to plan major changes in

the water system [10]. Although these works attempt to provide solutions to water problems of

areas with established water service connections, to our knowledge, there are no works on pre-

dicting water consumption for relatively new or underserved areas, which is of national inter-

est in developing countries. Understanding the dynamism of water consumption per locality

can be used as a guide for business expansion by the water concessionaires and as a policy

guide for government regulation.

As a case in point, in the Philippines, only 54.1% of the population had water connections

in 2020, with a high disparity in access between urban (73.8%) and rural areas (33.0%) [11]. In

Metro Manila, about 92.6% of households have direct piped access to clean water. This dis-

crepancy results from a similar policy applied to low-demand rural areas and high-demand

urban regions. The Philippine government regulates the pricing of utilities with a profit cap of

*11% per consumer, driving water utility companies to expand their coverage in high popula-

tion density areas where they hope to reach the maximum earnings for the minimum infra-

structure cost. However, demand is not merely a function of population density but also of

economic activities within the area, the extent of which is empirically unresolved. Moreover,

for a new or relatively new area to be serviced, the government must be sufficiently proactive

and have a tool to work with water concessionaires to ensure that water is available in every

home.

The Manila Water Company, Inc. (MWCI), a water concessionaire that serves the eastern

side of the National Capital Region, estimates the future water consumption of a relatively new

area as a product of the projected population of the area and the typical consumption in liters

per capita per day (lpcd). In their case, the lack of lpcd consumption for the new area to be ser-

viced is resolved by interpolating it with the consumption of areas perceived to have similar

profiles. This idea holds but the challenge is understanding how the profile similarities lead to

consumption behavior. The problem becomes more complex and dynamic in the presence of

pandemics when business regulations, and economic activities in general, are linked to the

extent to which a locality is compromised.

Predicting water consumption has been achieved using statistical and machine learning

models [4, 10, 12–15], including deep learning algorithms [6, 16, 17]. Studies have demon-

strated that machine learning models provide more accurate water consumption prediction

than the traditional statistical approaches [4, 18]. Implementations of deep learning algorithms

have also shown good performances in forecasting water demand [5, 16, 19] and forecasting

dam water levels [20]. Moreover, previous works show that land use and amenities drastically

impact the movement of people in a city and hence their daily consumption and activities [21–

23]. Still, amenities have not been used explicitly for water consumption prediction.

In this work, we envision the use of Support Vector Regression (SVR) and Random Forest

(RF) as these have been previously shown to be useful in forecasting water demand [5, 10, 24]

from the perspective of time series forecasting. We also include another tree-based ensemble
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model called Gradient Boosting Machine (GBM) with its implementations (most notably

LightGBM) having shown superiority in the M5 competition in 2020 in terms of accuracy and

uncertainty of forecasts [25]. Work applying GBMs to forecast dam water levels has also

shown comparable uncertainty levels with deep learning algorithms [20].

Several parameters commonly used to predict water consumption include climate or

weather data, socio-economic characteristics of consumers, urban design, and demographics

[9, 26, 27]. City population is also a key driver of water demand [28], indicating the need to

include dynamic factors that affect human consumption patterns, such as human mobility.

While attempts to include GPS traces of human mobility have demonstrated an improvement

in short-term water demand predictions [10], the availability of such data and preprocessing

remains a challenge.

As such, an alternative to raw GPS traces as a proxy for human mobility would benefit

water demand prediction. City growth has been linked to the emergence of urban land-use

patterns [29], and consequently, various amenities. Our recent work shows that human mobil-

ity may depend on the amenities present in an area [23]. With the increasing rate of urban

development, it is critical to include amenities and land use patterns that may affect water con-

sumption. Studies that account for the presence of gardens and swimming pools and the num-

ber of apartments and bathrooms have demonstrated the use of amenities as predictors of

consumption.

This work provides a framework using machine learning models to predict future water

consumption of unknown areas as a function of human mobility. Specifically, we include the

number of amenities (e.g., leisure places, offices, schools) and the ratio of domestic consump-

tion as predictors. These quantities indirectly capture human mobility and serve as reasonable

proxies. While GPS data best captures actual human movement, access to this data is difficult

and does not tell where the population is going; thus, we use crowd-sourced amenity data

from OpenStreetMap. We demonstrate the robustness of our model in its ability to predict

water consumption during unexpected circumstances that affect human mobility, such as in

the case of a pandemic.

Methods

Study area

Our study area consists of localities served by the Manila Water Company, Inc. (MWCI),

which are the eastern part of Metro Manila and parts of Rizal province (Fig 1). The study area

is divided into 1790 District Metering Areas (DMAs). For each DMA, historical water con-

sumption was measured monthly and covered from January 2018 until July 2021. These areas

serve an estimated resident population of around 7.5 million (based on 30 × 30 m2 population

data [30] and the DMA shapefiles) and covers 371 km2.

Data

This section details the different datasets used as features in this work. Table 1 shows all fea-

tures with descriptions. The following subsections will discuss the details of these datasets.

Links to raw and preprocessed data files are provided S1 Appendix.

Water consumption. Water consumption data were obtained from meter readings of

MWCI customers, which include both residential and commercial accounts. Meters were read

manually at a monthly frequency due to the lack of AMR devices. These readings are then

aggregated at the DMA level and provided by MWCI. Since MWCI also tags their customer

accounts as business or residential, they also provided us with the domestic and non-domestic

consumption ratio aggregated at the DMA level. We split our data into two sets: one spanning
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January 2018–11 March 2020 (pre-COVID), and the other spanning 12 March 2020–July 2021

(COVID). This split in data marks the period where the localities of Metro Manila and Rizal

have been under some form of lockdown (with varying degrees of restriction) for the duration

of the COVID dataset. We processed the water consumption data to exclude months with neg-

ative and zero consumption values. Negative values are typically the result of incorrect meter

readings. Each month, agents manually record meter readings for billing purposes; errors, if

any, are automatically discovered and corrected in the next month’s billing. Distributions

of retained monthly water consumption range from 15 to 806662 m3 with a median of

14765.5 m3, and is positively skewed (Fig 2). Filtering leaves a total of 76900 samples of a

DMAs water consumption for a given month, with 46480 (60.4%) of the data under the pre-

COVID period.

Topology. We used Digital Elevation Model raster maps from the NASA Shuttle Radar

Topographic Mission (SRTM) [31] that has a 30 × 30 m2 spatial resolution. We then matched

each pixel of the raster map with the DMA shapes, and extracted the mean, minimum, and

maximum elevations within the DMA as features.

Amenity data. We extracted OpenStreetMap (OSM) [32] data for amenity class counts in

each of the different DMAs. Amenities are aggregated by groups (for amenity groups, see

https://wiki.openstreetmap.org/wiki/Map_features) such as Sustenance, Accommodation, and

Shop. An amenity may be classified under multiple groups. The full OSM history was used to

generate monthly amenity counts over time. For example, to create an amenity count snapshot

for January 2018, we filtered out all OSM elements added after January 31, 2018.

Fig 1. Map of the study area. Manila Water Company, Inc. services the eastern part of Metro Manila and portions of

Rizal province. The DMAs cover 371 km2 and cater to a resident population of around 7.5 million.

https://doi.org/10.1371/journal.pone.0265771.g001
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Population data. While census data would have been the ideal basis for population data,

we faced the limitation that DMAs do not coincide with the resolution of the census (baran-

gay-level, the smallest administrative division). As a workaround, we merged high-resolution

population data and the DMA shapefiles to calculate the population inside each DMA (Fig 3).

Population data was derived from Facebook’s Data for Good High-Resolution Settlement

Layer (HRSL), which has a spatial resolution of 30 × 30 m2 [30]. We used the October 10, 2018

dataset for the population counts.

Quarantine levels. At the local onset of the COVID-19 pandemic in March 2020, the Phil-

ippines enforced a lockdown quarantine protocol called the Enhanced Community Quaran-

tine (ECQ) to mitigate the spread of the virus. With ECQ in place, only essential

establishments were allowed to open while only essential workers [33] were permitted to

report to their workplaces. The national government subsequently implemented different

types of quarantine protocols with varying restrictions depending on the severity of the num-

ber of cases in the country. The quarantine protocols used in this work include ECQ, Modified

Enhanced Community Quarantine (MECQ), General Community Quarantine with height-

ened restrictions, and General Community Quarantine (GCQ), arranged according to

decreasing restrictions of human mobility [33]. Collated data on the dates and durations of

the enforced quarantine levels in our study area across various news releases are provided in

S1 Appendix.

Table 1. Description of all features used in this work.

Feature set Feature Description

Base Elevation (m) Elevation above sea level

Population (2018) Population aggregated within the DMA

Area (m2) Land area of DMA

Population Density (person/m2) Population divided by land area of DMA

Year Year of data sample

Month Month of data sample

Amenity counts Accommodation Buildings used as homes/hotels

Civic/Amenity Government offices and public infrastructure. It also includes schools and universities

Commercial Discount store, charity Used in any commercial activity, office buildings

DIY Do-it-yourself hardware, gardening stores, furniture, interior

Education Schools buildings

Entertainment, Arts & Culture Casinos, theaters, nightclubs

Financial Banks, ATMs, Money changers

Health Healthcare facilities, pharmacies, veterinary

Landuse: Developed Land where buildings may be placed

Landuse: Rural and agricultural land Land classified as rural or agricultural

Landuse: Other Other types of land use

Leisure Pools, resorts, spa, gyms, parks, sports stadia

Religious Places of worship

Sustenance Dining establishments, food stalls, pubs, bars

Shops Shopping malls, clothing, shoes, accessories

Transport Public transport terminals and stations, fuel stations, parking

Others Miscellaneous amenity classes

Domestic % Domestic (0–100%) The ratio of domestic to non-domestic consumption

Quarantine [x] CQ days Number of days in the month for the quarantine classification

https://doi.org/10.1371/journal.pone.0265771.t001
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Models

While deep learning methods have gained popularity in water consumption prediction appli-

cations, simple machine learning models avoid the complexities of deep learning models whilst

providing acceptable performance.

Tree-based ensemble methods. These are non-parametric classes of supervised learning

algorithms that employ a tree-like structure. Ensemble methods use large collections of trees to

each predict a value or classification; the model then averages the results of each tree. While

individual trees excel at learning patterns in data, they tend to create complex structures that

do not generalize data well. Using an ensemble of trees provides good results while avoiding

overfitting [34].

Random Forests (RFs) [35] use an ensemble of decision tree predictors hm(xi), m = 1, 2, . . ., M
trained on subsets of samples (bagging) of the data. The RF algorithm predicts a value

ŷi ¼ FðxiÞ ¼
1

M

XM

m¼1

hmðxiÞ; ð1Þ

A single decision tree [36] recursively partitions the feature space such that the samples (xi, yi)
with similar values are grouped together. The algorithm for building a decision tree is as fol-

lows: let the data at node k be represented as Qk with Nk samples. For each candidate feature xj,

Fig 2. Monthly consumption of the different DMAs. The monthly consumption distributions of the 1790 DMAs

range from 15 to 806662 m3 with a median of 14765.5 m3 (gray dashed line). The overall distribution has a positive

skew of 7.67 and a kurtosis of 111.8. The inset shows the distribution on a non-logarithmic x-axis.

https://doi.org/10.1371/journal.pone.0265771.g002
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the data is split according to the threshold tk into Qleft
k and Qright

k subsets

Qleft
k ¼ fðxi; yiÞjxj � tkg; ð2Þ

Qright
k ¼ QknQ

left
k : ð3Þ

The quality of the split of the data is determined by the impurity metric HðQkÞ ¼
1

Nk

P
y2Qk

ðy � �ykÞ
2
, calculated over the set Qk

GðQkÞ ¼
Nleft

k

Nk
HðQleft

k Þ þ
Nright

k

Nk
HðQright

k Þ: ð4Þ

The actual feature xj and split threshold tk are the values that minimize the impurity G(Qk). The

above process is repeated until the maximum depth is reached or Nk reaches the minimum

number of samples. Random Forests train multiple trees in this fashion trained a random subset

of the training set. Each split may be determined by using all input feature Qk or a random sub-

set of size max features. The final prediction of RF averages each tree’s predictions. By combin-

ing diverse trees, RF prevents overfitting, and bagging stabilizes model predictions through

reduced variance. We used the RandomForestRegressor [37] implementation of scikit-

learn with four tunable parameters: max depth, max features, n estimators (the number of

trees), and min samples leaf.
Gradient Boosting Trees (GBTs) [38] employ the use of multiple decision trees in an

ensemble, similar to RFs. Unlike RFs that grow trees in parallel, GBTs use weakly learning

Fig 3. Population data aggregated at the DMA level. The DMAs cover 371 km2 and cater to a resident population of

around 7.5 million.

https://doi.org/10.1371/journal.pone.0265771.g003
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decision trees, which are trained in sequence. GBTs are initialized to estimate the target vari-

able using the average value For M trees as estimators, the Gradient Boosting algorithm then

iteratively constructs the model from M decision trees as follows:

ŷi ¼ FMðxiÞ ¼
XM

m¼1

ahmðxiÞ; ð5Þ

where M is the number of trees, α is the learning rate, and hm(xi) are the succeeding decision

trees. Each tree hm(xi) is fitted to minimize the loss function L which is usually the mean

squared error

L ¼
1

nsamples
ðy � Fm� 1ðxÞÞ

2
; ð6Þ

which gives us

hmðxiÞ ¼ �
@L
@Fm� 1

¼
2

nsamples
ðy � Fm� 1ðxiÞÞ: ð7Þ

Combining weak learning trees in this fashion achieves improved accuracy and reduced vari-

ance provided appropriate fine-tuning of model parameters. Algorithms for GBTs differ in

finding the best split points to learn the trees. Popular implementations of GBTs use pre-sorted

bins (scikit-learn’s GradientBoostingRegressor [37], XGBoost [39]) or histogram-

based estimators (LightGBM [40], scikit-learn’s HistGradientBoostingRegressor).

We used GradientBoostingRegressor and LightGBM for this work and tuned our

models for the following hyperparameters: learning rate (which controls the gradient update

steps), max depth, and n estimators.
Support Vector Regression. Support Vector Machines (SVMs) [41] are supervised learn-

ing models for classification and regression. Support Vector Regression (SVR) [42] refers to

SVMs used for regression problems. SVMs work by finding the hyperplane defined by w that

maximally separates points in high-dimensional feature space. A generalized SVR takes the

form [43]

ŷi ¼ FðxiÞ ¼ hw;FðxiÞi � b; ð8Þ

where F denotes a non-linear transform. In SVR, the fitted hyperplane w minimizes the loss

function,

1

2
jjwjj2 þ C

Xnsamples

i¼1

max ð0; jyi � hw;FðxiÞi � bj � �Þ; ð9Þ

where C is a constant and � is the tolerance margin. The hyperplane is then expressed as

w ¼
Xnsamples

i¼1

ðai � a
�
i ÞFðxiÞ: ð10Þ

This allows us to rewrite the SVR equation as

ŷi ¼ FðxiÞ ¼
Xnsamples

j¼1

ðaj � a
�
j ÞhFðxjÞ;FðxiÞi � b ð11Þ

¼
Xnsamples

j¼1

ðaj � a
�
j ÞKðxj; xiÞ � b; ð12Þ
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where the function K(xj, xi) is known as the kernel function. Non-linear kernels allow SVM to

handle non-linear problems SVR can use a non-linear kernel to transform the data into a

higher dimensional feature space; a linear hyperplane can then separate the data. We use the

SVR implementation of scikit-learn, which has two tunable model parameters: the margin of

tolerance � and the choice of the kernel transformation, which can be one of linear (hxi, xji),

polynomial ((hxi, xji + r)d), Gaussian radial basis (exp(−γ||xi − xj||
2)), and sigmoidal functions

(tanh(κhxi, xji + c)).

Machine learning workflow

This section details the machine learning workflow used in this work. Each of the models in

the Models section goes through three steps in our workflow. First, the input data undergoes

Feature Scaling and Encoding as a preprocessing step. The data and model then undergo Model
Selection and Tuning, which trains the model using the data while finding the optimal set of

hyperparameters to produce the best results. To qualitatively compare models, we need Scoring
metrics to give us an objective comparison of the model performance.

Feature scaling and encoding. Machine learning estimators commonly require data to

have similar scales. Because we use features with different scales and ranges, we employed fea-

ture scaling on the different features in our dataset. This work uses three scaling transforma-

tions for each feature point xi to x0i: a log-transform and min-max scaler, given by

x0i ¼ log xi; ð13Þ

x0i ¼
xi � minðxÞ

maxðxÞ � minðxÞ
ð14Þ

respectively, and One-hot encoding (OHE) [44] for categorical data. For a random categorical

value s with n possible distinct values s1, s2, . . ., sn, the One-hot encoding of a particular value

si is a vector v where every component vi6¼j = 0 and vi=j = 1.

Water consumption was log-transformed as we had previously removed all negative and

zero readings. Date features (year and month) were transformed using OHE, as their integer

representations’increasing/decreasing progression of does not necessarily correlate with their

impact on the model. All other input features were rescaled using min-max scalers.

Model selection and tuning. For the given data period, we used k-fold group cross-valida-

tion with k = 5 to fine-tune each model’s parameters. Cross-validation is a resampling method

used in prediction problems to evaluate the generalization performance of a model and estimate

the uncertainty of error statistics. In k-fold group cross-validation, the learning and training data

are divided into k sets of data (folds). One of the folds is then used as a testing set and the model

is trained on the remaining k − 1 folds. This is repeated for each of the k folds in the data. Data

points were grouped by DMA labels, and the folds represent groups of DMAs. A DMA cannot

be a part of more than one fold. We perform a grid search over possible combinations of tunable

hyperparameters of the data. Each set of hyperparameters is scored using the R2 metric (see the

Scoring section), and the hyperparameter set that obtains the best score defines the model.

Scoring. We evaluate the results using four prediction accuracy measures: mean absolute

error (MAE), mean absolute percentage error (MAPE), the coefficient of determination (R2),

and the Kling-Gupta Efficiency (KGE) [45]. Using the notation ŷi to denote the predicted

water consumption and yi as the actual consumption for each sample i, the measures are

defined as follows:

MAEðy; ŷÞ ¼
1

nsamples

Xnsamples

i¼1

jyi � ŷij; ð15Þ
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MAPEðy; ŷÞ ¼
1

nsamples

Xnsamples

i¼1

jyi � ŷij

maxð�; yiÞ
; ð16Þ

R2ðy; ŷÞ ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yÞ2

; ð17Þ

KGEðy; ŷÞ ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr � 1Þ
2
þ

sŷ

sy
� 1

 !2

þ
�̂y
�y � 1

� �2

v
u
u
t ð18Þ

where �y ¼ 1

n

Pn
i¼1

yi denotes the mean water consumption and σ is the standard deviation.

The MAE and MAPE both represent deviations of predictions from their actual values;

MAE and MAPE scores of zero indicate perfect predictions. Because of the positive skew of

the water consumption data, the MAE may be pulled up by larger errors for higher consump-

tion DMAs. MAPE being a relative error metric allows us to compare errors across the exten-

sive range of water consumption values. The R2 value expresses the goodness-of-fit of the

model, and ranges from (−1, 1], with R2 = 1 indicating a perfect fit and R2 = 0 indicating that

the model prediction is the mean (ŷi ¼ �y). The KGE is a metric commonly used in evaluating

hydrology models [46–48] that combines three statistical characteristics: Pearson’s correlation

r, variability bias, and mean bias. KGE values range from (−1, 1] with KGE = 1 indicating a

perfect fit. While no specific meaning is associated with KGE = 0, Knoben et al. [48] argues

that values of KGE > 1 �
ffiffiffi
2
p

indicate that the model prediction is better than the mean, even

if the KGE value is negative.

Using the chosen hyperparameters for each model, we employed another round of k-fold

group cross-validation to evaluate the model performance on our dataset. For each iteration of

cross validation, k − 1 folds was used to fit the model, and the remaining fold was used as a test

set and generated the four scoring metrics. This was done for all k = 5 folds, and we then aggre-

gated the results on each of the test data and reported the mean and standard deviation of the

scores.

Results

This section is divided into the three highlights of this work. First, we present an exploratory

data analyses on representative DMAs and examine the changes in consumption patterns due

to the COVID pandemic. We then present our model for predicting water consumption of

DMAs using machine learning. Lastly, we look at the robustness of our model in predicting

water consumption when population movement is reduced with the inclusion of pandemic

restrictions as features.

Analysis of changes to consumption patterns

We show the effects of community quarantines in three representative DMAs: commercial,

residential, and mixed residential (50%) and non-residential (50%). We calculate the actual

water consumption per month for every quarantine protocol using a linear model. Here we

used the pre-pandemic (January 2018–11 March 2020) and pandemic (12 March 2020–July

2021) monthly consumption data for eastern Metro Manila and Rizal.

Quarantine measures during a pandemic disrupt human mobility and affect the water con-

sumption patterns in residential, commercial, and industrial areas. The quarantine restricted

PLOS ONE Amenity counts significantly improve water consumption predictions
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movement and forced the majority of the population to stay at home. Consequently, patterns

of water consumption changed in almost all DMAs. Fig 4A and 4B show the historical water

consumption patterns of two representative DMAs: a commercial and a residential area,

respectively. We can see that after the government implemented strict Enhanced Community

Quarantine (ECQ) mid-March 2020, water consumption in the commercial area significantly

decreased in the succeeding months while the consumption in the residential and in a DMA

with mixed residential and non-residential areas both increased.

Roughly every two weeks, a government task force evaluates community quarantine proto-

cols and recommends to modifying or retaining quarantine levels. Emergencies that cause a

rapid surge of COVID cases may warrant an early update of quarantine protocols; stricter

community quarantines were imposed for a few days to a week depending on the severity of

infections in an area, such as the response to the delta variant surge. The very dynamic imposi-

tion of community quarantine levels resulted in possible combinations of two or more quaran-

tine types in one month. The coupled consumption of different quarantine types in a single

month poses a challenge in determining the actual water consumption attributed to a commu-

nity quarantine type.

To decompose the monthly water consumption into individual consumption rates attributed

to a type of community quarantine, we use a linear model to approximate the actual monthly

consumption as a weighted sum of consumptions of the quarantine types imposed in a month:

mi ¼
X

q

di;qnq; ð19Þ

di;q ¼ wq �mi ; ð20Þ

mi ¼
X

q

wq �minq ð21Þ

Here, mi is monthly consumption, di,q is monthly consumption rate for quarantine type q, nq is

the fraction of days in the month of a quarantine type, and wq is the consumption weight. The

Fig 4. Changes in water consumption due to quarantine restrictions. Sample DMAs for (A) commercial areas, (B) residential areas, and (C) mixed residential and

non-residential areas. Red dashed lines indicate Enhanced Community Quarantine (ECQ) was implemented in Metro Manila and Rizal.

https://doi.org/10.1371/journal.pone.0265771.g004
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wq coefficients are determined by fitting the COVID data to a linear regression model, and are

presented in Table 2. We also accounted for the differences in quarantine types imposed on

each DMA. A baseline of mean monthly consumption �mi six months prior to the COVID data

(Sept. 2019–Feb. 2020) was used to fit the data.

Using these coefficients, we decomposed months with k quarantine types into k monthly

consumption rates:

di;q ¼
wqmi
P

qwqnq
ð22Þ

The normalization of Eq 22 ensures that the contributions di,q of each quarantine type satisfies

Eq 19.

Fig 5 shows the relative changes in water consumption per quarantine type with respect to

the baseline consumption �mi , of the commercial and residential DMAs, respectively. While

the worst decrease in water consumption in the commercial DMA happened two months after

ECQ was imposed, its consumption stabilized to approximately 53% of its pre-pandemic con-

sumption on average for all the other levels of community quarantine. On the other hand,

while the consumption in the residential DMA had the highest increase of *1.3 times the

Table 2. Consumption weights associated with quarantine types.

weights

ECQ 0.849919

MECQ 0.819617

GCQ 0.808687

GCQr 0.829934

Normal 1.029549

https://doi.org/10.1371/journal.pone.0265771.t002

Fig 5. Relative consumption of representative DMAs. The left graph shows a sample commercial DMA, while the right shows a residential DMA. The commercial

DMA has lower consumption than its pre-COVID baseline, while the residential DMA peaks around 3 months after the ECQ then drops down to near pre-COVID

levels.

https://doi.org/10.1371/journal.pone.0265771.g005
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average pre-pandemic consumption two months after ECQ is declared, the consumption sta-

bilized at approximately 96% of the pre-pandemic consumption for all the other levels of com-

munity quarantine. The increase in residential water consumption at the beginning of

COVID-19 hints to people staying at home even on weekdays or more frequent washing and

sanitation, while the unexpected decrease in water consumption as the quarantine progressed

may hint to a few other behavioral changes while staying at home. Given these observed trends

in consumption, we deem that quarantine protocols may be useful predictors for water con-

sumption during a pandemic.

Predicting consumption of DMAs. A high percentage of the Philippine population still

lacks piped water connections to their homes. Since government regulation caps profits from

utilities, water utility companies have a strong incentive to expand their coverage to generate

more revenue. Water consumption predictions for a new DMA can help potential water utility

companies plan additional water lines to serve these areas while minimizing potential losses

due to mismatched supply and demand.

Our machine learning methodology uses publicly available datasets as predictors to demon-

strate an approach to predict average monthly consumption for a DMA. Because a new DMA

will likely lack historical data on water consumption, we excluded this as a feature on our mod-

els. Since the amenity counts vary much slower than the fluctuations in consumption over the

year, we removed the temporal aspect of the data and predicted the annualized average

monthly consumption of DMAs. Only the pre-COVID part of the dataset was used in this

analysis.

Table 3 shows the performance of our models in predicting DMA average consumption.

The base set only used population and topological features (elevation and DMA area) as fea-

tures (a complete list of features is shown in Table 1). We denote the use of amenity features as

A and percent domestic consumption as D. Using only the base set of features for predicting

DMA consumption yields high errors, with MAE *11,000 and the lowest R2 values. Using

amenity features alone yields similar MAE values across all models, but with worse MAPE

Table 3. Evaluation metrics for predicted consumption of DMAs.

statistic model base A base + A base + D base + (A+D)

MAE GradientBoosting 11,170 (1,117) 11,697 (882) 9,729 (818) 10,401 (519) 9,182 (678)

LGBM 10,913 (1,182) 11,846 (917) 9,994 (831) 10,210 (660) 9,232 (626)

Random Forest 10,957 (1,208) 11,544 (885) 9,688 (783) 10,376 (618) 9,278 (576)

SVR 11,142 (1,161) 11,807 (1,022) 10,300 (939) 10,923 (880) 9,932 (628)

MAPE GradientBoosting 76.79 (10.88) 104.21 (29.55) 71.06 (9.45) 70.89 (15.52) 62.90 (11.09)

LGBM 71.05 (5.75) 106.13 (30.39) 69.33 (8.02) 62.41 (4.77) 56.68 (3.78)

Random Forest 73.95 (8.46) 103.92 (29.30) 71.04 (8.52) 69.93 (11.10) 62.08 (8.20)

SVR 88.58 (23.43) 114.91 (37.70) 84.77 (24.24) 91.90 (32.63) 76.05 (17.77)

R2 GradientBoosting 0.48 0.35 0.56 0.54 0.61

LGBM 0.51 0.35 0.57 0.57 0.62

Random Forest 0.51 0.36 0.56 0.54 0.61

SVR 0.46 0.34 0.52 0.44 0.51

KGE GradientBoosting 0.25 (0.09) 0.44 (0.13) 0.48 (0.15) 0.30 (0.11) 0.48 (0.09)

LGBM 0.24 (0.11) 0.41 (0.10) 0.47 (0.12) 0.35 (0.08) 0.56 (0.11)

Random Forest 0.20 (0.10) 0.37 (0.11) 0.47 (0.09) 0.28 (0.07) 0.46 (0.07)

SVR 0.20 (0.12) 0.22 (0.09) 0.35 (0.14) 0.29 (0.09) 0.45 (0.13)

Reported scores are mean (stdev) values obtained from 5-fold group cross validation. Best models for each metric and feature set are highlighted in boldface.

https://doi.org/10.1371/journal.pone.0265771.t003
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(above 100%) and R2 values. However, using the base set with amenity features improved the

prediction of ensemble tree methods by as much as 1,441 m3 (12.9% drop compared to MAE

using the base set). The KGE metric further supports this observation, showing amenities

clearly outperform the base set, with the correlation, mean, and variance taken into account.

The best performing model is the GBT implementation of scikit-learn, which saw a 5.73%

reduction in MAPE compared to just using the base features. These sets of features can be

applied to the task of predicting potential new DMAs in urbanized areas (where amenity data

from OSM is potentially available). Additional data collection or use of other sources for ame-

nity type data can also extend this approach to completely new DMAs in rural areas.

We also explored using the ratio of domestic to non-domestic consumption as a feature.

This addition further improved the prediction accuracy of all models, with the GBT yielding

the best MAE score of 9,182 m3. The MAPE was also further reduced by up to 14.37% for the

LightGBM implementation of GBTs. All metrics point to the case of base + (A+D) as the best

prediction model. However, the ratio of domestic to non-domestic consumption comes from

MWCI’s classification of customer accounts, something that might not be available when pre-

dicting consumption of currently unserved or underserved areas.

Large errors in our results shown in Table 3 may be attributed to the positive skew and a

long tail of the consumption data. While the model was able to achieve R2 values of 0.61 for

log-transformed target variables, much of the errors come from the tail end of the data (Fig 6).

Fig 6. Correlation plot of predicted and actual values. Predicted vs. actual values obtained using the scikit-learn

implementation of Gradient Boosting Trees using all features. The top 5% of the most significant residual errors are

highlighted in orange.

https://doi.org/10.1371/journal.pone.0265771.g006
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Filtering out actual consumption values beyond the 95th percentile of the data, we calculate

improved MAE scores of 6,496 m3.

To gain more intuition on how the feature variables affect water consumption, we can look

at the SHapley Additive exPlanations (SHAP) [49] feature importance scores of each feature

(Fig 7). SHAP uses a game-theoretic approach to measure the contribution of each feature on

the outputs of any machine learning model. Of the base features, we found that area and popu-

lation are the most essential features in determining consumption. Because water consump-

tion is aggregated at the DMA level, it is expected that larger or more populated areas would

also have higher water consumption. The percentage of domestic consumption is also essential

and, if available, should be included as a feature for our models. Likewise, the minimum and

maximum elevations within a DMA may also influence water consumption; elevated areas are

usually the most affected when service interruptions occur.

More interestingly, feature importance scores can help us determine the amenity types that

contribute the most to predict water consumption accurately. The top three important amenity

classes are Leisure, Civic/Amenity, and Sustenance. Leisure includes amenities such as water

parks, swimming pools, parks, gardens, and sports stadia, all of which consume large amounts

of water as part of operations. Civic/Amenity includes public buildings, government offices,

transport infrastructure, fire stations, and educational institutions, which may be indicators of

dense urban activity, which correlates with water consumption. Finally, amenities related to

Fig 7. SHAP Feature importance for a scikit-learn Gradient Boosting Tree. Blue bars denote clear positive correlation, red for negative

correlation, and gray bars have no clear correlation. Land area and population are the top two features that determine model predictions.

Among amenities, Leisure, Civic/Amenity, and Sustenance are the top 3 predictive features.

https://doi.org/10.1371/journal.pone.0265771.g007
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Sustenance include restaurants, fast-food joints, and cafes. Apart from Leisure, these establish-

ments serve as robust attractors to human activity, making them good predictors of an area’s

water consumption. On the other hand, establishments with low SHAP values are more niche

to an area, with a couple of notable exceptions. Transport establishments have a strongly corre-

late with human movement, but these may not serve as good predictors for consumption as

these may capture the transient aspect of mobility. Accommodation includes residential dwell-

ings and, while having the highest amenity count, did not have high feature importance.

Current OSM data quality limits us to use amenity counts as our feature. As such, this mea-

sure naturally fails to capture differences between amenities of the same class—a larger mall

probably has a different consumption than a smaller mall, but both will be counted equally as

one—and may be improved by using the gross floor areas. However, while some buildings in

OSM have polygonal shapes, which allow one to measure the floor area, building outlines will

fail to capture the total floor area of multi-story buildings. We recommend extracting floor

areas instead of just raw counts for each amenity type if the data allows for this.

COVID-19 pandemic disruptions and quarantine feature labels

Given our results above, the presence of urban amenities and the ratio of domestic consump-

tion of the DMAs are highly relevant predictors that indirectly captures human mobility. We

demonstrate the ability of our models to learn the consumption patterns in the presence of dis-

ruptions in human mobility such as the COVID-19 pandemic. The entire training dataset (pre-

COVID and COVID) is used without aggregating the monthly consumption. In addition to fea-

tures used in the previous sections, we added parameters associated with the pandemic such as

the number of days for each quarantine level and the year and month and apply the same fea-

ture selection for our machine learning models. Our results were then compared to our calcu-

lated base predictions with only population, elevation, area, and year and month as predictors.

Shown in Table 4 are the evaluation metrics of the different machine learning models used

to predict DMA consumption with the COVID-19 pandemic taken into consideration. Similar

Table 4. Evaluation metrics for predicted consumption of DMAs with COVID-19 pandemic disruptions.

statistic model base base + A base + (A+D) base + (A+Q) base + (A+Q+D)

MAE GBR 10,611 (1,098) 9,697 (1,150) 9,360 (1,173) 9,798 (1,003) 9,369 (1,223)

LGBM 10,670 (1,114) 9,554 (1,147) 9,126 (1,064) 9,542 (1,160) 9,228 (983)

RF 10,996 (1,004) 9,818 (1,003) 9,580 (1,058) 9,729 (1,031) 9,573 (1,028)

SVR 11,386 (1,222) 10,376 (1,374) 10,508 (1,193) 10,482 (1,348) 10,638 (1,205)

MAPE GBR 75.54 (12.87) 68.70 (8.65) 65.49 (8.71) 70.99 (11.81) 63.60 (7.13)

LGBM 80.84 (17.99) 70.83 (9.87) 63.78 (8.22) 70.37 (9.55) 65.31 (8.65)

RF 82.67 (14.78) 73.13 (10.68) 70.59 (9.98) 72.48 (10.44) 69.60 (9.40)

SVR 109.60 (35.84) 100.99 (33.01) 86.01 (23.00) 102.55 (33.88) 87.16 (23.58)

R2 GBR 0.51 0.57 0.58 0.56 0.60

LGBM 0.50 0.57 0.59 0.57 0.59

RF 0.47 0.55 0.57 0.55 0.57

SVR 0.37 0.44 0.46 0.43 0.45

KGE GBR 0.23 (0.13) 0.46 (0.16) 0.55 (0.18) 0.46 (0.14) 0.47 (0.16)

LGBM 0.25 (0.14) 0.47 (0.17) 0.51 (0.16) 0.47 (0.16) 0.55 (0.17)

RF 0.27 (0.11) 0.44 (0.11) 0.45 (0.11) 0.45 (0.10) 0.46 (0.10)

SVR 0.29 (0.11) 0.50 (0.26) 0.48 (0.24) 0.50 (0.26) 0.47 (0.23)

Reported scores are mean (stdev) values obtained from 5-fold group cross validation. Best models for each metric and feature set are highlighted in boldface.

https://doi.org/10.1371/journal.pone.0265771.t004
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to our results in predicting DMA consumption above, the predictions have improved when we

add the amenity counts A and the ratio of domestic consumption D as features (base + (A

+D)). Further addition of quarantine-related factor Q (base + (A+Q+D)), resulted in 14% and

16% improvement in MAE and MAPE compared to base prediction, respectively; with

LightGBM as the best model based on MAE and R2 metrics. With the inclusion of amenities as

features, even with the disruption due to the pandemic, implementations of GBR and LGBM

perform the best among the MAE, MAPE, R2, and KGE metrics. Although these improve-

ments are significant when compared to the base prediction, the best models performed worse

in terms of MAE and only slightly better (less than 1%) in terms of MAPE in the absence of Q
(base + (A+D)). Thus, the amenities and ratio of domestic to non-domestic consumption are

already sufficient predictors of water consumption even in the presence of pandemic

disruptions.

To verify the importance of quarantine-related factors, we extract the feature importances

of LightGBM as shown in Fig 8. Indeed, the quarantine-related features (ECQ_days, MECQ_-
days, GCQ_days) have negligible importance compared to amenities and domestic consump-

tion ratio. This result indicates that amenities capture long-term effects of human mobility and

that quarantine effects are transient. Quarantines have little effect on water consumption in

the long run, as the changes in water consumption due to quarantines are already reflected by

the amenities that are responsible for water consumption.

Comparing Fig 8 to our results without pandemic disruption, Civic/Amenity drops in

importance in line with Health. Accommodation moves up from 8th to 6th place among ame-

nity types, overtaking Education which dropped from 5th to 7th. The increase in the importance

of Accommodation reflects the shift in consumption to residential areas as quarantine restric-

tions limited mobility, while the decrease in the importance of Civic/amenity, Leisure, and

Education reflects the closures of government and public buildings, areas for leisure activities,

and educational institutions. We demonstrate that the use of amenity and ratio of domestic

consumption allowed our model to successfully predict water consumption while being robust

to the effects of a sudden disruption in human movements by requiring people to stay at

home, among others. The robustness of our models stems from different amenity types captur-

ing different usage patterns associated with different places that translate to human activities.

Amenities reflect long-term patterns of human activity and changes in consumption indicate

transient effects of disruptions on human mobility, such as quarantines.

Conclusion

This work explored the feasibility of incorporating amenity counts as an additional feature to

enrich machine learning predictions of water consumption data. We used three classes of

machine learning models: Random Forest, Gradient Boosting Trees, and Support Vector

Regression, to predict water consumption given combinations of population and topology,

amenity counts, and the ratio of domestic to non-domestic consumption as features. Gradient

Boosting trees performed best for these tasks, achieving the lowest mean absolute error of

9,182 m3 when using all feature sets compared to an 11,170 m3 error (17.8% increase in error)

when using only baseline population and topology features. Amenity counts already accounted

for more than half of this decrease in error and suggest the possible application of this method

to predict water consumption in relatively underserved DMAs. Countries with low population

percentages with piped water connection rates will benefit from such an analysis, making it

easier to plan and manage the needs of new water consumers.

We also demonstrated the robustness of our model in its ability to predict water consump-

tion during unexpected circumstances that affect human mobility, such as in the case of a
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pandemic. By adding the number of days for a quarantine type as additional features into our

model, we incorporated the effects of the pandemic in our approach. The LightGBM imple-

mentation of Gradient Boosting was the best model with MAE and MAPE better by 16%, and

17% compared to base predictions. Although a slight improvement in MAE was observed, the

negligible importance of pandemic-related features compared to amenities indicated that ame-

nities are useful predictors that can capture long-term human mobility patterns. Amenities are

sufficient in predicting water consumption even in the presence of disruptions, making the

models robust and thereby diminishing the transient effects of quarantine protocols.

Fig 8. SHAP Feature importance for the LightGBM implementation of a Gradient Boosting Tree. Blue bars denote clear positive

correlation, red for negative correlation, and gray bars have no clear correlation. Land area and population are the top two features that

determine model predictions. Among amenities, Leisure, Sustenance, Health, and Civic/Amenity, are the top 4 predictive features, followed

by Developed land and Accommodation.

https://doi.org/10.1371/journal.pone.0265771.g008
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Finally, our models allowed us to identify amenity types that contribute most to prediction

accuracy for our models. The top three amenity types were Civic/Amenity, Leisure, and Suste-
nance, but we also observed a decrease in the importance of Leisure coupled with an increase

in importance for Accommodation during the pandemic. Our model and results show the roles

various amenity types play in the overall consumption of cities and may provide helpful

insights in the improvement of water consumption prediction.
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