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The expansion of the nuclear cardiology arma-

mentarium to encompass a wider range of tracers

targeted to specific molecular processes offers opportu-

nities for precise monitoring of disease progression and

guidance of therapy.1 While some processes affect the

global myocardium, many such as post-ischemic

inflammation, infection, or fibroblast activation tend to

be regional.2,3 Particularly subtle disease may also be

below the detection limit of conventional imaging

techniques. Moreover, localized pathology poses chal-

lenges to delivery of targeted cell, gene, or drug therapy,

which may require precise targeting to evoke optimal

benefit. As such, the limitations of resolution, regional

heterogeneity, and mixed cellular substrates complicate

interpretation of conventional radionuclide images, and

raise the question whether other strategies could more

precisely quantify regional tracer distribution.

In the current issue of the Journal of Nuclear
Cardiology, Stendahl and colleagues describe a novel

diagnostic device for minimally invasive tissue-level

detection of tracer distribution in the myocardium, with

a vision toward guided regional therapeutic interven-

tion.4 The miniature plastic scintillator effectively

discriminates b? and b- activity over c-radiation,
which could precisely pinpoint the spatial binding of a

positron-emitting tracer. In a pig heart after balloon-

induced myocardial infarction, heterogeneous uptake
18F-fluorodeoxyglucose (18F-FDG) was observed by

ex vivo PET imaging, thought to reflect regional

inflammatory cell infiltration to the infarct and border

zone territories. The regional disparity in signal was

confirmed by spatial mapping using the b-detection
catheter, providing a matrix distribution of activity

content. Segment-to-segment activity established rea-

sonable correlations between ex vivo PET, gamma well

counting, and catheter-based measurements supporting

the accuracy of the latter.

The strength of the manuscript lies in the ingenuity

of the approach, which tackles the challenge of regional

tracer uptake heterogeneity using a minimally invasive

local measurement. While the analysis is limited to only

two animals and selected areas in these infarct hearts,

validation by conventional (albeit ex vivo) PET and well

counting indicates the capacity of the b-detector catheter
to define spatial disparities of tracer accumulation.

However, it is disappointing that this potential is not

explored further, e.g., by confirmation of cellular sub-

strate by histopathology. Indeed, while typical

investigation requires alignment of adjacent tissue sec-

tions for ex vivo autoradiography, histology, and

immunohistochemistry,5,6 the b-detection catheter could

better define the target regions of tracer enrichment to

characterize the signal. A growing range of targeted

inflammation radiotracers have displayed divergent

uptake patterns in specific leukocyte subtypes in vitro

with variable uptake in other cardiac cell subtypes

including myocytes and fibroblasts.7,8 But in many cases

the exact target cell type for these radiotracers remains

equivocal. The development of radiotracers targeting

reparative macrophage subtypes via mannose receptor,9

which are difficult to isolate within the mixed leukocytes

in the damaged region, may be better identified by

combining spatial catheter-based measurements with

histology. It remains unclear how the spatial mapping of

activity aligns to leukocytes, myocytes, and other sup-

port cells, which would provide greater support for the

accuracy and applicability of this approach. Accord-

ingly, further study should combine regionally focused

b-detection with histopathology to determine the
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feasibility of image fusion and advance understanding of

tracer substrates.

This limitation in regional characterization is com-

pounded by the reliance on 18F-FDG distribution for

proof-of-concept. 18F-FDG is notoriously promiscuous,

which hampers the interpretation of the meaning of the

signal. Indeed, numerous studies have demonstrated the

inefficacy of typical suppression methods, especially in

actively remodeling or acute infarct myocardium, gen-

erating a mixed substrate for the 18F-FDG signal

including inflammatory leukocytes and metabolically

compromised cardiomyocytes,3,10 though the regional

heterogeneity observed in the porcine hearts and fasting

protocols suggest preferential accumulation in infiltrat-

ing macrophages. Nonetheless, a more specific

radiotracer could give greater clarity to the accuracy of

the measurements.

A theoretical benefit of the b-detection catheter is

the possibility to selectively distinguish b? decay from

c decay. Such detection might provide a more accurate

localization of the signal by identifying the emitted

particle rather than the annihilation event. With a rising

prevalence of transition metal radiochemistry in car-

diovascular molecular imaging,8 reconstruction

accuracy is affected by wider positron range and partial

volume effects. Regional mapping of activity concen-

tration insulates the measurement from partial volume

effects, particularly with thinning ventricle walls. In

principle, the b-detection at the tissue level overcomes

the spatial challenge of physics, accurately defining

tracer distribution segment-by-segment.

Sensitivity poses a further challenge, wherein con-

ventional PET imaging of inflammation after

myocardial infarction has generally not attempted to

discern between regionally robust or subtle inflamma-

tory content. In conditions like myocardial infarction

where the imaging target (i.e., leukocytes) is also ele-

vated in the circulation, delineation of subtle tissue

inflammation can be challenging, especially with tran-

sition metal isotopes. While the total inflammatory

signal on PET imaging can predict functional out-

come,5,11,12 subtle disease, and its role in the progression

of heart failure is more difficult to assess. It is con-

ceivable that b-detection catheter measurements could

exhibit higher sensitivity for subtle disease, but this

would require validation in vivo.

Indeed, it is problematic that the analysis is by

necessity conducted entirely ex vivo. Clearly one benefit

for the b-detection catheter is the possibility for mini-

mally invasive measurement, providing a more accurate

virtual biopsy on the miniature scale. It will be essential

to demonstrate the equivalence of in vivo measurements,

replete with cardiac motion to confirm the accuracy of

catheter-based measurements in the real clinical

situation. This will further allow characterization of b-
detector sensitivity for activity in tissue sections against

blood pool.

Nonetheless, the potential applications for such a

device are broad, as many etiologies of cardiovascular

disease exhibit regional heterogeneity. As intimated by

Stendahl and colleagues, one potential application is

localized inflammatory cell infiltration after acute

myocardial infarction, where the severity and persis-

tence of adverse inflammation can contribute to worse

prognosis and remodeling.5,11 Clear delineation of

regions with excessive inflammatory response may help

to identify patients and regions that would most benefit

from targeted therapy. Definitive characterization of the

cellular substrate, as noted earlier, could also guide

patients toward the most effective treatment based on

the individual inflammatory pattern.

Ultimately, the greatest strength of the non-invasive

or minimally invasive approach is the capability to

combine regional diagnostics with regional therapy.

Regional inflammation could be directly treated by anti-

inflammatory agents, gene therapy to promote endoge-

nous repair, or immunomodulatory therapy to target

adverse remodeling processes.13,14 Such approaches

could overcome the hazards of systemic immunomod-

ulation. Alternatively, prior studies have reported

alignment of nuclear cardiac images to catheter-based

measures of electrophysiology, where the site of

inducibility of ventricular arrhythmia corresponded to

lower retention of norepinephrine analogues.15,16 Inte-

gration of the b-detection capability with electrode

measurements could provide further insights into this

pathogenesis and provide a clearer map for ablation. The

clinical relevance of the b-detection catheter is inti-

mately linked to its potential theragnostic applications,

which require dedicated investigation.

Miniaturization to explore pathogenesis remains the

realm of science fiction, the capability to visualize dis-

tinct regional differences in tissue substrate within the

injured myocardium on a miniatured scale is an initial

step toward tissue-level quantification and substrate

delineation. The potential combination of such tissue-

level imaging techniques with targeted delivery of cell-,

gene-, or drug-based therapy bears clear potential for

future modification of image-guided therapy. This

catheter-based fantastic voyage provides a template for

accurate study of regional tracer distribution, but many

steps remain to bring such methodology to clinical

practice.
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