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Abstract: The causative agent of COVID-19 pandemic, SARS-CoV-2, has a 29,903 bases positive-sense
single-stranded RNA genome. RNAs exhibit about 150 modified bases that are essential for proper
function. Among internal modified bases, the N6-methyladenosine, or mo6A, is the most frequent,
and is implicated in SARS-CoV-2 immune response evasion. Although the SARS-CoV-2 genome is
RNA, almost all genomes sequenced thus far are, in fact, reverse transcribed complementary DNAs.
This process reduces the true complexity of these viral genomes because the incorporation of dNTPs
hides RNA base modifications. Here, we present an initial exploration of Nanopore direct RNA
sequencing to assess the m6A residues in the SARS-CoV-2 sequences of ORF3a, E, M, ORF6, ORF7a,
ORF7b, ORF8, N, ORF10 and the 3'-untranslated region. We identified fifteen m6A methylated
positions, of which, six are in ORF N. Additionally, because m6A is associated with the DRACH
motif, we compared its distribution in major SARS-CoV-2 variants. Although DRACH is highly
conserved among variants, we show that variants Beta and Eta have a fourth position C > U change
in DRACH at 28,884b that could affect methylation. This is the first report of direct RNA sequencing
of a Brazilian SARS-CoV-2 sample coupled with the identification of modified bases.

Keywords: SARS-CoV-2; COVID-19; m6A; direct RNA sequencing; RNA methylation;

Epitranscriptomics

1. Introduction

RNA viruses are causative agents of major human transmissible diseases such as in-
fluenza, poliomyelitis, measles and COVID-19 [1-5]. In the Baltimore classification, viruses
with RNA genomes comprise groups III, IV, V and VI, while DNA viruses are in groups I, Il
and VII [6,7]. COVID-19 is a highly contagious viral disease with severe respiratory, inflam-
matory and thrombotic manifestations [8,9]. The COVID-19 pandemic is caused by a Beta
coronavirus, SARS-CoV-2, included in Group IV of the Baltimore classification [10,11]. In
SARS-CoV-2, the RNAs serve as information storage when packaged into the viral particle
and as mRNAs for viral protein synthesis upon infection of mammalian cells [12,13].

The SARS-CoV-2 genome consists of a positive-sense single-stranded strand RNA
with 29,903 bases [13]. There are approximately 150 different base modifications in all
RNA species, and these modified bases are essential for proper translation, splicing and
RNA metabolism [14]. Among these modified bases, the N°-methyladenosine (m6A) is
the most frequent internal base modification, and is found in viruses with exclusive cy-
toplasm replication, such as Zika Virus, Dengue virus and Hepatitis C virus [15,16]. The
methylated base m6A is implicated in SARS-CoV-2’s evasion of the host immune response
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because the methylated viral RNA does not interact with the host protein RIG-I (retinoic
acid-inducible gene I) responsible for the type-1 interferon (IFN1) response, an activator of
immune pathways [14,17,18]. The viral RNA is m6A methylated by the host’s methylases
METTL3, METTL14, WATAP and KIAA1429, called “writers”, and demethylated by FTO
and ALKBHS5, called “erasers”, which normally demethylate the host’s RNAs [19]. Knock-
down of METTLS3 significantly reduces the SARS-CoV-2 methylation and blocks the viral
mechanism of RIG-I binding inhibition [17].

Almost all the SARS-CoV-2 genomes sequenced thus far are reverse transcribed
complementary DNAs (cDNAs), although the genome is, in fact, RNA [20]. Reverse
transcription provides a fast, practical, PCR prone method for sequencing the SARS-CoV-2
genome. However, it reduces the true complexity of these viral genomes. The incorporation
of dNTPs in the first strand cDNA chain makes the RNA base modifications, present in
the RNA template chain, mostly indistinguishable from unmodified bases and sequencing
errors [21]. RNA modified bases are critical for proper biological function and are involved
in several diseases, encompassing the field of Epitranscriptomics Medicine [19]. Although
different technologies have been used for the identification of modified bases in mRNAs
and viral RNAs, they require substantial quantities of material that precludes single-cell
analysis and low abundance samples. Additionally, the antibody-dependent methylation
analysis does not provide nucleotide level accuracy of modified bases [14,17,18,22].

Oxford Nanopore Technology (ONT) has been used for SARS-CoV-2 whole-genome
cDNA sequencing [23]. Additionally, this same technology has been used for direct RNA
sequencing of SARS-CoV-2 [24-27]. The major advantage of ONT direct RNA sequencing
over cDNA sequencing is the identification of modified bases. Two previous studies
on SARS-CoV-2 direct RNA sequencing did not couple the genetic analysis with base
modification identification, while a third study detected the 5mC methylation using this
technology [24,26,27]. A fourth study detected sgRNAs in supernatants of Calu-3 cells
(human lung epithelial) using direct RNA sequencing and detected modified bases but not
specified by type [25].

In the present study, we assessed the potential of the Nanopore direct RNA sequencing
for the identification of m6A residues, at nucleotide level resolution, in the SARS-CoV-2
genome. For this, we analyzed direct RNA sequencing reads of open reading frames (ORFs)
3a,E, M, 6,7a,7b, 8, N, 10 and the 3'-untranslated region [22]. In addition, since m6A is
associated with the DRACH motif (D =G/A/U,R=G/A, H=A/U/C), we compared the
DRACH distribution in major SARS-CoV-2 variants to verify if potential variant-specific
alterations in m6A methylation patterns occur in SARS-CoV-2 evolution [28].

2. Materials and Methods
2.1. Cell Cultures and SARS-CoV-2 Infection

All procedures for viral isolation and initial passages were performed in a biosafety
level 3 laboratory (BLS3), in accordance with WHO recommendations and under the
laboratory biosafety guidance required for SARS-CoV-2 at the BLS3 facilities at the Federal
University of Sao Paulo. SARS-CoV-2 stock was kindly provided by Prof. José Luiz
Proenga-Modena (University of Campinas—UNICAMP, SP, Brazil).

For SARS-CoV-2 infection, the Vero E6 cell line (ATCC® CRL-1586™) was maintained
in Minimum Essential Medium (MEM; Gibco) supplemented with 10% fetal bovine serum
(FBS) (Gibco) and 1% penicillin/streptomycin (Gibco). Vero E6 cells were kept in a hu-
midified 37 °C incubator with 5% CO,. After reaching an 80% confluent monolayer, cells
were seeded in 24-well plates at a density of 5 x 10° cells per well. Cells were infected at
1 x 10° PFU/well (MOI 0.2) with SARS-CoV-2 lineage B [29], 3rd passage and kept for 2 h at
37 °C with 5% CO, in MEM supplemented with 2.5% FBS and 1% penicillin/streptomycin.
Cells were rinsed with 1x PBS to remove attached viral particles, and fresh MEM with
10% FBS was added to the cultures. After 48 h, the cell cultures were halted and used for
supernatant harvesting [30].
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2.2. RNA Isolation

RNA samples from culture supernatants were extracted using viral QlAamp Viral
RNA Mini Kit (Qiagen, Germantown, MD, USA). Briefly, 350 uL of supernatants were
centrifuged at 3000 rpm for 5 min to remove cell debris and transferred to new tubes
containing 550 uL of lysis buffer (AVL—provided with the kit) and RNA isolation was
performed according to the manufacturer’s instructions. RNA samples were quantitated
with Nanodrop (Thermo Fischer Scientific, Waltham, MA, USA).

2.3. Direct RNA Sequencing

For RNA sequencing, 9.5 pL. of RNA containing ~50 ng of RNA, from Vero E6 cells
supernatant, were used for construction of RNA sequencing libraries with the Nanopore
RNA Sequencing kit SQK-RNAQ02 following the manufacturer’s protocol with cDNA
synthesis (Oxford Nanopore Technologies, Oxford Science Park, Oxford, UK). The RNA
libraries were loaded and run on a MinION device (Oxford Nanopore Technologies) with
flowcell FLO-MIN106 for 40 h and 1.59 million reads were generated. Raw data (fast5 files)
were used for basecalling with Guppy (v-5.0.11) in high-accuracy mode.

2.4. Assembly

The resulting fastq reads were aligned to the SARS-CoV-2 reference (GISAID ID:
EPI_ISL_413016) with minimap2 (v-2.21-r1071) [31]. The resulting sam files were converted
to bam files and all reads were sorted and indexed according to the reference coordi-
nates using samtools (v-1.13) [32]. The “index” and “eventalign” modules of nanopolish
(v-0.13.3) were used to generate an index of base call reads for the signals measured using
the sequencer, and to align events to the reference transcriptome, checking for differences
in current that may suggest modifications in the base.

2.5. Methylation Analysis

The probability of methylation in DRACH motifs was calculated with méanet
(v-0.1.1-pre) [33], as recommended, (I) by preprocessing the segmented raw signal file
with “méanet-dataprep”, and (II) running méanet over data using “méanet-run_inference”.

2.6. DRACH Motif Comparison

Comparative analysis and annotation of DRACH motifs [28], identified with m6Anet
(v-01.1-pre) [34], among SARS-CoV-2 variants were carried out using Geneious v-10.4
(http:/ /www.geneious.com, accessed on 21 August 2021). Five sequences of each variant
isolated and sequenced in Brazil were aligned using the Geneious aligner. For variant
Eta only, one sequence from Brazil is available from GISAID (http://www.gisaid.org,
accessed on 21 August 2021) that is complete with high coverage and, therefore, samples
from the US, France, Spain and Canada were used. The SARS-CoV-2 variants sequences
analyzed are deposited in the GISAID database (http://www.gisaid.org, accessed on
21 August 2021) with accession numbers for Alpha (EPI_ISL_1133259, 1133268, 1133267,
1495029, 3316204), Beta (1966629, 1742275, 1966124, 1445171, 1716877), Gamma (3539883,
3539773, 3545813, 3545803, 3540000), Delta (3540039, 3540020, 3540001, 3460250, 3505224),
Eta (1583653, 3502618, 3535614, 3490821, 3493947), Lambda (1445272, 3010903, 2928137,
1966094, 2617911) and Zeta (3434818, 2841610, 3506974, 3190295, 1494963).
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3. Results
3.1. Direct RNA Sequencing and Assembly

The assembly of the 3'-half of the SARS-CoV-2 RNA genome was obtained by mapping
the RNA reads to GISAID ID: EPI_ISL_413016, the strain used for the infection of the Vero
E6 cells (Figure 1A). The coverage varied from 30x to 1600 x from 5’ to 3’ starting at ORF3a.
As the RNA sequencing adapter is ligated to the 3’-ends of RNAs, the coverage is higher
as it gets closer to the 3/-end. Several reads reached the “Spike” ORF but were not used
for further analysis due to low coverage. The sequencing runs of 40 h were sufficient to
obtain around 2000 reads corresponding to the 3/-half of the SARS-CoV-2 genome. The
average sequence length was 787 bases and the mode 1350 bases. The global identity to the
reference was 90%. The phred scores of the assembled bases are between 20 and 30. ORF N
has a substantial coverage because of its proximity to the 3’-end (~1000x).

Coverage
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Figure 1. Assembly of Nanopore direct RNA reads to the reference sequence (A) and map of m6A methylation probability
along the SARS-CoV-2 RNA (B). In (A), green horizontal bars indicate the ORFs, blue horizontal bars of decreasing size
indicate the Nanopore reads and the red area at the top indicates the log scale coverage from 1x to 1600x. In (B), blue
vertical bars indicate the DRACH motifs, red vertical bars indicate m6A (>50% probability) and the yellow vertical bars
indicate two potential m6A with probabilities 0.38 and 0.44 in the 3'-untranslated region. The G + C content is indicated in
the plot just above the annotation.
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3.2. Detection of m6A

Direct RNA sequencing reads were used for the detection of m6A using the m6Anet
tool, validated by systematic benchmark [35]. This method uses the reference sequence,
the basecalled fastq files and the raw fast5 files to identify the DRACH motifs and the
raw signal data in fast5 files with corresponding signal alterations associated with m6A to
calculate the probability of bona fide methylation [35]. Using this approach, we identified
15 positions within DRACH with >50% methylation probability in at least one replicate
(Figure 1B). Among these positions, 11 have more than 100x coverage and four positions
have >80% methylation probability (Table 1). The nucleocapsid region (N) contains six
putative m6A residues and at least 30 DRACH motifs.

Table 1. Distribution and sequencing coverage of potential methylated adenosines in SARS-CoV-2
RNA genome. Coverage > 100x is underlined and probability > 80 is in boldface as calculated by
mo6Anet [34]. After m6Anet analysis, only sites with coverage above 60 were considered. Position
numbering according to Wuhan reference sequence (GenBank NC_045512). In Coverage and Proba-
bility columns, the results for two technical replicates are shown. The first numbers on these columns
represent the experiment shown in Figure 1.

# RNA Id—ORF Position Coverage Probability

1 EPI_ISL_413016—3a 25,935 65/75 0.5472/0.2749
2 EPI_ISL_413016—3a 25,940 67/61 0.5094/0.5865
3 EPI_ISL_413016—3a 26,070 72/83 0.6659/0.2497
4 EPI_ISL_413016—3a/E 26,241 83/100 0.5480/0.3461
5 EPI_ISL_413016—M 26,933 162/295 0.5102/0.8204
6 EPI_ISL_413016—7a 27,562 266/679 0.8516,/0.3973
7 EPI_ISL_413016—7b 27,764 309/849 0.8433/0.8946
8 EPI_ISL_413016—7b 27,854 318/839 0.8761/0.8709
9 EPI_ISL_413016—7b/8 27,892 357/859 0.5770/0.4420
10 EPI_ISL_413016—N 28,616 699/812 0.8184/0.4929
11 EPI_ISL_413016—N 28,633 314/364 0.5022/0.4134
12 EPI_ISL_413016—N 28,766 794/817 0.5403/0.4098
13 EPI_ISL_413016—N 28,886 871/835 0.7020/0.2212
14 EPI_ISL_413016—N 29,450 922/803 0.5523/0.2701
15 EPI_ISL_413016—N 29,517 887/783 0.5705/0.3598

3.3. DRACH Motif Analysis

As the DRACH motif is associated with m6A, we tested if the major SARS-CoV-2
variants, Alpha, Beta, Gamma, Delta, Eta, Lambda and Zeta, isolated in Brazil exhibited
mutations within DRACH that differ between the variants. The alignment consisted of
the Wuhan reference sequence (GenBank NC_045512), the Brazilian reference (GISAID ID:
EPI_ISL_413016) and five sequences of major variants (Material and Methods). DRACH
is highly conserved among variants; however, differences can be observed (Figure 2).
Five sequences of the variant Beta and four of the variant Eta have a C > U change in
the fourth position of DRACH (at position 28,886) that could block methylation at this
site (Figure 2A, D1). The methylation probability at this site is 70% and the coverage 871 x.
Another change in DRACH that could probably interfere with methylation is a C > U
at 28,947 (Figure 2A, D2) in a single variant Zeta sequence, although the methylation
probability at this site is <50%. Other DRACH variants observed are probably “silent”,
such as the four nucleotides insertion in the intergenic region between ORF8 and ORF N in
the five sequences of variant Gamma (Figure 2B, D3). The insertion does not change the
DRACH sequence.
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in the first experiment [35]. In Figure 1 B, the m6A positions are confirmed by at least
one experiment for a >50% probability. Positions that are not methylated almost always
have probabilities below 5%. Our results suggest that the nucleocapsid region has more
methylated sites (Table 1), which is consistent with previous studies using Met-RIP, mass
spectrometry (for m6A) and direct RNA sequencing (for 5mC) [17,18,24]. Our m6A pattern
is based on sequencing data from two replicates. Although some positions are consistent
between two experiments (e.g., 27,764), others vary (e.g., 28,616). The analysis of the output
of m6Anet program shows that the positions putatively methylated have a significantly
higher probability (>25%) than the putatively non-methylated (<5%), which is consistent
with the model training and benchmarking [33]. Therefore, positions that, in at least one ex-
periment, have a >50% probability are indicative that a substantial proportion of modified
bases, over unmodified, are present in the sample. The m6A detection method employed
here uses a model that takes into account the mixture of modified and unmodified RNAs
and outputs the m6A-modification probability at any given site for all the DRACH 5-mers
represented in the neural network training data and this might, at least in part, explain
the variance among experiments as observed with different cell lines [33]. As a future
perspective, the m6Anet model can be trained for the SARS-CoV-2 genome, which might
adjust the probability values for m6A prediction in these specific RNAs.

As expected, the DRACH pattern is highly conserved among SARS-CoV-2 variants,
although, in at least one position, a significant mutation was observed in the nucleocapsid
region in variants Beta and Eta (Figure 2) that could negatively affect methylation by
disrupting the DRACH motif [28]. The DRACH motif is highly conserved and strongly
associated with m6A methylation (in the middle “A”) and, therefore, provides another
level for selective pressure on SARS-CoV-2. The significance of this finding needs to be
further investigated with comparative infection experiments using different combinations
of viral and host cell lineages to determine the impact of DRACH mutations in viral
growth. Additionally, differential methylation among the variants must be explored
because experimental data with knockdown METTL3 viruses suggest that hypomethylated
viral genomes are produced and the infection is significantly reduced [17].

As a future perspective, we are working on a methodology to allow full length, high
coverage sequencing of the whole SARS-CoV-2 RNA genome by direct RNA sequencing
and, therefore, extend the m6A analysis to ORFlab, Spike and the 5'-untranslated region to
compare the differential methylation among lineages and variants.
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