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Abstract

The objectives of this study were to evaluate the effects of tanshinones from a Chinese herb Salvia Miltiorrhiza on the
growth of breast cancer cells, and to elucidate cellular and molecular mechanisms of action. Tanshinones showed the dose-
dependent effect on the growth inhibition of breast cancer cells in vitro, with tanshinone I (T1) the most potent agent. T1
was also the only tanshinone to have potent activity in inhibiting the growth of the triple-negative breast cancer cell line
MDA-MB231. T1 caused cell cycle arrests of both estrogen-dependent and estrogen-independent cell lines associated with
alterations of cyclinD, CDK4 and cyclinB, and induced breast cancer cell apoptosis associated with upregulation of c-PARP
and downregulation of survivin and Aurora A. Among these associated biomarkers, Aurora A showed the most consistent
pattern with the anti-growth activity of tanshinones. Overexpression of Aurora A was also verified in breast tumors. The
gene function assay showed that knockdown of Aurora A by siRNA dramatically reduced the growth-inhibition and
apoptosis-induction activities of T1, suggesting Aurora A as an important functional target of T1 action. On the other hand,
tanshinones had much less adverse effects on normal mammary epithelial cells. Epigenetic mechanism studies showed that
overexpression of Aurora A gene in breast cancer cells was not regulated by gene promoter DNA methylation, but by
histone acetylation. T1 treatment significantly reduced acetylation levels of histone H3 associated with Aurora A gene. Our
results supported the potent activity of T1 in inhibiting the growth of breast cancer cells in vitro in part by downregulation
of Aurora A gene function. Our previous studies also demonstrated that T1 had potent anti-angiogenesis activity and
minimal side effects in vivo. Altogether, this study warrants further investigation to develop T1 as an effective and safe
agent for the therapy and prevention of breast cancer.
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Introduction

Breast cancer is the most common form of cancer in women

and the leading cause of cancer death in American women with

over 207,090 new cases of invasive breast cancer in women and

about 39,840 deaths from breast cancer in 2010 [1]. Current

therapies for breast cancer usually have variable effectiveness with

high toxicity to normal tissues, and breast tumors often develop

metastasis and drug resistance. Therefore, searching for effective

regimens with minimal side effects remains the top priority in

breast cancer research.

Danshen (Salvia miltiorrhiza Bunge) has been widely used in

traditional Chinese medicine practice for centuries in the

treatment of coronary artery disease and cerebrovascular diseases

with minimal side effects. Cryptotanshinone (CT), tanshinone IIA

(T2A) and tanshinone I (T1) are three major diterpene compounds

of tanshinones in Danshen. In addition to their functions in

cardiovascular systems, tanshinones have been recently shown to

possess some activities against human cancer cells. CT inhibited

the growth of hepatocarcinoma cells [2] in vitro via cell cycle

arrest at S phase and the growth of gastric and hepatocellular

cancer cells. T2A inhibited the growth of breast cancer [3,4],

nasopharyngeal carcinoma [5], glioma [6], leukemia [7] and

hepatocellular carcinoma [8,9] cells in vitro by induction of

apoptosis [5,8]. T2A also inhibited invasion of lung cancer cells in

vitro [10]. T1 inhibited the growth of leukemia [11], lung [12] and

breast cancer [13,14] in vitro in part via induction of apoptosis.

However, the relative activity of tanshinones against breast cancer

is unclear, and their functional targets and molecular mechanisms

remain elusive.

The objectives of this study were to evaluate the activity of

tanshinones in inhibiting the growth of breast cancer cells, to

identify functional targets of tanshinones, and to understand the

epigenetic mechanisms by which tanshinones regulate the

expression of functional targets.

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e33656



Results

Effects of Tanshinones on Cell Growth of Breast Cancer
Cell Lines and HMEC
As shown in Fig. 1, tanshinones inhibited the growth of breast

cancer cells in both dose- and cell line-dependent manners. CT

inhibited cell growth of different breast cancer cell lines with IC50

between 5–50mM; among four cell lines, MDA-MB453 was the

most sensitive one with IC50 around 5mM, while MDA-MB231

was the least sensitive one with IC50 around 50mM (Fig. 1A). T2A

inhibited the growth of breast cancer cell lines with MDA-MB-453

the most sensitive one (IC50 = 3.5mM) and MDA-MB-231 the least

sensitive one (IC50 .50mM) (Fig. 1B). On the other hand, T1

showed the potent activity in inhibiting the growth of all breast

cancer cell lines with IC509s between 4–9mM (Fig. 1C). Generally,

among three tanshinones, CT showed less activity, T1 and T2A

showed similar activities in inhibiting the growth of MDA-MB453

and SKBR3 cell lines, but T1 was more potent than T2A in

inhibiting the growth of MCF-7 and especially MDA-MB231 cell

lines. On the other hand, tanshinones showed much less

cytotoxicity on normal mammary epithelial cells (HMEC)

(Fig. 1D). The results suggest that tanshinones may have potent

anti-growth effects on breast cancer cells, but limited adverse effect

on normal cells.

Effects of T1 on Cell Cycle Progression of Breast Cancer
Cells and Modulation of Related Molecular Markers
Since T1 showed the potent effect on all breast cancer cell lines,

in the following studies, we mainly focused on T1 to determine its

cellular and molecular mechanisms in both estrogen-dependent

MCF-7 and estrogen independent MDA-MB231 cell lines. The

cell cycle analysis data showed that T1 caused a G0/G1 phase

arrest in MCF-7 (Fig. 2A, P,0.01) and both S and G2/M phase

arrests in MDA-MB231 (Fig. 2B, P,0.05). The representative

FACS histograms are shown as Fig. S1.

In order to examine molecular alterations associated with cell

cycle arrest, we determined protein expression levels of several cell

cycle related markers. T1 treatment significantly down-regulated

cyclin D, CDK4 and cyclin B protein levels in both MCF-7

(Fig. 2C and 2D) and MDA-MB231 cell lines (Fig. 2C and 2E). T1

also significantly downregulated protein levels of cdc2 and its

active form, phosphorylated cdc2 (p-cdc2) in MCF-7 cell line

(Fig. 2C and 2D) and p-cdc2 level in MDA-MB231 cell line

(Fig. 2C and 2E).

Figure 1. The dose-dependent effects of CT (A), T2A (B) and T1 (C) on the growth of human breast cancer cell lines (MCF-7, MDA-
MB231, SKBR3 and MDA-MB453) and on normal mammary epithelial cells (HMEC) (D). Values were mean6SEM of at least three
independent experiments, each in triplicates.
doi:10.1371/journal.pone.0033656.g001
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Effects of T1 on Apoptosis of Breast Cancer Cells and
Modulation of Related Molecular Markers
Aside from the disturbance of cell cycle, T1 was also found to

induce apoptosis in breast cancer cells. T1 treatment increased the

proportion of Sub-G0 cells, a parameter of apoptosis, in both

MCF-7 and MDA-MB231 cell lines in a dose-dependent manner

(Fig. 3A). T1 at 3 and 4mM significantly increased the proportion

of Sub-G0 MCF-7 cells to 8% (1.3 folds, P,0.05) and 12% (2.0

folds, P,0.005), respectively, compared with 6% in the control

(Fig. 3A). Similarly, T1 (3 and 4mM) increased the proportion of

Sub-G0 MDA-MB231 cells to 3% (2.0 folds, P,0.05) and 3.5%

(2.3 folds, P,0.01), respectively, compared with 1.5% in the

control (Fig. 3A).

Consistent with cellular results, T1 treatment significantly

increased the protein level of an important apoptosis related

protein marker, cleaved PARP (c-PARP) in both MCF-7 and

MDA-MB231 cells (Fig. 3B and 3C, P at least ,0.05). Other

apoptosis related markers, bcl-2 and bax were also examined, and

the results showed that T1 reduced bcl-2 protein levels in both

MCF-7 and MDA-MB231 cell lines, but had no effect on bax

levels (Fig. 3B).

Gene Expression and Protein Levels of Survivin and
Aurora A levels in Human Breast Tumors and Breast
Cancer Cell Lines
In addition to above molecular markers, we further identified

other molecular markers that might be responsive to and

responsible for the T1 activity. In this study, survivin and Aurora

A were investigated as putative targets of T1 mechanism of action,

because these biomarkers were differentially expressed in cancer

cell lines in comparison to normal mammary epithelial cells.

Survivin (Fig. 4C) and Aurora A (Fig. 4D) genes were significantly

upregulated in human breast cancer cell lines by 4–5 folds and 20–

50 folds respectively, compared with that in HMEC. Western blot

analysis confirmed overexpression of survivin and Aurora A

protein levels in breast cancer cell lines (Fig. 4E). We further

compared the expression of survivin and Aurora A genes among

human breast tumors, breast tissues adjacent to breast tumors and

breast tissues from healthy subjects. The results showed that both

survivin and Aurora A genes were extremely low in both normal

breast tissues of healthy women and breast tissues adjacent to

breast tumors of breast cancer patients, but were dramatically

elevated in breast tumor tissues by about 49 (Fig. 4A) and 14 folds

(Fig. 4B), respectively. Due to limited amount of tissues, protein

levels were not measured in human breast tissue samples.

Figure 2. Effects of T1 on Cell Cycle Progression and Protein Levels of Cell Cycle-Related Biomarkers (48h). A and B: Effects of T1 on cell
cycle arrests of estrogen-dependent MCF-7 (A) and estrogen-independent MDA-MB231 (B) cell lines. Data were from at least two independent
experiments, each in duplicates; C: The representative Western blot images showing the effects of T1 on protein levels of cell cycle related biomarkers
cyclinD, CDK4, cdc2, p-cdc2 and cyclinB; D and E: Quantitation of cyclinD, CDK4, cdc2, p-cdc2 and cyclinB protein levels in MCF-7 (D) and MDA-MB231
(E) by densitometry after normalization to b-actin. Values were mean6SEM of at least two independent experiments. Within the panel, the value with
a letter was significantly different from that of the corresponding control, a, p,0.05; b, p,0.01; c, p,0.001.
doi:10.1371/journal.pone.0033656.g002
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Effects of Tanshinones on the Expression of Survivin and
Aurora A in Breast Cancer Cells
We further measured the effects of tanshinones on the survivin

and Aurora A protein levels to determine if Aurora A and/or

survivin are/is the functional molecular targets for tanshinones. As

shown in Fig. 5 (A and B), Aurora A protein levels were

downregulated by tanshinones in a dose-dependent manner. It is

very important to note that the Aurora A protein level in SKBR3

cell line, the least sensitive one to T1 treatment, was not

downregulated by T1 at 4mM, but significantly downregulated

by T1 at 8mM, which was consistent with the T1 activity in cell

growth inhibition. Similarly, MDA-MD231 cell line was the least

sensitive one to CT and T2A, and Aurora A protein levels were

not downregulated by CT or T2A treatment, but significantly

downregulated by T1 treatment (at 3 and 4 mM) (Fig. 5A and 5B).

These results strongly support the correlation between cell growth-

inhibition activities of tanshinones and downregulation of Aurora

A protein levels and thus suggest that Aurora A may be an

important functional target of tanshinones. Further experimental

results also showed that Aurora A gene expression, in parallel with

Aurora A protein level, was significantly downregulated by T1

treatment in MCF-7 and MDA-MB231 cell lines (Fig. S2).

On the other hand, despite different sensitivities of breast cancer

cell lines to tanshinones, survivin was universally downregulated

by tanshinones (Fig. 5A and 5C). These results suggest that

survivin may not be the direct molecular target of tanshinones.

The Effect of Aurora A Silencing on T1 Activity
To further determine if Aurora A is a functional target of T1

actions in inhibiting the growth and inducing apoptosis of breast

cancer cells, we used Aurora A specific siRNA to inhibit the

expression of Aurora A in MCF-7 cells and measured the effect of

Aurora A knockdown on T1 activity. The siRNA inhibited Aurora

A gene expression in a dose-dependent manner. To sensitively

evaluate the effect of siRNA on T1 activity, we purposely used

a dose of siRNA that downregulated Aurora A protein level in

Figure 3. Effects of T1 on apoptosis of breast cancer cells and protein levels of apoptosis-related biomarkers (48h). A: Effects of T1 on
the proportion of DNA fragmentation (sub-G0), a marker of apoptosis, in MCF-7 and MDA-MB231 cell lines. Values were mean6SEM of at least two
independent experiments, each in duplicates; B: The representative Western blot images showing the effects of T1 on protein levels of apoptosis
related biomarkers PARP, c-PARP, bcl2 and bax; C: Quantitation of c-PARP protein levels in MCF-7 and MDA-MB231 by densitometry after
normalization to b-actin. The images for quantitation were from at least two independent experiments. Within the panel, the value with a letter was
significantly different from that of the corresponding control, a, p,0.05; b, p,0.01; c, p,0.001.
doi:10.1371/journal.pone.0033656.g003
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MCF-7 cells by 46% (Fig. 6A) and in parallel significantly reduced

cell growth by 45% (Fig. 6B, P,0.001). Aurora A knockdown

reduced T1 activity in inhibiting the growth of MCF-7 cells. T1 at

4mM inhibited the growth of the vector-control MCF-7 cells by

80% (P,0.001), but inhibited the growth of Aurora A-knockdown

MCF-7 cells by 40% (P.0.05) (Fig. 6B), indicating that Aurora A

knockdown (by 46%) reduced the T1 activity by 50% (from 80%

inhibition to 40% inhibition). Additionally, we determined the

effect of Aurora A knockdown on the apoptosis-induction activity

of T1. Aurora A knockdown (by 46%) significantly increased

MCF7 cell apoptosis by 3 folds (Fig. 6C, P,0.001); T1 (4 mM)

significantly induced apoptosis of the control-siRNA MCF-7 cells

by around 5 folds, but it induced apoptosis of the Aurora A-

knockdown cells by 50% only (Fig. 6C). These results suggest

Aurora A as an important functional target of T1 action.

Epigenetic Modifications of Aurora A Expression in Breast
Cancer Cells
We further investigated possible epigenetic mechanism(s) that

might be responsible for Aurora A overexpression in breast cancer

cells and for explaining the T1 activity in downregulating Aurora

A expression associated with growth inhibition of breast cancer

cells. When MCF-7 cells were treated with 5-AZA, a DNA

demethylating regent, Aurora A gene expression was not altered

(Fig. 7A), suggesting that Aurora A gene expression in breast

cancer cells may not be regulated by DNA methylation. The raw

Ct values are listed in Table S2. Further MSP analysis showed that

Aurora A gene DNA promoter had limited degree of methylation

(Fig. S3). Bisulfite-treated DNA sequencing also confirmed that

Aurora A gene promoter was primarily unmethylated (data not

shown).

Figure 4. Expressions of survivin and Aurora A in human breast tissues and breast cancer cells. A and B: Expressions of survivin (A) and
Aurora A (B) genes in normal breast tissues (n = 10), normal tissues adjacent to tumors (n = 12) and breast tumors (n = 14) by real-time RT-PCR; C and
D: Expressions of survivin (C) and Aurora A (D) genes in human breast cancer cell lines (MCF-7, MDA-MB231, SKBR3 and MDA-MB453) and HMEC; E,
Protein levels of survivin and Aurora A in HMEC and human breast cancer cell lines by western blot. Values were mean6SEM. Within the panel, the
value with a letter was significantly different from that of the corresponding control, c, p,0.001.
doi:10.1371/journal.pone.0033656.g004

Tanshinones and Breast Cancer Inhibition
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On the other hand, breast cancer cells (MCF-7) treated with

sodium butyrate (SB), a histone deacetylase inhibitor, had an

increased level of Aurora A gene expression by 4 folds (Fig. 7A),

suggesting that Aurora A gene expression in breast cancer cells

may be regulated, at least in part, by histone acetylation. The raw

Ct values are listed in Table S2.

We further examined the histone H3 acetylation levels in

HMEC and MCF-7 cells using CHIP Q-PCR assay. Five pairs of

primers (Table S1) were used for detecting possibly altered sites in

the Aurora A promoter region. The locations covered by these

paired primers are shown in Fig. 7E. No obvious changes of

Aurora A H3 histone acetylation were found in the areas where

primer 1, primer 2 or primer 3 amplified. On the other hand, the

areas where primer 4 and primer 5 amplified had increased H3

acetylation levels by 1.8 (P,0.05) and 8.9 (P,0.01) folds,

respectively, in MCF-7 cells (Fig. 7B). The raw Ct values are

listed in Table S2.

Effect of T1 on Alteration of Histone Acetylation
Associated with Aurora A Gene DNA Promoter
We further determined if T1 downregulated Aurora A gene

expression in part via alteration of histone acetylation in Aurora A

gene DNA promoter. T1 treatment significantly decreased H3

acetylation level in primer 4-amplified area by over 40% (P,0.05),

but it didn’t significantly alter H3 acetylation levels in the primer

5-amplified area (Fig. 7C). The results suggest that T1 may

downregulate Aurora A gene expression by reducing acetylation of

H3 associated with the primer 4-amplified area in Aurora A gene

DNA promoter.

We also determined the influence of SB on the T1 activity in

inhibiting MCF-7 cell growth. As shown in Fig. 7D, the presence

of SB (increased histone acetylation and upregulated Aurora A

expression) reduced the growth inhibition activity of T1 by 25%

(P,0.05). This suggests that modulation of histone acetylation is

an important epigenetic mechanism by which T1 down-regulates

the expression and function of Aurora A.

Discussion

In the present study, we evaluated the activity of a group of

natural components, tanshinones (CT, T1 and T2A) from

a Chinese herb Salvia Miltiorrhiza (Danshen) in inhibiting the

growth of human breast cancer cells. Among these compounds,

T1 showed the most potent anti-growth activity against both

estrogen-dependent and estrogen-independent breast cancer cells

Figure 5. Effects of tanshinones on survivin and Aurora A protein levels in breast cancer cells (48 h). A: Representative western blot
images showing survivin and Aurora A protein levels in breast cancer cell lines (MCF-7, MDA-MB231, SKBR3, MDA-MB453) following tanshinone
treatments with b-actin as the loading control; B and C: Quantitation of Aurora A (B) and survivin (C) protein levels by densitometry after
normalization to b-actin. Values were mean6SEM of three independent experiments in duplicates. The images for quantitation were from at least
two independent experiments. Within the panel, the value with a letter was significantly different from that of the corresponding control, a, p,0.05;
b, p,0.01; c, p,0.001.
doi:10.1371/journal.pone.0033656.g005
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via cell cycle arrest and induction of apoptosis. On the other hand,

tanshinones showed much less adverse effects on the growth of

HMEC. Determination of biomarkers showed that downregula-

tion of Aurora A was correlated to the anti-growth activity of

tanshinones. The gene function assay showed that Aurora A

knockdown by siRNA reduced the anti-growth and pro-apoptotic

activities of T1. Epigenetic mechanism studies showed that

overexpression of Aurora A in breast cancer cells was, at least in

part, modulated by increased acetylation of histone associated with

Aurora A gene promoter, but not altered gene promoter

methylation. Further studies showed that T1 significantly de-

creased histone acetylation level associated with a specific region in

Aurora A gene promoter. Our study provided at the first time, to

the best of our knowledge, the experimental evidence to suggest

T1 as the potent agent in inhibiting the growth of breast cancer

cells and Aurora A as an important functional target for T1 action

via epigenetic mechanism of histone acetylation.

The Aurora kinases are a novel oncogenic family of mitotic

serine/threonine kinases (S/T kinases) that are involved in the

processes of cell division [15]. Up till now, three Aurora kinases, A,

B and C, have been identified in humans [16,17,18]. Among the

three kinases, Aurora kinase A is a key kinase that is important in

chromosomal distribution. Aurora A is localized on duplicated

centrosomes and spindle poles during mitosis and is required for

the timely entry into mitosis and proper formation of a bipolar

mitotic spindle by regulating centrosome maturation, separation,

and microtubule nucleation activity [19]. Aurora A is frequently

overexpressed in a number of human cancers, such as bladder

[20,21], breast [22], colon [17,23], pancreatic [24] and prostate

[25,26,27,28,29] cancers and is recognized as one of the important

molecular targets for cancer therapy [30,31,32].

In the present study, we, at the first time, demonstrated that the

activity of tanshinones in breast cancer cell growth inhibition was

primarily due to downregulation of the expression and function of

Aurora A. Cautions should be noted that we performed the gene

function assay by knocking down Aurora A gene expression only,

but did not perform the Aurora A overexpression assay. This is the

limitation of the current study, and more experiments using

Aurora A overexpression assay to determine if Aurora A

overexpression could rescue prostate cancer cells from apoptosis

induced by T1 would provide another line of important evidence

to suggest tanshinones as a novel group of Aurora A inhibitors.

Our previous studies also showed that T1 also had potent anti-

angiogenesis activity and inhibited the growth of prostate cancer in

vitro and in vivo [33], but with minimal side effect on food intake

and body weight. These results provide important scientific

Figure 6. Effects of Aurora A knockdown on the T1 activities in growth and apoptosis of MCF-7 breast cancer cells. A: Western blot
analysis showing knockdown of Aurora A protein level in MCF-7 cells by Aurora A siRNA; B: Effect of Aurora A knockdown on the growth-inhibition
activity of T1; C: Effect of Aurora A knockdown on the apoptosis-induction activity of T1. Values were mean6SEM of three independent experiments
in duplicates. Within the panel, the value with a letter was significantly different from that of the corresponding control (c, p,0.001), and the values
with a ‘‘*’’ are significantly different (**, P,0.01; ***, P,0.001).
doi:10.1371/journal.pone.0033656.g006
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evidence to support further investigations to develop tanshinones,

especially T1 as effective therapeutic agents against breast cancer.

It is becoming widely accepted that epigenetic alterations are

universally present in human malignancies. Epigenetic alterations

of the genome such as DNA promoter methylation and chromatin

remodeling play an important role in tumorigenesis [34,35].

Recent findings also indicate epigenetic modifications as key

factors in breast carcinogenesis, and as important targets for

preventative care and therapeutics because of their potential for

reversal [36,37]. Epigenetic modification has been recognized as

an important mechanism by which a variety of natural bioactive

compounds exert their anti-cancer effect [38,39,40,41]. However,

it has not been reported if epigenetic mechanism is responsible for

the tanshinones’ anti-cancer activity. Our current study provided,

at the first time, the promising evidence to support that histone

acetylation is an important epigenetic mechanism that behinds the

overexpression of Aurora A in breast cancer and governs the

downregulation of Aurora A function by tanshinones. This study

also supports future investigation to understand how histone

acetylation in the primer 4-amplified region of Aurora A gene

promoter significantly modulates Aurora A gene expression.

It is important to note that the triple-negative breast cancer

(TNBC) cell line MDA-MB231 was very sensitive to T1, but not

CT or T2A. TNBC is clinically characterized as more aggressive

and less responsive and more resistant to standard treatment.

Searching for effective strategies for the treatment of TNBC has

become the top priority in breast cancer therapy. Our results

warrant further investigation to determine if T1 may serve as

a novel candidate agent for the management of TNBC.

Identification of T1 as a potent anti-TNBC agent could have

significant impact on developing novel therapeutic strategies for

the treatment of TNBC.

Figure 7. Epigenetic modifications of Aurora A expression by T1 treatment in breast cancer cells. A: Effect of the demethylating agent
59-Azacytine (5-AZA) or the histone deacetylase inhibitor sodium butyrate (SB) treatment on Aurora A gene expression in MCF-7 cells; B: Identification
of histone H3 acetylation level of DNA promoter areas in Aurora A gene that are associated with overexpression of Aurora A gene in MCF-7 cells by
CHIP; C: Effects of T1 treatment (3 mM) on acetylation levels of histone 3 of Aurora A gene by CHIP; D: Effects of SB (1 mM) treatment on the activity of
T1 in inhibiting the growth of MCF-7 cells; E: Scheme showing the CHIP primer locations for Aurora A gene. Values were mean6SEM of three
independent experiments in triplicates. Within the panel, the value with a letter is significantly different from that of the corresponding control (a,
p,0.05; b, p,0.01), and the values with a ‘‘*’’ are significantly different (*, P,0.05).
doi:10.1371/journal.pone.0033656.g007

Tanshinones and Breast Cancer Inhibition
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Our studies showed that T1 inhibited the growth of breast

cancer cell lines at the IC50 doses of 4–9mM (Figure 1). Previous

studies have indicated that the blood levels of tanshinones after

oral administration could reach the high nM range [42,43,44,45].

This may raise the concern if tanshinones may have significant

activity in vivo. On the other hand, our previous animal studies

showed that T1 had potent in vivo activity in inhibiting the growth

of prostate [33] and lung tumors [46]. Although the blood T1

levels were not determined, it would be expected to be below the

in vitro IC50 levels. We hypothesize that the optimal growth

conditions employed in the in vitro studies with carefully

controlled media conditions, temperature and oxygenation may

not be predictive of the complex and harsh in vivo conditions in

the tumor microenvironment, in which hypoxia, necrosis, and

suboptimal perfusion and diffusion limit nutrient availability and

removal of metabolic waste. It is thus imperative to apply clinically

relevant animal models to verify the efficacy of tanshinone

treatment at safe doses.

In conclusion, our study provided at the first time, to the best of

our knowledge, the supporting evidence to suggest that T1 have

potent anti-breast cancer activity in part via downregulation of

Aurora A expression and function. Our results also suggest further

research in developing tanshinones and their derivatives as novel

Aurora A-targeting drug candidates. Moreover, our results

warrant further investigation to evaluate the effect of T1 on

TNBC. Together with our previous findings that T1 also had

potent anti-angiogenesis activity and minimal side effects in vivo,

our studies provide strong evidence to support further investiga-

tions on developing T1 as effective and safe agent for the therapy

and prevention of breast cancer.

Materials and Methods

Ethics Statement
Breast tumors and breast tissues adjacent to tumors from breast

cancer patients and normal breast tissues from healthy women

were purchased from Cooperative Human Tissue Network

(Philadelphia, PA). The protocol was reviewed and approved by

the Committee on Clinical Investigation at Beth Israel Deaconess

Medical Center.

Materials
Tanshinones (CT, T2A and T1) were purchased from LKT (St.

Paul, MN), and the purity was verified by high performance liquid

chromatography. Tissue culture media, fetal bovine serum (FBS),

and trypsin were purchased from Life Technologies, Inc. (Grand

Island, NY). 59-Azacytidin (5-AZA), Sodium butyrate (SB) and

Propidium iodide (PI) were from Sigma (St. Louis, MO). RNase A

and 3-(4,5-dimethyl-thiazol-2yl)-5-(3-carboxymethoxyphenyl) -2-

(4-sulfophenyl)-2H-tetrazolium (MTS) were from Promega (Ma-

dison, WI).

The antibodies used in this study were: cyclin B1 (Oncogene

Research Products, Boston, MA), Bcl-2 (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA), c-PARP, bax, cyclin D, CDK4, cdc2, p-

cdc2, Aurora kinase A and survivin (Cell Signaling, Beverly, CA)

and b-actin (Merck Co., Darmstadt, Germany).

Cell Lines and Human Tissues
Human breast cancer cell lines (MCF-7, MDA-MB231,

SKBR3, MDA-MB453) were obtained from American Type

Culture Collection and maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% (v/v) heat-inactivated

FBS and antibiotics. All cells were maintained at 37oC in

a humidified atmosphere of 95% air and 5% CO2. Human

mammary epithelial cells (HMEC) were obtained from Lonza

(Walkersville, MD) and cultured in mammary epithelium basal

medium (MEBM) plus MEGM single quotes (Lonza) at 37oC in

a humidified atmosphere of 95% air and 5% CO2.

Cell Growth Assay
The effects of Tanshinones on cell growth were determined by

using Cell Titer 96 Aqueous One Solution Reagent, MTS

(Promega) as described previously [47]. Briefly, MCF-7 (6000),

MDA-MB231 (3000), SKBR3 (7000), or MDA-MB453 (8000)

cells were plated in each well of 96-well plate and allowed to attach

overnight. Cells were then treated with tanshinones at desired

concentrations or dimethyl sulfoxide (DMSO) as the vehicle and

incubated for 72 hours. MTS was added and incubated for 2 to

4 hours at 37oC in 5% CO2 and light absorbance of formazan was

measured at 490 nm in a microplate reader (VersaMax, Molecular

Device, Sunnyvale, CA). The experiments were independently

performed at least three times, each in triplicates. The results were

confirmed by direct cell counting using a hemocytometer.

Cell Cycle Analysis and DNA Fragmentation
Cell cycle distribution and DNA fragmentation as a marker of

apoptosis in MCF-7 and MDA-MB231 cells were determined by

flow cytometry following the described procedures (Becton

Dickinson, Immunocytometry Systems, Mountview, CA) for cell

cycle distribution using programs provided by Becton Dickinson.

Briefly, cells (MCF-7 and MDA-MB231) were treated with T1 at

desired concentrations for 48 hours, collected, fixed and then

stained with 50mg/ml PI (together with 50mg/ml RNase A).

Stained cells were analyzed by using FACScans (Becton

Dickinson, Mountview, CA) for fragmented DNA and cell cycle

using programs provided by Becton Dickinson. The Sub-G0

proportion represented DNA fragmentation and was considered as

a parameter of apoptosis. The experiment was independently

performed repeated at least once, each in duplicates.

Annexin V and PI Staining for Apoptosis Detection
The effect of Aurora A silencing on the apoptosis-induction

activity of T1 was determined by Annexin V-PI apoptosis

detection kit (Chemicon International Inc, Billerica, MA) following

the instruction of kit. Briefly, treated MCF-7 cells were

resuspended in Annexin V solution and incubated at room

temperature for 15 min, PI was then added for another 5-min

incubation in the dark. Apoptotic cells were analyzed by flow

cytometry (Becton Dickinson, Immunocytometry Systems, Mount-

view, CA). The experiments were independently performed at

least twice, each in duplicates.

Quantitative Real Time Reverse Transcription-PCR
Total RNA was isolated by using Qiagen RNeasy Mini Kit

(Qiagen, Valencia, CA). First-strand cDNA synthesis used 100ng

random primer (Invitrogen, Carlsbad, CA), 1.0mg of total RNA,

10mM dNTP and 200 units of reverse transcriptase (Invitrogen,

Carlsbad, CA) per 20ml reaction. The sequences of primers used in

this study were listed in Table S1. PCRs were performed in a 25ml
final volume by using SYBR Green master mix from SABios-

ciences (SABiosciences, Frederick, MD). Relative mRNA expres-

sion was calculated by the DDCt comparative methods using b-
actin as an internal control.

Aurora A Silencing by siRNA
The Aurora A silencing by siRNA followed the method

described by Lentini and coworkers [23] with appropriate
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modifications. Briefly, 86104 MCF-7 cells were seeded in a 6 well

plate and incubated for 24h. The silencer negative control and

siRNA for Aurora A (Ambion, Austin, TX) were diluted in Opti-

MEM I Reduced Serum Medium (Invitrogen, Carlsbad, CA) and

transfected with Lipofectamine 2000 according to the manufac-

turer’s instructions. The final concentration of siRNA added to the

cells was 33 nM. The duplex siRNA sequence for Aurora A was as

follows: 59-AUGCCCUGUCUUACUGUCATT-39.

Sodium Bisulfite Treatment of DNA and Methylation
Specific PCR (MSP) Analysis
The DNA promoter methylation status of specific gene was

calculated by using sodium bisulfite treatment of DNA and

methylation specific PCR (MSP) analysis [48]. Briefly, DNA was

extracted by using DNeasy Blood & Tissue Kit (Qiagen, Valencia,

CA). 2mg genomic DNA was diluted in 20mL water and subjected

to bisulfite DNA conversion according to the protocols provided in

the Epitect Bisulfite Kit (Qiagen, Valencia, CA). The converted

DNA was then purified for MSP analysis by using PCR

amplifications. A typical reaction consisted of 2.5 mL of 10X

standard PCR buffer, 0.4 mL 10 mM dNTP, 2.5 U platinum Taq

DNA polymerase (Invitrogen), 25 pmol of each methylated or

unmethylated DNA-specific primers, and ultrapure DNAse-/

RNAse-free water in a total volume of 25 mL. PCR products will

be resolved on non-denaturing polyacrylamide gels, stained with

ethidium bromide, and visualized under UV illumination.

Chromatin Immunoprecipitation (CHIP)
The experiment was performed according to the description of

the Magna ChIPTM& EZ-Magna ChIPTM Kit (Millipore, Bill-

erica, MA). In brief, cells were fixed by formaldehyde and

harvested. The cells were then broken open for nuclear extraction

and the DNA was sheared to 200–1000bp fragments by

sonication. The sonicated DNA was used for immunoprecipitation

by using anti-acetyl histone antibody. The immunoselected DNA

was further purified and analyzed by quantitative real-time PCR

using specific primers of Aurora A (Table S1). Q-PCR values were

normalized to input and enrichment compared to IgG control

samples.

Western Blot Analysis
Cells were treated with different concentrations of tanshinones,

cell lysates were prepared, and protein expression was determined

following the procedures we previously described [47,49]. The

protein levels were quantitated by using densitometric analysis by

using NIH image analysis software and expressed as percentages of

the control after being normalized with the housekeeping protein

of b-actin. The primary antibodies used were Aurora A (1:1000),

bcl-2 (1:200), cyclin B (1:1000), cdc2 (1:1000), CDK4 (1:1000),

cyclin D (1:1000), c-PARP (1:1000), p-cdc2 (1:1000), survivin

(1:1000) and b-actin (1:10,000).

Statistical Analysis
Results were expressed as group means6SEM and analyzed for

statistical significance by analysis of variance followed by Fisher’s

protected least-significant difference based on two-side compar-

isons among experimental groups by using Statview 5.0 program

(SAS Institute, Inc., Cary, NC). A P , 0.05 was considered

statistically significant.

Supporting Information

Figure S1 Representative FACS histograms showing the
effects of T1 treatments (3 and 4mM) on cell cycle
progression in MCF-7 (A-C) and MDA-MB231 (D-F) cell
lines.

(TIF)

Figure S2 Effects of T1 treatment (4mM) on Aurora A
gene expression in MCF-7 cells. Values were mean6SEM of

three independent experiments in triplicates. The value with

a letter is significantly different from that of the corresponding

control (c, p,0.001).

(TIF)

Figure S3 The representative image showing unmethy-
lation status of Aurora A gene DNA promoter in MCF-7,
MDA-MB231, SKBR3 and MDA-MB453 human breast
cancer cell lines, as determined by methylation specific
PCR (MSP).

(TIF)

Table S1 Sequences of the primers.

(DOC)

Table S2 Raw Ct values for Figure 7 A, B, and C.

(DOC)
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