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Annexins are an extensive superfamily of structurally related calcium- and

phospholipid-binding proteins, largely conserved and widely distributed

among species. Twelve human annexins have been identified, referred to as

Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread

throughout the genome on eight different chromosomes. According to their

distinct tissue distribution and subcellular localization, annexins have been

functionally implicated in a variety of biological processes relevant to both

physiological and pathological conditions. Dysregulation of annexin expression

patterns and functions has been revealed as a common feature in multiple

cancers, thereby emerging as potential biomarkers and molecular targets for

clinical application. Nevertheless, translation of this knowledge to the clinic

requires in-depth functional and mechanistic characterization of dysregulated

annexins for each individual cancer type, since each protein exhibits varying

expression levels and phenotypic specificity depending on the tumor types. This

review specifically and thoroughly examines the current knowledge on annexin

dysfunctions in carcinogenesis. Hence, available data on expression levels,

mechanism of action and pathophysiological effects of Annexin A1-13

among different cancers will be dissected, also further discussing future

perspectives for potential applications as biomarkers for early diagnosis,

prognosis and molecular-targeted therapies. Special attention is devoted to

head and neck cancers (HNC), a complex and heterogeneous group of

aggressive malignancies, often lately diagnosed, with high mortality, and

scarce therapeutic options.
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Introduction

Annexins are an extensive multigene superfamily of proteins

that possess high structural and biological homology (40–60%)

(Gerke and Moss, 2002; Guo et al., 2013b) and whose main

biochemical property is the binding or “annexing” to

phospholipid membranes in a Ca2+-dependent manner (Moss

and Morgan, 2004; Lim and Pervaiz, 2007). There are more than

500 annexins described in different species, which are widely

distributed among eukaryotes, but largely absent in prokaryotes

and yeasts (Fernandez andMorgan, 2003). The high evolutionary

conservation of annexins among species and their presence in all

higher eukaryotic organisms suggest an indispensable role in cell

biology (Moss and Morgan, 2004). In humans, there are twelve

annexins described (Figure 1), conventionally referred to as

Annexin A1-13 (the ANXA12 gene is unassigned) (Morgan

et al., 1999a), whose genes are spread throughout the genome

on chromosomes 1, 2, 4, 5, 8, 9, 10 and 15 (Table 1) (Moss and

Morgan, 2004).

Structurally, annexins are characterized by a highly

conserved C-terminal core domain composed of at least four

conserved structural repeats (each one of 70 amino acids long),

where the calcium and phospholipids binding domains are

located (Figure 1) (Mirsaeidi et al., 2016). In addition, each

annexin has a unique N-terminal domain with a variable

length and amino acid sequence, involved in protein-protein

interactions and responsible for their biological and functional

specificity (Figure 1) (Gerke and Moss, 2002; Mirsaeidi et al.,

2016). This variable N-terminal region contains binding sites for

multiple protein partners, including members of the calcium

binding S100 family (Rescher and Gerke, 2008; Rintala-Dempsey

et al., 2008), and also for various kinases related to signaling

pathways, such as the proto-oncogene tyrosine-kinase Src and

the calcium-controlled serine threonine kinase PKC (Kheifets

et al., 2006; Hayes and Moss, 2009).

Annexins are usually cytosolic and soluble proteins with a

stable form, but also detectable in the nucleus and the cell surface

(Mirsaeidi et al., 2016). In response to specific stimuli, these

proteins could be translocated through various types of

intracellular membranes, and transported to the cell exterior

via an endoplasmic reticulum/Golgi-dependent pathway

(Boudhraa et al., 2016).

Regarding their functions, annexins have been implicated in

a large variety of biological processes, and in the regulation of

several cellular membrane functions, such as cell adhesion and

morphology, vesicle organization, endo- and exocytosis,

membrane trafficking and scaffolding, maintaining membrane

stability under stress conditions or regulation of cytoskeleton

dynamics (Hayes et al., 2004; Rescher and Gerke, 2004; Draeger

et al., 2011; Schloer et al., 2018). Accordingly, these biochemical

properties make annexins perfect candidates to transduce the

extracellular stimulus across the membrane into the activation of

intracellular signaling pathways to trigger multiple cellular

responses such as proliferation, apoptosis, inflammatory

activity, angiogenesis, immune response regulation, cell

differentiation and also cell motility and invasion (Gerke and

Moss, 2002; Ling et al., 2004; Schloer et al., 2018).

The expression levels and tissue distribution vary widely in

both physiological and pathological conditions. Thus, some

annexins such as Annexins A1, A2, A3, A4, A5, A6, A7 and

A11 exhibit an ubiquitous expression, whereas others show very

restrictive expression patterns, such as Annexin A8 in placenta

and skin, Annexin A10 in stomach and Annexin A13 in small

intestine (Fernandez and Morgan, 2003) (Table 2). Although

FIGURE 1
Schematic overview of annexin structural organization. Purple line, N-terminal tails; Dark blue, C-terminal core domains including four annexin
repeats (duplicated to eight in ANXA6); Light blue, annexin repeats harboring non-functional type II calcium binding sites; Key residues are indicated
and represented as spheres, and myristoylation as yellow zig-zag lines.
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direct evidence for a causative role of annexins in human diseases

has not yet been demonstrated, several pathologies such as

diabetes, cardiovascular and autoimmune diseases, infection

and cancer have been associated with annexin dysfunctions,

so termed “annexinopathies” (Rand, 1999; Hayes et al., 2007).

Growing evidences have revealed that annexins are

frequently and commonly dysregulated in multiple cancers,

including HNC. As summarized in Table 1, altered expression

levels of each annexin (both mRNA and protein) are frequently

detected either upregulated or downregulated depending on the

cancer type. Not surprisingly, annexin expression changes cause

widespread functional effects on multiple biological and cellular

processes including various cancer hallmarks (Table 2). On this

basis, several annexins have emerged as potential biomarkers for

cancer diagnosis, prognosis, disease monitoring, prediction of

treatment response and/or therapeutic targets (Table 3).

Head and neck cancers (HNC) represent the seventh most

common cancer worldwide, comprising a highly diverse and

heterogeneous group of malignancies (Mody et al., 2021). Most

head and neck malignancies are diagnosed at a late stage due to

the scarcity of specific symptoms. Mortality remains high mainly

related to locoregional recurrences and second primary tumors

(Leemans et al., 2011). Despite continuous advancements in the

different treatment modalities (surgery, radio- and

TABLE 1 Overview of annexin expression dysregulation in human cancers vs. normal samples (unless stated otherwise). Transcriptomic and protein
data was obtained from TCGA and CPTAC, respectively. TIMER 2.0 (http://timer.cistrome.org/) was used to asset differences in expression level
whereas UALCAN webtool (http://ualcan.path.uab.edu/) was used for protein levels.

Overview of annexin expression dysregulation in human cancers VS. normal samples

mRNA Protein

Annexin Locus Upregulated Downregulated Upregulated Downregulated

ANXA1 Chr9 q21.13 CESC, CHOL, GBM, KIRC, KIRP,
LIHC, THCA

BRCA, HNSC, KICH, LUAD, PRAD,
READ

KIRC, UCEC,
PAAD, GBM

BRCA, COAD, LUAD, HNSC,
LIHC

ANXA2 Chr15, q22.2 CESC, CHOL, COAD, ESCA, GBM,
HNSC, KIRC, KIRP, LIHC, STAD,
THCA, UCEC

BRCA, KICH, LUAD, PRAD KIRC, PAAD,
GBM, LIHC

BRCA, COAD, LUAD, HNSC

ANXA3 Chr 4, q21.21 CESC, CHOL, COAD, READ, SKMC
(vs. metastasis), STAD, UCEC

BRCA, GBM, KICH, KIRC, LIHC,
LUAD, LUSC, THCA

COAD, UCEC,
PAAD

BRCA, KIRC, LUAD, GBM,
LIHC

ANXA4 Chr 2, p13.3 BLCA, CHOL, COAD, ESCA, GBM,
HNSC, KIRC, KIRP, LIHC, READ,
STAD

KICH, LUAD, LUSC, PRAD, UCEC COAD,
KIRC, GBM

BRCA, OV, LUAD, PAAD,
LIHC

ANXA5 Chr 4, q27 CHOL, COAD, ESCA, GBM, HNSC,
KIRC, KIRP, LIHC, STAD, THCA

BLCA, BRCA, CESC, KICH, LUAD,
LUSC, PCPG, UCEC

KIRC,
PAAD, GBM

BRCA, OV, COAD, UCEC,
LUAD, HNSC, LIHC

ANXA6 Chr 5, q33.1 KIRC, PCPG BLCA, BRCA, CESC, GBM, KICH, KIRP,
LUAD, LUSC, PRAD, SKCM (vs.
metastasis), THCA, UCEC

BRCA, COAD, OV, KIRC,
UCEC, LUAD, HNSC, GBM,
LIHC

ANXA7 Chr 10, q22.2 CHOL, ESCA, HNSC, LIHC, LUAD,
STAD

BLCA, COAD, GBM, KICH, KIRC,
PRAD, READ, SKMC (vs. metastasis),
THCA, UCEC

PAAD BRCA, COAD, OV, KIRC,
UCEC, LUAD, GBM, LIHC

ANXA8 Chr 10, q11.22 BLCA, CESC, COAD, ESCA, HNSC,
KIRC, KIRP, LUSC, SKCM (vs.
metastasis), STAD, THCA, UCEC

BRCA, GBM, KICH, LIHC, LUAD,
PRAD

ANXA9 Chr 1, q21.3 BRCA, CHOL, COAD, LIHC, LUAD,
READ, SKCM (vs. metastasis), STAD

HNSC, KICH, KIRC, KIRP, LUSC,
PRAD, THCA, UCEC

KIRC, LUAD, HNSC, PAAD,
LIHC

ANXA10 Chr 4, q32.3 HNSC, LUAD, LUSC, PAAD, PRAD CHOL, LIHC

ANXA11 Chr 10, q22.3 CHOL, LIHC, THCA BLCA, BRCA, COAD, GBM, HNSC,
KICH, KIRC, LUSC, SKCM (vs.
metastasis)

OV, PAAD BRCA, COAD, KIRC, LUAD,
HNSC, LIHC

ANXA13 Chr 8, q24.13 CHOL, ESCA, HNSC, KIRC, KIRP,
LIHC, PAAD, STAD

BRCA, CESC, COAD, KICH, PRAD,
UCEC

UCEC, HNSC COAD, LIHC

Data from TIMER 2.0 http://timer.cistrome.org Data from UALCAN http://ualcan.path.uab.edu/
analysis-prot.html

BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma;

COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma (highlighted in bold); KICH, Kidney

Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung

squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; OV, Ovarian serous

cystadenocarcinoma; READ, Rectum adenocarcinoma; SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; UCEC, Uterine Corpus Endometrial Carcinoma.
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TABLE 2 Functional and mechanistic roles of annexin dysregulation in cancer biology.

Roles of annexin dysregulation in cancer biology

Annexin Tissue
expression

Structural singularities Biological function Signaling pathways

ANXA1 Ubiquitous Cell Proliferation; Apoptosis; Differentiation; Cell
Migration; Invasion; Immunomodulation;
Inflammation; Membrane remodeling; Membrane
trafficking; Phagocytosis; Cell adhesion; Cell-cell
communication; Autophagy (Alldridge and
Bryant, 2003; Solito et al., 2003; Petrella et al., 2005;
Lim and Pervaiz, 2007; D’Acquisto et al., 2008; Yi
and Schnitzer, 2009; Li et al., 2011; Dalli et al.,
2012; Yang et al., 2013; Cooray et al., 2013;
Gastardelo et al., 2014; Bist et al., 2015; Zhu et al.,
2018; Raulf et al., 2018)

GC mediator; EGFR, HGFR, PDGFR and PKC
substrate; Regulation of NFκB, ERK-MAPK,
Rho-GTPases, EGFR/STAT3, PI3K/AKT and
TRAIL pathways; Participate in BAD
dephosphorylation; FPR ligand; PLA2 inhibition;
BECN1 inhibition; M2 macrophage
differentiation (Davidson et al., 1991; Raynal and
Pollard, 1994; Alldridge and Bryant, 2003; Solito
et al., 2003; Petrella et al., 2005; Lim and Pervaiz,
2007; Zhang et al., 2010; Li et al., 2011; Cooray
et al., 2013; Gastardelo et al., 2014; Bist et al.,
2015; Gobbetti and Cooray, 2016; Zhu et al., 2018;
Araújo et al., 2021)

ANXA2 Ubiquitous Key phosphorylation residues
Ser11, Ser25 and Tyr23 (Liu
et al., 2003a)

Cell Proliferation; Differentiation; Cell Migration;
Invasion; Membrane remodeling; Membrane
trafficking; Immunomodulation; Angiogenesis
(Creutz, 1992; Harder and Gerke, 1993; Merrifield
et al., 2001; Zobiack et al., 2003; Benaud et al., 2004;
Morel and Gruenberg, 2007; de Graauw et al.,
2008; Bao et al., 2009; Shetty et al., 2012; Chao
et al., 2015; Rocha et al., 2018; Mahdi et al., 2020;
Mao et al., 2021)

Regulation of DOCK3/β-Cat/WAVE2, TGF-β,
AKT, Twist/Snail and JNK/cJun pathways; Src/
ANXA2/STAT3 and EphA2/YES1/ANXA2 axis
(Rescher et al., 2008; Kanagasabai et al., 2010;
Zheng et al., 2011; Wang et al., 2012; Chen et al.,
2015; Cui et al., 2016; Feng et al., 2017; Rocha
et al., 2018; Mao et al., 2021)

ANXA3 Ubiquitous Two relevant tryptophan
residues (W5 and W190)
(Sopkova et al., 2009)

Cell Proliferation; Apoptosis; Cell Migration;
Angiogenesis; Inflammation; Membrane
remodeling; Membrane trafficking (Gerke and
Moss, 2002; Park et al., 2005; Chong et al., 2010;
Faugaret et al., 2011; Meng et al., 2019; Zhang et al.,
2021b)

Regulation of ERK, JNK, PI3K/AKT and EGFR
pathway; PLA2 inhibition (Coméra et al., 1990;
Ruan et al., 2010; Tong et al., 2015; Xu et al.,
2019a; Wan et al., 2020)

ANXA4 Ubiquitous Cell Migration; Invasion; Membrane remodeling
(Kaetzel et al., 2001; Jiang et al., 2018; Xu et al.,
2019b; Wang et al., 2020; Florentsen et al., 2021)

Regulation of PI3K/AKT/eNOS pathway;
Adenylyl cyclase 5 inhibition (Heinick et al., 2015,
2020; Xu et al., 2019b)

ANXA5 Ubiquitous Cell Proliferation; Cell Migration; Invasion; Cell
adhesion; Membrane remodeling (Bouter et al.,
2015; Ding et al., 2017; Li et al., 2018; Sun et al.,
2018; Bouvet et al., 2020)

Regulation of ERK pathway (Wang et al., 2021)

ANXA6 Ubiquitous 8 annexin repeats forming
2 cores in C-terminal (Qi et al.,
2015)

Cell proliferation; Cell Migration; Invasion; Cell
adhesion; Membrane remodeling; Membrane
trafficking, Autophagy; Cholesterol homeostasis
(Potez et al., 2011; Swaggart et al., 2014; Qi et al.,
2015; Boye et al., 2017; Grewal et al., 2017)

Regulation of EGFR/Ras/MAPK, FAK/PI3K and
YAP pathway; Regulation of calcium entry (Pons
et al., 2001; Grewal et al., 2005, 2017;
Monastyrskaya et al., 2009; Muga et al., 2009;
Cornely et al., 2011; Koese et al., 2013; Wang
et al., 2013; Qi et al., 2015)

ANXA7 Ubiquitous Long hydrophobic N-terminal
(Grewal et al., 2016)

Cell proliferation; Calcium homeostasis;
Membrane trafficking; Aggregation of chromaffin
granules (Gerke and Moss, 2002; Grewal et al.,
2016)

Regulation of COX-dependent PGE2 production;
Regulation of EGFR pathway; GTPase function
(Grewal et al., 2016)

ANXA8 Placenta and
skin

Cell Adhesion; Angiogenesis; Membrane
remodeling; Membrane trafficking; Endosomes
biology (Goebeler et al., 2006, 2008; Poeter et al.,
2014; Heitzig et al., 2017)

Participation in VEGFR signaling (Heitzig et al.,
2017)

(Continued on following page)
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TABLE 2 (Continued) Functional and mechanistic roles of annexin dysregulation in cancer biology.

Roles of annexin dysregulation in cancer biology

Annexin Tissue
expression

Structural singularities Biological function Signaling pathways

ANXA9 Ubiquitous Unable to bind calcium (Morgan
et al., 1999a)

Cell proliferation; Cell Migration; Invasion;
Epidermis biology (Boczonadi and Määttä, 2012;
Yu et al., 2018; Zhou et al., 2021)

Regulation of TGF-β pathway (Zhou et al., 2021)

ANXA10 Stomach Unable to bind calcium (Morgan
et al., 1999b)

Transcription regulator (Quiskamp et al., 2014) Regulation of Akt and ERK/MAPK pathway
(Kodaira et al., 2019)

ANXA11 Ubiquitous Long hidrofobic N-terminal
(Gerke and Moss, 2002)

Cell proliferation; Apoptosis; Membrane
remodeling; Membrane trafficking; Sex
differentiation (Wang et al., 2014)

Regulation of Cell cycle progression (Wang et al.,
2014)

ANXA13 Small intestine Myristoylated at N-terminal
(Gerke and Moss, 2002)

Membrane trafficking; Lipid-raft dynamics (Lafont
et al., 1998; Plant et al., 2000)

TABLE 3 Clinical significance and potential therapeutic implications of annexin dysregulation in human cancers.

Clinical and therapeutic relevance of annexins

Annexin Good
prognosis

Poor prognosis Diagnosis/Stratification Therapy resistance Potential targeted
therapy

ANXA1 Low: renal cancer
Fu et al. (2020)

High: HER2+ BC; ESCC Paweletz
et al. (2000)
Low: HNSCC Garcia Pedrero et al.
(2004)

Low, HNSCC differentiation
grading, detection of epithelial
dysplasia Garcia Pedrero et al.
(2004); low, OSCC blood
biomarker Faria et al. (2010)

ESCC Han et al. (2018);
multiple myeloma Jia et al.
(2018); NPC Huang et al.
(2016)

Ac 2-26 Cardin et al. (2019);
Guan et al. (2019)

High: OC Fu et al.
(2020)

ANXA2 High:
osteosarcoma
Gillette et al.
(2004)

High: ESCC Ma et al. (2014); NPC
Chen et al. (2015); NSLC; HCC;
OC; BC Li et al. (2021b)
Low: HNSCC Rodrigo et al.,
2011b. (2014), sinonasal
adenocarcinoma Rodrigo et al.
(2011a)

NPC Chen et al. (2015); BC
Madureira et al. (2012);
Grindheim et al. (2016)

CLG-shANXA2 Andey et al.
(2014); anti-ANXA2 antibodies
Lokman et al. (2013); ANXA2-
targeting peptide motif
CBP12 Staquicini et al. (2017),
Lm-ANXA2 Kim et al. (2019)

ANXA3 High: GC; HCC; BC Liu et al.
(2021a)

Prostate cancer Schostak et al.
(2009)

HCC; OC; lung cancer;
prostate cancer; BC; CRC
Liu et al. (2021a)

ANXA4 High: OSCC Liu et al. (2016a); OC
Choi et al. (2013)

OSCC lepcha et al. (2021) MESO Yamashita et al.
(2012); NSCLC Gaudio et al.
(2016); Zheng et al. (2018);
Scala et al. (2021); OSCC
Xiong et al. (2011); OC
Morimoto et al. (2014)

ANXA5 Positive: adult
AML Niu et al.
(2019)

High: glioma Zhong et al. (2021);
HCC Sun et al. (2018); bladder Wu

NPC (Tang et al., 2012)

(Continued on following page)
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TABLE 3 (Continued) Clinical significance and potential therapeutic implications of annexin dysregulation in human cancers.

Clinical and therapeutic relevance of annexins

Annexin Good
prognosis

Poor prognosis Diagnosis/Stratification Therapy resistance Potential targeted
therapy

et al. (2021); CRC Xue et al. (2009);
CSCC Shapanis et al. (2021)

ANXA6 Low: CC Sun et al. (2020); basal-
like BC* Koumangoye et al. (2013)
High: PDA Leca et al. (2016)

CC (Lomnytska et al., 2010);
esophageal adenocarcinoma
(Zaidi et al., 2014); HCC (Meier
et al., 2016); OC (Noreen et al.,
2020)

TNBC Koumangoye et al.
(2013); Widatalla et al.
(2019); Li et al. (2021a)

ANXA7 High: GBMHung
and Howng.
(2003)

High: GCaYuan et al. (2014); HCC
Sun et al. (2009a); HCC Sun et al.
(2009b); HER2- BC Srivastava
et al. (2001a), Srivastava et al.
(2004).
Low: prostate Srivastava et al.
(2001a), Srivastava et al. (2004).

Melanoma less invasive
subtypes Kataoka et al. (2000);
HER2- BC Srivastava et al.
(2004)

ANXA8 High: GC Ma et al. (2020);
pancreatic cancer Pimiento et al.
(2015); OC Gou et al. (2019); Zhu
et al. (2020); OSCC Oka et al.
(2016)

ER- basal-like DCIS subgroup
Rossetti et al. (2016)

ANXA9 High: CRC Miyoshi et al. (2014);
Yu et al. (2018); BC Xiao et al.
(2019); GC Zhou et al. (2021); OC
Kou et al. (2021)

HNSCC differentiation grading
Salom et al. (2019)

OC Kou et al. (2021)

ANXA10 High: LUAD Yumura et al. (2022);
GBM Xu et al. (2021); OC Wang
et al. (2019); PDAC Ishikawa et al.
(2022b); small bowel
adenocarcinoma Ishikawa et al.
(2021); PTC Liu et al. (2021b);
CRC Bae et al. (2015); ESCC
Kodaira et al. (2019); intrahepatic
cholangiocarcinoma Shao et al.
(2022); melanoma Zhang et al.
(2021a)
Low: early GC Ishikawa et al.
(2020); bladder Munksgaard et al.
(2011); HCC Liu et al. (2002),
HCC Liu et al. (2012)

Serrated neoplasia pathway in
CRC Bae et al. (2015); specific
biomarker for gastrointestinal
and pancreatic
adenocarcinomas Lu et al.
(2013); PDA Zhu et al. (2017)

ANXA11 High: bladder
Yao et al. (2022)

High: GC Hua et al. (2018); CRC
Duncan et al. (2008); AML Song
et al. (2022)

Bladder cancer Wu et al. (2021) OC Song et al. (2007);
mCRC Kim et al. (2011),
Kim et al. (2013); Roh et al.
(2016); AML Song et al.
(2022)

ANXA13 High: CRC Jiang et al. (2017);
LUAD Xue et al. (2020)

aControversial.

Red: tumor-promoter role.

Green: tumor-suppressor role.

AD, Adenocarcinoma; AML, Acute myeloid leukemia; BC, Breast carcinoma; CC, Cervical cancer; CRC, Colorectal carcinoma; mCRC, metastatic colorectal carcinoma; CSCC, cutaneous

squamous cell carcinoma; DCIS, Ductal carcinoma in situ; ESCC, Esophageal squamous cell carcinoma; ER, Estrogen receptor; GBM, Glioblastoma multiforme; CBP12, Colorectal cancer

binding peptide; GC, Gastric cancer; CLG, Cationic ligand-guide; HCC, hepatocellular carcinoma; HER2+/−, human epidermal growth factor receptor 2; HNSCC, Head and neck

squamous cell carcinoma; LUAD, Lung adenocarcinoma; MESO, Mesothelioma; NPC, Nasopharyngeal cancer; NSCLC, Non-small cell lung cancer; PDA, Pancreatic ductal

adenocarcinoma; PTC, Papillary thyroid cancer; OC, Ovarian carcinoma; OSCC, Oral squamous cell carcinoma; TNBC, Triple-negative breast cancer.
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chemotherapy), survival rates for HNSCC patients have not

been substantially improved in recent decades. At present,

there are only few molecular-targeted therapies approved by

the FDA: cetuximab (anti-EGFR) (Vermorken et al., 2007),

nivolumab and pembrolizumab (anti-PD-1/PD-L1) (Cramer

et al., 2019); however, these treatments only benefit 20–30% of

patients (Cohen et al., 2019). Hence, there is an urgent need

for novel therapeutic targets and more accurate

prognosticators and early diagnosis markers that augment

the limited predictability of the current clinicopathologic

criteria. This review thoroughly and critically examines

current knowledge and reported data on annexin

dysregulation in human cancers with a special focus on

HNC pathogenesis. An overview of all the annexins

aberrantly expressed in HNC (either upregulated or

downregulated) compared to the levels in normal tissue is

depicted in Figure 2 (both mRNA and protein). In the

following subsections, available data on

expression dysregulation of Annexin A1-13 and the

clinical and pathobiological relevance of each protein will

be jointly reviewed, also further discussing future

perspectives for their potential applications as biomarkers

for early diagnosis, prognosis and molecular-targeted

therapies.

FIGURE 2
Violin plot comparison of annexin expression levels in HNSCC patient samples versus normal adjacent tissue. (A) Transcriptomic expression
data were obtained at Xena repository (Goldman et al., 2020) from the TCGA-HNSCC cohort consisting of 44 normal adjacent tissue (N) and
522 primary tumors (T). Transcript per million (TPMs) are shown as log2 transformed (***p < 0.001 by t-test using Welch’s correction; ns, not
significant). (B) Proteomic expression data from 72 normal adjacent tissue (N) and 110 primary tumors (T) were obtained from Proteomic Data
Commons (https://pdc.cancer.gov/pdc/study/PDC000221). Ion intensity is shown as log2 transformed (***p < 0.001, *p < 0.05 by t-test using
Welch’s correction; ns, not significant).
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Annexin A1

Structural and functional characteristics

Annexin A1 (ANXA1) was first described in the 1970s,

characterized as the first member of the annexin superfamily,

and called macrocortin, renocortin and lipomodulin, lipocortin-

1 and lastly named Annexin A1. The ANXA1 gene maps in the

chromosomal region 9q12-q21.2 and encodes a 37-kDa protein,

whose structural features are similar to those of the annexin

superfamily members, and with a variable N-terminal regulatory

region that contains sites of phosphorylation, glycosylation,

acetylation and proteolysis, conferring as such specific

biological properties (Buckingham et al., 2006; Guo et al.,

2013b). ANXA1 can be found in alternatively spliced

isoforms, as proteolytic fragments of its bioactive N-terminus,

interacting with different ligands, and hence could be localized in

the nucleus, cytoplasm, membrane or extracellular matrix

(Boudhraa et al., 2016). ANXA1 was first identified as an

endogenous mediator of the anti-inflammatory effects of the

glucocorticoids. Initially, ANXA1 was studied in neutrophils,

eosinophils and monocytes where it is highly expressed (Perretti

et al., 1996; Hannon et al., 2003; Perretti and Solito, 2004), and

thereafter, it was widely detected in different tissues and involved

in multiple cell processes, including cell survival, proliferation,

apoptosis, differentiation and migration (Lim and Pervaiz, 2007).

ANXA1 is well-known by its participation in the inhibition of

glucocorticoid-induced eicosanoid and phospholipase A2

(PLA2) synthesis (Raynal and Pollard, 1994; Lim and Pervaiz,

2007). ANXA1 is considered a mediator of the anti-

inflammatory, immunosuppressive and antipyretic action of

glucocorticoids, thereby regulating their expression and

secretion (Davidson et al., 1991; Gobbetti and Cooray, 2016).

It has also been reported that ANXA1 may act as an endogenous

inhibitor of NFκB, inducible in response to anti-inflammatory

agents (Zhang et al., 2010). Moreover, ANXA1 is a major

substrate for numerous kinases, such as epidermal growth

factor receptor (EGFR), hepatocyte growth factor receptor

(HGFR/MET), platelet-derived growth factor receptor

(PDGFR) and protein kinase C (PKC) (Lim and Pervaiz,

2007). These phosphorylation events lead to the activation of

several signaling pathways (e.g., ERK-MAPK pathway),

regulating cell proliferation and differentiation (Alldridge and

Bryant, 2003). Seemingly, ANXA1 may create varying regulatory

signals on different pathways that could explain its dual role,

either promoting or inhibiting cell proliferation, as well as

distinct functions and phenotypes depending on the cellular

and tissue context.

ANXA1 may induce apoptosis through calcium release and

BAD proteins dephosphorylation, allowing BAD association to

mitochondria (Solito et al., 2003). During apoptosis,

ANXA1 itself translocate to the nucleus, which can be inhibited

by Bcl-2. ANXA1 can also regulate apoptosis through TRAIL

(Petrella et al., 2005). By contrast, some groups have reported

that ANXA1 exhibits anti-apoptotic properties, probably because

its role depends on the cell type or cellular differentiation status.

ANXA1 is also able to mediate the phagocytosis of apoptotic cells

when it is recruited to the cell surface, where it binds to

phosphatidylserine (PS) (Dalli et al., 2012).

ANXA1 has also been involved in motility and invasion

processes, since mice with ANXA1 overexpression exhibited a

significantly higher wound closure ability, and conversely,

ANXA1 inhibition led to a reduction in the wound healing

ability (Yi and Schnitzer, 2009). It has been described that the

participation of ANXA1 in would healing is mediated by

different signaling pathways such as MAPK, Rho-GTPases

and NFκB (Bist et al., 2015).

Besides, special attention has been focused on studying the

functional roles in membrane remodeling, cell adhesion, migration

and cell signaling through the formyl peptide receptor (FPR), known

receptors for externalized ANXA1 (Cooray et al., 2013; Gastardelo

et al., 2014). FPRs may cause potent and opposite effects depending

on the ligand (Cooray et al., 2013), and ANXA1, having the

strongest affinity for FPR2, triggers different regulatory signaling

pathways in a dose-dependent manner (Karlsson et al., 2005). This

could plausibly explain how ANXA1 may elicit distinct regulatory

signals and pleiotropic functions in different tissues (Boudhraa et al.,

2016).

Noteworthy, during the last years, ANXA1 has emerged as an

immunomodulatory protein and great effort has been devoted to

understand its specific immune-suppressive role during

malignant transformation. In physiological conditions,

ANXA1 promotes immune suppression to counteract

inflammatory process, specifically enhancing the

differentiation of macrophages into M2 (Li et al., 2011). In

cancer context, ANXA1 regulates macrophages activation by

inhibiting the expression and activation of the inducible nitric

oxide synthase (iNOS) (Smyth et al., 2006) or regulating nuclear

EGFR and EGFR/STAT3 signaling pathway to ultimately create

an immunosuppressive environment that facilitates cancer

progression (Araújo et al., 2021).

Altered expression and pathobiological
role in cancer

ANXA1 dysregulation has been frequently detected in many

types of cancer; however, its specific role has not yet been fully

deciphered (Fu et al., 2020). ANXA1 has been found overexpressed

in gastric cancer (Hippo et al., 2001), pancreatic and hepatocellular

carcinoma (Masaki et al., 1996), colorectal cancer (Roth et al., 2010),

lung cancer (Rong et al., 2014), melanoma (Rondepierre et al., 2009),

skin cancer (Hummerich et al., 2006) and endometrial carcinoma

(Voisin et al., 2011). On the other hand, ANXA1 is markedly down-

regulated in breast cancer (Anbalagan et al., 2014; Yuan et al., 2016),

prostate cancer (Kang et al., 2002), esophageal cancer (Paweletz
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et al., 2000), cervical cancer (Liu et al., 2011), lymphoma (Santos

et al., 2009), hilar cholangiocarcinoma (Wang et al., 2010),

intestinal-type sinonasal adenocarcinoma (Rodrigo et al., 2011a)

and also in HNSCC (Garcia Pedrero et al., 2004).

The opposite expression levels of ANXA1 in different tumor

types makes difficult to understand precisely the role played by

ANXA1 during tumorigenesis. Actually, its action shows cellular

or tissue specificity that could be due to post-translational

modifications, potential site re-processing or epigenetic

regulation among others. In fact, the contrasting patterns of

ANXA1 expression in different tumor types is just one of the

enigmas in deciphering the underlying regulatory mechanisms

and phenotypic specificity of ANXA1.

Therapeutic implications

ANXA1 has been related to treatment resistance in several

cancers. It has been reported that serum ANXA1 levels increased

after chemoradiotherapy in esophageal squamous cell carcinoma

(ESCC) patients (Han et al., 2018). ANXA1 knockdown

enhances the antitumor effect of bortezomib in multiple

myeloma (Jia et al., 2018). In HNSCC and nasopharyngeal

cancer (NPC), ANXA1 expression has been correlated with

radiation resistance (Suh et al., 2015; Huang et al., 2016).

These data underscore that ANXA1 could serve as a novel

predictive biomarker of treatment response, and emerge as a

potential co-adjuvant treatment to improve chemosensitivity in

different types of cancer, including HNSCC.

It has been demonstrated that ANXA1 promotes the

switching of macrophages to the protumoral M2 phenotype

preventing the induction of cytotoxic T cell response, thus

creating an immunosuppressed tumor microenvironment that

facilitates tumor progression and dissemination (Araújo et al.,

2021).

ANXA1 was the first annexin found to be implicated in the

plasma membrane repair response. It is recruited within seconds

at the wound region after an injury, demonstrating its function as

stress-responsive protein (McNeil et al., 2006). In this context,

cancer cells are normally under higher stress levels than normal

FIGURE 3
Impact of annexin dysregulation on the hallmarks of head and neck cancer. Schematic representation that summarizes current knowledge on
annexin dysregulation in relation to the hallmarks of cancer defined by Hanahan and Weinberg. Image created with BioRender.com.
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cells, leading to plasmamembrane damage, so ANXA1 could be a

promising adjuvant treatment combined with current oncologic

treatments to prevent plasma membrane repair in cancer cells

after anti-proliferative treatments.

ANXA1 could be therapeutically exploited through its

known receptors, FPR1 and FPR2. These receptors are

predominantly expressed on the surface of several types of

immune cells (macrophages, dendritic cells, neutrophils . . . )

as well as endothelial and epithelial cells (Rescher et al., 2002).

Since ANXA1 expression is closely related to inflammatory

processes, the signaling axis ANXA1/FPR could constitute an

attractive immunomodulatory target for cancer therapies.

ANXA1 regulates apoptosis and clearance of neutrophils and

promotes monocytes recruitment during inflammatory events.

However, the mechanisms responsible for the

immunomodulatory role of ANXA1 have not been completely

elucidated. Seemingly, it has been reported different results

depending the experimental settings and cellular models tested

(D’Acquisto et al., 2008; Yang et al., 2013).

Furthermore, ANXA1 N-terminal mimetic peptide Ac

2–26 has been proposed as a potential therapeutic strategy for

cancer treatment, targeting ANXA1-mediated functions and

related signaling pathways. As a proof of principle, it has been

demonstrated that Ac 2–26 is able to decrease the proliferation of

cervical cancer cells, through the activation of the MAPK family

and targeting p53 to arrest the cell cycle (Cardin et al., 2019). It

has also been showed that Ac 2–26 could be used to treat non-

small cell lung cancer (NSCLC), regulating NFkB pathway (Guan

et al., 2019). Remarkably, this ANXA1mimetic has demonstrated

cardioprotective actions against in vivo myocardial infarction,

thereby effectively reducing cardiac inflammation, fibrosis and

apoptosis (Qin et al., 2019). Fredman and coworkers designed

nanoparticles coupled to Ac 2–26 to target collagen IV as a

treatment for advanced atherosclerotic lesions, which caused a

reduced lesion instability in an FPR2-dependent manner

(Fredman et al., 2015). Hence, the combination of Ac

2–26 with nanoparticles emerges as a useful and promising

therapeutic approach for cancer treatment.

Clinical and biological roles in HNC

A pioneer study led by our research group demonstrated the

downregulation of ANXA1 protein expression in HNSCC tissue

specimens by both Western blot analysis and

immunohistochemistry (Garcia Pedrero et al., 2004). The loss

of ANXA1 expression was significantly associated with poor

prognostic parameters, i.e., larger tumors, locoregional

metastases, poor differentiation, and advanced disease stages.

ANXA1 expression in HNSCCwas closely related with the tumor

differentiation and therefore it emerged as a differentiation

marker potentially applicable for histopathological grading. In

addition, our results unprecedentedly revealed the clinical utility

of ANXA1 for early and accurate detection of epithelial dysplasia,

since ANXA1 loss occurred in early tumorigenesis and was

detected in all dysplastic precancerous lesions (Garcia Pedrero

et al., 2004). We also further contributed to uncover a

transcriptional regulatory mechanism underlying

ANXA1 downregulation in HNSCC. We thus found that miR-

196a/b levels inversely correlated with ANXA1 expression in

paired HNSCC tissue samples and that ANXA1 was a direct

target of these miRNAs (Álvarez-Teijeiro et al., 2017a; Álvarez-

Teijeiro et al., 2017b).

Studies from other groups have confirmed ANXA1 down-

regulation in HNSCC, and further contributed to functionally

and mechanistically characterize the specific role of ANXA1 in

the progression of these tumors. Thus, ANXA1 expression has

been linked to the regulation of different cellular processes in

HNC thereby affecting multiple hallmarks of cancer (Figure 3). It

has been reported that ANXA1 expression inversely correlates

with EGFR, and it regulates the intensity and duration of the

EGFR-dependent signaling events and the exosome phopho-

EGFR release affecting cell-cell communication (Raulf et al.,

2018). In NPC, ANXA1 was found to compete with Cbl for

binding to EphA2, increasing its stability by inhibiting

EphA2 ubiquitination and degradation mediated by Cbl.

Consistently, ANXA1 binding to EphA2 increased

EphA2 levels and its oncogenic activity, enhancing tumor

growth and metastatic dissemination in vitro and in vivo.

Moreover, patients with high expression of both proteins

showed a poorer disease-free survival and overall survival

compared to patients with high expression of only one

protein (Feng et al., 2021).

ANXA1 also regulates autophagy in NPC cells through the

inhibition of the proteins BECN1 and ATG5, promoting cell

migration, invasion and metastasis. ANXA1-mediated

autophagy suppression involves the PI3K/Akt signaling

pathway (Zhu et al., 2018). Likewise, ANXA1 can also exert a

pro-tumorigenic role in HNC by regulating tumor growth and

metastasis through FPR2 (Gastardelo et al., 2014). ANXA1 has

also been linked to radio- and chemoresistance (Zhuwang et al.,

2013; Suh et al., 2015). Moreover, ANXA1 mRNA levels were

found to diminish in OSCC patients compared to controls and

detectable in liquid biopsy, postulating its application as a blood-

based biomarker (Faria et al., 2010).

Annexin A2

Structural and functional characteristics

Annexin A2 (ANXA2; also known as lipocortin II or

calpactin-1 heavy chain) is a peripheral membrane-binding

protein encoded by ANXA2 gene, located at 15q22.2. There

are three pseudogenes located on chromosomes 4, 9, and 10.

ANXA2 protein is mainly expressed at the surface of several cell
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types, including epithelial cells, macrophages and mononuclear

cells (Hedhli et al., 2012; Wang and Lin, 2014). It can be detected

as a monomer, heterodimer or heterotetramer (Waisman, 1995).

It is mainly found as a multifunctional heterotetrametric form

composed by two subunits of ANXA2 bridged non-covalently

with a S100A10 dimer (A2t or AIIt) (Thiel et al., 1992; Deora

et al., 2004). It results in an enhanced binding affinity to

membrane phospholipids; consequently, this complex is

mainly found associated with the plasma membrane and

specific membrane-bound structures. Its subunits contains

three type II and two type III Ca (2+)-binding sites, being

able to mediate the interaction between ANXA2 complex AIIt

(S100A10 and S100A11) and anionic phospholipid, F-actin, and

heparin (Liemann and Lewit-Bentley, 1995; Liemann and Huber,

1997; Filipenko and Waisman, 2001). Phosphorylation at

tyrosine residue Tyr23 induces nuclear translocation, while

phosphorylation of the serine residues Ser11 and Ser25 allows

ANXA2 export from the nucleus (Liu J. et al., 2003).

ANXA2 participates in several cellular functions in both

health and disease. It plays a prominent regulatory role of

membrane trafficking, and actin-related membrane dynamics.

ANXA2/S100A10 heterotetramer formed by Ca2+ presence

binds to cortical actin network, regulating exocytosis (Creutz,

1992), micropinocytosis (Merrifield et al., 2001), and plasmatic

membrane cytoarchitecture (Benaud et al., 2004). The

heterotetrameric complex plays a role in the subcellular

distribution of early and recycling endosome flow process

(Harder and Gerke, 1993; Zobiack et al., 2003), whereas it is

suggested that ANXA2 monomeric form has been related to

cholesterol-mediated endocytosis (Morel and Gruenberg, 2007).

ANXA2 has also been implicated in the maintenance of

fibrinolytic homeostasis by its interaction with tenascin-C and

the tissue-type plasminogen activator on the cell surface, which is

crucial for the degradation of fibrin (Gerke et al., 2005).

Altered expression and pathobiological
role in cancer

ANXA2 dysregulation is a common feature in multiple

cancers (Li Z. et al., 2021). Similar to ANXA1, ANXA2 may

elicit either tumor-promoting or -suppressive mechanisms

depending on the cancer type; however, ANXA2 is frequently

enhanced in metastatic cancers. ANXA2 expression has been

shown to promote proliferation, invasion and metastasis in

gliomas (Zhai et al., 2011), ovarian cancer (Lokman et al.,

2013), hepatomas (Zhang et al., 2013), breast cancer (Sharma

et al., 2006) and pancreatic cancer (Zheng et al., 2011).

Conversely, there are tumors where ANXA2 acts as a tumor

suppressor. In prostate cancer, ANXA2 expression is reduced or

lost in cell lines, and its overexpression inhibited cell migration

(Liu J. W. et al., 2003). ANXA2 is also found downregulated in

ESCC and significantly correlated with lymph node metastasis

and pathological differentiation (Feng et al., 2012). In

osteosarcomas, increased protein expression was correlated

with lower metastatic potential (Gillette et al., 2004).

ANXA2 regulation by post-translational modifications plays

a critical role. In particular, phosphorylation on serine residues

Ser11, Ser25 and tyrosine Tyr23 may have important functional

implications in a variety of cellular processes, which are also

relevant for tumor cell biology as major hallmarks of cancer.

Phosphorylation of Tyr23 residue on ANXA2 has been pointed

as a key regulator of cell motility. Upon Tyr23 phosphorylation,

ANXA2 binds to actin filaments to enhance or inhibit migration

modulating cytoskeletal structure (de Graauw et al., 2008;

Kpetemey et al., 2015).

Tyr23 phosphorylation may promote cell migration by

regulating the DOCK3/β-catenin/WAVE2 axis in different

models of hepatoma cells (Cui et al., 2016). It has also been

reported that Tyr23 phosphorylation triggers epithelial-to-

mesenchymal transition (EMT) mediated by Rho,

transforming growth factor (TGF)-β and Twist/Snail pathways

(Rescher et al., 2008; Zheng et al., 2011; Chen et al., 2015).

ANXA2 has been reported as a major cellular substrate of Src

that phosphorylates ANXA2 on Tyr23 regulating actin

interactions and subsequently cell migration (Shetty et al.,

2012). Based on this, a recent report by Mahdi et al., 2020

demonstrated EGF-dependent ANXA2 phosphorylation on

Tyr24, which was assumed but not demonstrated to be by Src

(Mahdi et al., 2020). In addition, ANXA2 promotes cell invasion

mediated by Src/ANXA2/STAT3 pathway (Rocha et al., 2018).

Similarly, YES1 phosphorylates ANXA2 on Tyr24, which drives

gastric cancer invasion and metastasis by the activation of

EphA2/YES1/ANXA2 axis (Mao et al., 2021).

ANXA2 is indirectly involved in Akt pathway regulation.

When cells are exposed to irradiation, Akt protein binds to the

heat shock protein 27 (HSP27), which ameliorates the effects on

DNA damage and apoptosis by radiation (Kanagasabai et al.,

2010).

ANXA2 influences p53 level by activating JNK/c-Jun

signaling and suppressing p53 expression and its downstream

target genes, p21, BAX and GADD45, which regulate apoptosis

(Wang et al., 2012; Feng et al., 2017). It is well-known that

nutrition and oxygen are indispensable for tumor cells to grow

and survive. So, in the early stage of tumor starvation,

ANXA2 may support starving cells by inducing autophagy

(Moreau et al., 2015).

There are also evidences for a potential application of

ANXA2 as a therapeutic target. Ricciardelli et al. used an anti-

ANXA2 antibody to reduce both tumor growth and metastasis in

an ovarian cancer mice model (SK-OV3) (Lokman et al., 2013).

One year later, Mandip Singh and others inserted short hairpin

(sh)RNA targeting ANXA2 (shANXA2) into a cationic ligand-

guide (CLG, a liposomal carrier) to construct a CLG-ANXA2

compound. The CLG-ANXA2 was designed to recognize cancer

cells and CSCs in a lung cancer mouse model (H1650). After
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CLG-ANXA2 was taken up by tumor cells, shANXA2 reduced

ANXA2mRNA and protein levels. The CLGshANXA2 subgroup

showed reduced tumor growth (72–75% relative to the control)

(Andey et al., 2014). It has also been recently described an

ANXA2-targeting peptide motif CBP12 with highly selectivity

and affinity to ANXA2 and proved ability to specifically target

colorectal cancer cells, therefore emerging as a candidate for

ANXA2-targeted therapeutic strategies (Staquicini et al., 2017).

Interestingly, listeria-based anti-ANXA2 targeting vaccine (Lm-

ANXA2) in combination with anti-PD-1 antibodies have

demonstrated to be effective in PDAC mice models (Kim

et al., 2019).

Noteworthy, ANXA2 gene silencing has demonstrated to

downregulate the expression of proangiogenic proteins including

vascular endothelial growth factor as (VEGF)-R2, VEGF-C,

matrix metalloproteinases such as MMP-2, MMP-9, MT1-

MMP and also the metalloproteinase inhibitor TIMP-2 (Bao

et al., 2009).

ANXA2 may play an immunomodulatory role, since

ANXA2 interacts with dendritic cell (DC)-specific intracellular

adhesion molecule (ICAM)-3 grabbing non-integrin (DC-SIGN,

CD209) leading to immunosuppression (Chao et al., 2015). This

suppression might influence the clinical efficacy and outcome of

anticancer therapies.

ANXA2 has also been linked to treatment resistance.

Intracellular ANXA2 binds the p50 subunit of nuclear factor

(NF)-κB by exposure of pancreatic cancer cells to genotoxic

agents. This complex is translocated to the nucleus to activate the

NF-κB signaling pathway, which modulates cell apoptosis and

drug resistance (Jung et al., 2015). Nuclear translocation of

ANXA2 also exhibited a protective effect against DNA

damage caused by irradiation in human lung and breast

cancer cells (Madureira et al., 2012; Grindheim et al., 2016).

Besides, it has been described a reciprocal regulation between

ANXA2 and ERG oncoprotein in prostate cancer (Griner et al.,

2015) and with HER2 in breast cancer (Shetty et al., 2012)

Clinical and biological roles in HNC

There are controversial findings on the function of

ANXA2 in HNSCC. Different studies have reported

relationships of ANXA2 with poor or good prognosis

depending on the tumor location or the studied cohort. These

discrepant results could be related to differences on patient

characteristics, such as race (Beebe-Dimmer and Cooney,

2019), smoking (Bezerra et al., 2018), oral health habits

(Kawakita et al., 2017), HPV infection (Hübbers and Akgül,

2015), etc.

ANXA2 is upregulated in several tumor subtypes but in

HNSCC is usually found downregulated, and low

ANXA2 levels associated with poorly differentiated tumors

and metastasis in OSCC, laryngeal/pharyngeal squamous cell

carcinoma (Pena-Alonso et al., 2008; Rodrigo et al., 2011b, 2014).

Also, intestinal-type sinonasal adenocarcinomas with loss of

expression of ANXA2 are associated to the more aggressive

histopathological types (Rodrigo et al., 2011a). By contrast,

another study reported high ANXA2 protein expression in

OSCC associated with disease stage, differentiation grade,

lymph node metastasis and poor patient survival (Ma and

Wang, 2021). This study also found that ANXA2 silencing by

siRNA was able to significantly reduce the proliferation,

migration and invasion of OSCC cells.

Some studies have associated high ANXA2 expression levels

to poor overall survival and disease-free survival, and advanced

disease status in esophageal carcinoma (Ma et al., 2014), and

NPC (Chen et al., 2015). Notably, ANXA2 participates in

facilitating host cell infection by HPV16 resulting in a high

risk of tumor progression (Woodham et al., 2012). Moreover,

ANXA2 has been linked to resistance to radio and chemotherapy

in NPC (Chen et al., 2015), while ANXA2 interaction with

dendritic cells caused immunosuppression mediated by IL-10

production (Chao et al., 2015).

In summary, various ANXA2-targeted therapeutic strategies

have already been developed and tested, demonstrating

antitumor efficacy in some preclinical cancer models.

However, despite widespread dysregulation of

ANXA2 expression in different cancers, the biological and

clinical impact of ANXA2 targeting may considerably vary

depending on cellular and tissue specificity, Therefore, a

potential clinical application will require individual testing

and deep functional and mechanistic characterization for each

cancer type. Furthermore, ANXA2 role modulating radio and

chemotherapy as well as immune response exposes it as a

combination target to overcome resistance and to improve

treatment response.

Annexin A3

Annexin A3 (ANXA3), also known as lipocortin III or

placental anticoagulant protein III, is a calcium-dependent

phospholipid-binding protein that affects membrane

trafficking and organization (Gerke and Moss, 2002). It has

two isoforms that vary slightly in their molecular weights

(33 and 36 kDa) (Moss and Morgan, 2004), result from the

alternative splicing of exon 3 within the ANXA3 gene (Bianchi

et al., 2010) located at chromosome region 4q13-q22 (Tait et al.,

1991). This protein contains two special tryptophan residues,

which can influence its interaction with phospholipid

membranes (Sopkova et al., 2009). Regarding its functions,

ANXA3 was first shown to inhibit PLA2 (Coméra et al., 1990)

and to cleave the cyclic bond of inositol 1,2-cyclic phosphate to

form inositol 1-phosphate (Ross et al., 1990). Nevertheless, later

studies have confirmed its involvement in a wide variety of

biophysiological processes, including vesicular transport
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(Faugaret et al., 2011), cell migration (Zhang Z. et al., 2021),

angiogenesis (Park et al., 2005), apoptosis (Chong et al., 2010),

inflammation (Meng et al., 2019) or sepsis (Toufiq et al., 2020)

among others.

Similar to other members of the annexin family, aberrant

expression of ANXA3 has been linked to cancer pathogenesis,

although it is highly dependent on the tissue of origin.

Accordingly, ANXA3 expression has been found upregulated

in breast, colorectal or pancreatic tumors, while downregulated

levels have been detected in renal, thyroid or prostate cancers.

Research performed assessing the functional role of ANXA3 in

cancer has demonstrated its involvement in vital processes for

tumor development and progression (Liu C. et al., 2021; Yang

et al., 2021), such as sustaining proliferative signals from ERK

and JNK pathways in colorectal (Xu R. et al., 2019) and

hepatocellular carcinomas (Tong et al., 2015), or PI3K/Akt

pathway in pancreatic cancer (Wan et al., 2020). In addition,

aberrant ANXA3 expression has also been shown to

downregulate multiple pro-apoptotic proteins, promote tumor

invasion and metastasis, induce angiogenesis and even regulate

drug resistance in different tumor types (Liu C. et al., 2021; Yang

et al., 2021).

Regarding its clinical relevance, high ANXA3 expression has

been correlated with a poor prognosis in gastric, hepatocellular

and breast carcinomas (Liu C. et al., 2021), and it has also been

proposed as a diagnostic marker in prostate cancer (Schostak

et al., 2009).

Despite mounting evidence supporting the involvement of

ANXA3 in cancer development and progression, as of yet, very

little has been unraveled regarding its specific contribution to

HNC. Only one study has been published in which ANXA3 was

identified as a downstream target of EGFR using a functional

proteomic approach in NPC-derived cells treated with TGF-α
(Ruan et al., 2010). This approach confirmed that treatment of

CNE2 cells with TGF-α induced tyrosine phosphorylation of

ANXA3, which was blocked by treatment with the EGFR

inhibitor PD153035 (Ruan et al., 2010). Even though the

relevance of ANXA3 phosphorylation/dysregulation has not

yet been determined, these results suggest a potential impact

on NPC treatment, and encourage deepening on

ANXA3 contribution in HNC since it could positively impact

patient management and disease outcome.

Annexin A4

Annexin A4 (ANXA4), also known as lipocortin IV or

placental anticoagulant protein II, has 45–59% identity with

other members of its family and shares a similar size and

exon-intron organization (Moss and Morgan, 2004). It is a

calcium and phospholipid binding protein that promotes

membrane fusion and is involved in exocytosis (Oling et al.,

2000; Kaetzel et al., 2001). Physiologically, ANXA4 has been

shown to inhibit adenylyl cyclase 5 (Heinick et al., 2015, 2020), an

enzyme that catalyzes the conversion of ATP to adenosine 3′,5′-
cyclic monophosphate (cAMP), and also to interfere with

sulfatide-induced plasma coagulation (Nakayama et al., 2020).

ANXA4 acts as a sensor of negative membrane curvatures

suggesting a role in the restoration of plasma membrane

(Florentsen et al., 2021). In addition, it has been implicated in

the migration of both skin fibroblasts (Wang et al., 2020) and

airway epithelial progenitor cells (Jiang et al., 2018), as well as in

trophoblast invasion via the PI3K/Akt/eNOS pathway (Xu Y.

et al., 2019).

Accordingly, ANXA4 has also been involved in cell migration

and invasion in different cancers. Thus, reduced ANXA4 levels

can hamper these two processes in cells derived from gastric

cancer (Ji et al., 2022), gallbladder cancer (Yao et al., 2016) and

ovarian clear cell adenocarcinoma (Wang et al., 2017);

meanwhile its overexpression in colorectal cancer cells was

able to promote their migratory and invasive potential (Peng

et al., 2021). In addition, ANXA4 expression has been associated

to poor prognosis in ovarian serous carcinoma (Choi et al., 2013).

Interestingly, ANXA4 translocation from plasma membrane

to cytosol has been related to resistance to paclitaxel in lung

cancer cells (Gaudio et al., 2016; Scala et al., 2021) and also its

upregulation has been linked to cisplatin (CDDP) resistance in

mesothelioma cells (Yamashita et al., 2012), ovarian clear cell

carcinoma cells (Morimoto et al., 2014) and non-small cell lung

cancer (NSCLC) cell lines (Zheng et al., 2018).

Very limited information has been published to date on the

role of ANXA4 in HNC. The study by Deng et al. (Deng et al.,

2012) was the first to explore ANXA4 expression in laryngeal

tissues. Even though the analysis was only performed in

30 patient samples, it clearly showed that its expression was

frequently detected (73%) in this cancer type (Deng et al., 2012).

In addition, based on a differential proteomic expression

analysis, ANXA4 has been postulated as a biomarker for

OSCC diagnosis and prognosis (Liu W. et al., 2016).

ANXA4 expression was early detected in oral premalignant

lesions (oral submucous fibrosis, OSF) as well as in the

corresponding patient-matched OSCC tissue samples, where

expression was found to correlate with tumor stage and poor

prognosis (Liu W. et al., 2016).

Another study compared proteomic profiles in saliva samples

from healthy donors and tamol chewers, which tend to form

ulcers in the oral cavity (Kumar et al., 2021) predisposing to

develop oral cancer (Phukan et al., 2001; Borkotoky et al., 2020).

ANXA4 expression levels showed a 20.22% increase in tamol

chewers versus healthy controls, which led to propose ANXA4 as

a population screening marker for the early detection of OSCC in

tamol consumers (lepcha et al., 2021). It has also been reported

that ANXA4 could serve to distinguish between two different

types of benign tumors of the salivary glands, Warthin’s tumors

(WT) and pleomorphic adenomas (PA), as PAs differentially

express proteins associated with cell death, apoptosis and
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tumorigenesis, like ANXA4 and ANXA1 (Donadio et al., 2013).

Moreover, it has been suggested a possible contribution of

ANXA4 to OSCC chemoresistance, because this protein was

found differentially expressed among others, in Sirt1-induced

resistance to CDDP (Xiong et al., 2011). However, further

investigation is needed to demonstrate a direct participation

in OSCC chemoresistance, as well as to extend

ANXA4 analysis to other HNSCC subsites.

Together these data emphasize the conceivable application of

ANXA4 as a biomarker for OSCC diagnosis and prognosis, but

also therapeutically, since targeting ANXA4 expression might

hinder early tumorigenesis, progression and management of

OSCC, and perhaps other HNC types.

Annexin A5

Annexin A5 (ANXA5) is the smallest member of the family

with 36 kDa. Similar to ANXA4, it plays an important role in

membrane repair (Bouter et al., 2015). However, probably the

most known function of ANXA5 is its ability to bind PS, which is

rapidly mobilized from the inner to the outer side of the

membrane in cells undergoing apoptosis or necrosis (Rysavy

et al., 2014). This characteristic together with the fact that

ANXA5 is not toxic or immunogenic when used in vivo has

made this protein a valuable tool for in vivo imaging of cell death

processes (Chopra et al., 2012).

In the context of cancer, high ANXA5 expression has been

associated with poor outcome in gliomas (Zhong et al., 2021),

hepatocarcinomas (Sun et al., 2018), bladder (Wu et al., 2021),

colorectal (Xue et al., 2009) and cutaneous squamous cell

carcinomas (Shapanis et al., 2021). Interestingly,

ANXA5 levels were higher in bladder cancer patients with

lymph node involvement (Mitra et al., 2006), which is

consistent with studies performed on cellular models of

hepatocarcinoma. The authors demonstrated that the loss of

ANXA5 expression decreased cell adhesion to lymph nodes, and

also reduced the formation of lymph node metastasis in vivo (Sun

et al., 2018). In addition, in vitro experiments have shown that

ANXA5 depletionmay hamper proliferation, migration, invasion

and metastasis formation in various tumor cells from breast

cancer (Bouvet et al., 2020), uterine cervical carcinoma (Li et al.,

2018), hepatocarcinoma (Sun et al., 2018) and

cholangiocarcinoma (Ding et al., 2017). In marked contrast to

these data, it has been reported that positive ANXA5 expression

correlates with a better prognosis in adult acute myeloid

leukemia (AML) (Niu et al., 2019), and a tumor suppressor

role has been described in gastric cancer cells through the

repression of ERK pathway (Wang et al., 2021).

On the other hand, it has also been reported that PS is

expressed in the surface of cancer cells and also vascular

endothelial cells in tumors, whereas it cannot be detected in

normal endothelium (Ran and Thorpe, 2002). Therefore, the

ability of ANXA5 to bind to PS could be exploited for therapeutic

purposes in cancer patients. According to this purpose, it has

been demonstrated that ANXA5may improve specific cancer cell

targeting when combined with different therapeutic strategies,

such as phototermal nanotubes (McKernan et al., 2021), vaccine

antigens (Kang et al., 2020), or enzyme-prodrug systems (Virani

et al., 2018). In all cases, treated mice experienced a prolonged

survival without any noticeable toxic effects in healthy tissues

(Virani et al., 2018; Kang et al., 2020; McKernan et al., 2021).

Furthermore, ANXA5 administration in mice enhanced

immunogenicity by binding to PS and inducing systemic

cytotoxic T-cell responses, leading to tumor regression and

reduced relapse (Li et al., 2020). It has also proved to rescue

immune suppression after chemotherapy, thus contributing to

generate a robust antitumor immunity (Kang et al., 2020).

In the specific context of HNC, ANXA5 was found

overexpressed in 80% of the laryngeal cancer samples

analyzed, although there is no available information on the

clinical significance of this finding (Deng et al., 2012).

Through a proteomic profiling approach,

ANXA5 overexpression was also detected in malignant major

salivary gland tumors (MSGT) versus the adjacent healthy tissue

(Seccia et al., 2020); however, significant correlations between

protein expression and the clinical parameters were not observed

(Seccia et al., 2020). In a meta-analysis of gene expression in

public datasets, ANXA5 was found among other 95 genes whose

expression had a significant impact over OSCC patients’ survival

(Bajrai et al., 2021). These data suggest that ANXA5 might play a

role in OSCC progression, although a more in-depth analysis is

needed to clarify and validate this finding. In addition, a

comparative protein expression analysis in NPC-derived cells

revealed that ANXA5 levels were increased in cis-

diamminedichloroplatinum (cDDP)-resistant cells compared

to the parental CNE2 cells (Tang et al., 2012). These results

suggest that ANXA5 could contribute to cDDP resistance in

NPC; however, more experiments are required to confirm its

direct involvement, and to extend analysis to other HNC types.

These data evidence that the role of ANXA5 in HNC

development and progression remains largely unknown.

Therefore, more efforts are needed to unravel this, in

particular, its therapeutic potential due to the high affinity of

ANXA5 for PS. On this basis, ANXA5 targeting could emerge as

a valuable strategy to counteract immune evasion in HNC, and

ultimately contribute to trigger a potent antitumor immune

response (Birge et al., 2016).

Annexin A6

Annexin A6 (ANXA6) is the only protein from this family

structurally comprising 8 annexin repeats that form two cores in

the C-terminal domain (Qi et al., 2015). This peculiarity may

render specific membrane-interaction mechanisms (Buzhynskyy
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et al., 2009). ANXA6 is expressed in most human tissues, and

mainly localized in plasma membrane and endosomes (Grewal

et al., 2017). Physiologically, ANXA6 plays a crucial role as a

scaffold protein and in the organization of membrane domains,

where it interacts withmany different partners intomultifactorial

complexes that orchestrates different signaling pathways. As a

result, ANXA6 is involved in many events associated with

membrane organization, such as cholesterol homeostasis,

interactions with actin cytoskeleton proteins, regulation of

endocytic trafficking and secretory events, modulates calcium

flux and homeostasis and is involved in the reorganization of

cytoskeleton during cell migration. In relation to its

scaffolding properties, ANXA6 regulates several signaling

pathways such as EGFR/Ras/MAPK and FAK/PI3K (Qi

et al., 2015; Grewal et al., 2017). ANXA6 has been directly

involved in regulating Ca2+ entry. Its stable membrane

expression reduces calcium store-operated entry and

reduces cell proliferation. Its interaction with plasma

membrane and subsequent cortical actin stabilization

attenuates calcium entry in vivo (Monastyrskaya et al.,

2009). ANXA6 has also been involved in membrane repair

mechanisms (Potez et al., 2011; Swaggart et al., 2014),

inducing constriction forces and acting synergistically with

ANXA4 (Boye et al., 2017).

ANXA6 has been involved in several biological processes

such as cell proliferation, survival, membrane repair, migration

and adhesion (Grewal et al., 2017), which are often dysregulated

in cancer. In most cases, ANXA6 acts as a tumor suppressor, but

some oncogenic roles have also been described depending on the

cancer type and disease stage.

It has been demonstrated that ANXA6 present in

extracellular vesicles may play a role in cancer. In pancreatic

ductal adenocarcinoma (PDA), cancer-associated fibroblasts

(CAF)-derived extracellular vesicles containing the complex

ANXA6/LRP1/TSP1 enhanced tumor aggressiveness, and

ANXA6 was crucial to promote aggressive phenotypes,

invasion in vitro, and metastasis formation in vivo (Leca et al.,

2016). Exosomal ANXA6 has also been involved in

chemotherapy resistance. Exosomal ANXA6 from

gemcitabine-resistant cells induced gemcitabine resistance in

sensitive triple negative breast cancer (TNBC) cells, at least by

downregulating EGFR (Li T. et al., 2021). Another study from

Uchihara et al. showed that ANXA6 from CAF-derived

extracellular vesicles induced drug resistance in gastric cancer

cell lines via integrin beta1 stabilization in the cell surface and

subsequent FAK-YAP pathway activation (Uchihara et al., 2020).

In breast cancer, ANXA6 present in exosomes from stem cells

promoted paclitaxel resistance via YAP1 upregulation.

ANXA6 also promoted cell migration, autophagy, cell growth

and stem properties (Guo et al., 2021). In addition, ANXA6 has

been involved in resistance to EGFR-TKIs such as lapatinib in

TNBC, where ANXA6 upregulation is part of an adaptive

mechanism to acquire resistance (Widatalla et al., 2019).

Another study from the same group showed that

ANXA6 could also promote resistance to some EGFR-TKIs in

breast cancer cells (Koumangoye et al., 2013).

ANXA6 has been extensively studied in breast cancer.

ANXA6 is required for the cell-cell and cell-ECM contacts,

and its loss contributes to tumor progression by promoting

loss of cell contacts and anchorage-independent growth.

ANXA6 was also found necessary for an efficient motility and

invasion of breast cancer cells. Sakwe et al. discussed these

apparent discrepancies and expound the varying levels of

ANXA6 expression across breast cancer development (Sakwe

et al., 2011). Hence, ANXA6 may function as a tumor suppressor

or tumor promoter, depending on the cancer subtype and degree

of malignancy. ANXA6 antitumor role may be more relevant in

TNBC than in non-triple negative breast cancers (Korolkova

et al., 2020b). The involvement of ANXA6 in plasma membrane

repair may allow cancer cells to rapidly respond to small

membrane injuries that arise frequently, as demonstrated in

MCF-7 cells (Boye et al., 2017). Moreover, a reciprocal

regulation between ANXA6 and the Ca2+ activated RasGRF2

(GRF2) has also been recently reported in TNBC, which could

serve to distinguish rapidly growing tumors from those more

aggressive and highly invasive (Korolkova et al., 2020a).

Ectopic expression of ANXA6 in the human A431 squamous

epithelial carcinoma cells reduced tumor growth suggesting an

antitumor role for ANXA6 in A431 cells (Theobald et al., 1995).

ANXA6 overexpression also reduced LDL cholesterol-induced

migration and invasion of A431 cells (Jose et al., 2022).

Interestingly, ANXA6 reduced A431 cell migration and

invasiveness, and enhanced EGFR-TKIs-mediated inhibition

of growth and migration in these cells (Hoque et al., 2020).

All the aforementioned studies highlight the anti-tumor role of

ANXA6 in A431 squamous epithelial cells overexpressing EGFR.

Given that EGFR overexpression is a common feature in

HNSCC, an analogous role for ANXA6 could be plausible,

which merits further investigation.

Several studies have demonstrated that ANXA6 is a scaffold

protein that modulates EGFR/Ras/MAPK pathway. Thus,

ANXA6 interacts with several proteins like p120 GAP,

Raf1 and PKCalfa, downregulating this pathway, thereby

acting as a tumor suppressor in several human cancers (Pons

et al., 2001; Grewal et al., 2005; Muga et al., 2009; Cornely et al.,

2011; Koese et al., 2013; Wang et al., 2013). This is a very

important mechanism in HNSCC, where ANXA6 promotes

PKCalfa-mediated EGFR inactivation, acting as a scaffold for

PKCalfa and promoting its recruitment to plasmamembrane and

its interaction with EGFR. ANXA6 also promoted PKCalfa-

dependent inhibitory feedback over EGFR pathway. It is also

important tomention that downregulation of ANXA6 expression

occurs in several malignancies with EGFR upregulation, maybe

as a possible mechanism to prevent the antitumor role of ANXA6

(Koese et al., 2013). By contrast, it has been described a protumor

role for ANXA6 and its involvement in drug resistance
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(Koumangoye et al., 2013; Widatalla et al., 2019), related to its

ability to modulate biological membranes, and to stabilize

activated receptors in the membrane (Cornely et al., 2011),

such as EGFR (Koumangoye et al., 2013).

ANXA6 expression has been proposed as a useful biomarker

in several human cancers. ANXA6 acts as a tumor suppressor in

cervical cancer via autophagy induction in vitro and in vivo.

Besides, ANXA6 expression levels may serve as a predictive

biomarker of survival for cervical cancer patients (Sun et al.,

2020). Nuclear ANXA6 expression has been proposed as a

protein marker for squamous cervical cancer diagnosis

(Lomnytska et al., 2010), which may improve cervical cancer

diagnosis at early stages and patient monitoring (Lomnytska

et al., 2011). ANXA6 has also been included as a serum

biomarker in a 4-protein panel for esophageal

adenocarcinoma detection (Zaidi et al., 2014). ANXA6 is

downregulated in human hepatocellular carcinoma, and

suggested as a putative biomarker for these tumors (Meier

et al., 2016). In basal-like breast cancer, reduced

ANXA6 expression was significantly associated with higher

recurrence-free but lower distant metastasis-free and overall

survival. Koumangoye et al. also proposed ANXA6 expression

as a biomarker to identify patients likely to respond to EGFR-

TKIs (Koumangoye et al., 2013). In addition, ANXA6 has

emerged as a potential biomarker in ovarian cancer, since it

was found significantly upregulated in tumor tissue samples,

particularly in stages II-IV compared to health tissue (Noreen

et al., 2020). High ANXA6 expression has been associated with a

poor survival in PDA, and ANXA6 levels in circulating

extracellular vesicles (EVs) postulated as a diagnostic and

prognostic biomarker in PDA (Leca et al., 2016). Similarly,

serum exosomal ANXA6 levels could serve as a predictive

biomarker of response to gemcitabine-based chemotherapy in

TNBC patients (Li T. et al., 2021).

Annexin A7

Annexin A7 (ANXA7), also known as synexin, presents a

long hydrophobic N-terminal domain, rich in glycine, tyrosine

and proline. This protein is predominantly located in plasma

membrane, secretory vesicles and nuclear envelope (Guo et al.,

2013a; Grewal et al., 2016). ANXA7 is deeply involved in calcium

homeostasis, and it was actually the first annexin shown to

function as a calcium channel. It is involved in exocytic

secretion and aggregation of chromatin granules. It also

displays a GTPase function, interacting and hydrolyzing GTP

in several cellular processes, such as calcium/GTP-dependent

exocytic trafficking (Gerke and Moss, 2002; Grewal et al., 2016).

Besides its functions in calcium homeostasis and as a GTPase,

ANXA7 negatively regulates COX-dependent prostaglandin

(PGE2) production and is also involved in cardiac remodeling,

as well as in cell proliferation regulation (Grewal et al., 2016).

ANXA7 has also been reported to play a role in cancer, either

oncogenic or oncosuppressor depending on the tumor subtypes.

As discussed below, ANXA7 may act as an oncogene in gastric

cancer, hepatocellular carcinoma, nasopharyngeal carcinoma

and breast cancer; or as an oncosuppressor in melanoma,

prostate cancer, and glioblastoma.

In gastric cancer, the significance of ANXA7 expression

remains controversial. Loss of ANXA7 expression has been

associated with distant metastases in gastric cancer, hence

suggesting an oncosuppressor role (Hsu et al., 2008).

However, other studies have pointed to a protumor role of

ANXA7 in gastric cancer. Yuan et al. demonstrated that high

ANXA7 expression was an independent predictor of poor

survival, which was associated with poor differentiation, and

presence of lymph node metastasis (Yuan et al., 2014).

ANXA7 expression was also found to be downregulated along

gastric cancer progression and inversely correlated with

apoptosis (Ye et al., 2018). These findings could reflect an

anti-apoptotic role for ANXA7 in gastric pathogenesis and a

potential biomarker for diagnosis, prognosis and treatment for

gastric adenocarcinoma patients (Ye et al., 2018).

ANXA7 upregulation in hepatocellular carcinoma has been

associated with enhanced invasion and lymphatic metastasis (Sun

et al., 2009b; 2009a). In Her2-negative breast cancer,

ANXA7 expression correlated with metastasis and low survival

rate, and serves as a diagnostic and prognostic biomarker for

these patients (Srivastava et al., 2004). In addition, Srivastava

et al. showed that high expression of ANXA7 was a strong

predictor of reduced disease-free survival (Srivastava et al.,

2001a), and thus highlights its potential as a prognostic

biomarker to predict breast cancer patients’ survival.

On the other hand, supporting a tumor-suppressor role,

ANXA7 has been pointed as a marker for a less invasive

phenotype in melanoma (Kataoka et al., 2000). ANXA7 also

exhibits a suppressive role in prostate cancer. ANXA7 inhibits

tumor growth and cell proliferation, and its loss of expression has

been correlated with late-stage prostate cancer (Srivastava et al.,

2001b). Moreover, reduced ANXA7 expression occurred

significantly in metastatic and hormone refractory prostate

cancer compared to benign hyperplasia (Srivastava et al., 2001a).

ANXA7 expression has been reported an independent

outcome predictor in glioblastoma multiforme, and its

expression correlated with longer survival in patients with

GBM (Hung and Howng, 2003). ANXA7 has been shown to

downregulate EGFR in glioblastoma and loss of ANXA7 mRNA

expression was associated with poor survival and prognosis in

glioblastoma patients. Altogether, these data support an

oncosuppressive role of ANXA7 in these malignancies as well

as an oncogenic synergistic effect between ANXA7 loss and

EGFR amplification (Yadav et al., 2009).

In the context of HNC, it has only been reported that

ANXA7 silencing enhanced radiosensitivity in NPC via

apoptosis promotion (Gui et al., 2020).
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Annexin A8

Annexin A8 (ANXA8), similar to other members, plays an

important role in the organization of membrane domains,

especially those that constitute sites of membrane-cytoskeleton

interactions, for instance, by binding F-actin and certain

phospholipids such as PtdIns(4,5)P2 (Goebeler et al., 2006).

Moreover, ANXA8 is highly involved in the regulation of

intracellular membrane trafficking and regulation of

endocytosis (Goebeler et al., 2008). Related to this latter role,

ANXA8 has been implicated in the adhesion of leukocytes to the

endothelium, by modulating CD63 sorting and efficient

membrane presentation (Poeter et al., 2014). ANXA8 also

regulates adhesion to ECM proteins like integrin β1 (Heitzig

et al., 2017). All these features make ANXA8 an important

regulator of key cellular processes such as migration, invasion

and adhesion, often commonly dysregulated in cancer.

ANXA8 mainly acts as a tumor-promoting gene in human

cancers. ANXA8 upregulation was first described in

promyelocytic leukemia, harboring a PML-RARA fusion, in

which dysregulation of RARA gene caused such

overexpression (Chang et al., 1992).

Its biological relevance has been intensely studied in

mammary gland development and breast cancer. ANXA8 is

regulated by all-trans retinoid acid (RA) and RA-RARA-

ANXA8 axis enhances a loop of aberrant morphogenesis,

rendering an abnormal mammary gland structure (Rossetti

and Sacchi, 2019). In fact, ANXA2 downregulation and

ANXA8 upregulation were jointly sufficient to create

abnormal ductal carcinoma in situ (DCIS) acinar-like

structures, which resemble early breast cancer lesions.

Moreover, ANXA8 upregulation is detected in DCIS

compared to atypical ductal hyperplasia and normal

mammary gland, and also highly upregulated in ER-negative

tumors compared to ER-positive ones. In addition,

ANXA8 expression significantly correlated with features of

breast cancer progression such as tumor grade, stage and

lymph node infiltration, arising as a putative biomarker to

identify ER-negative basal-like breast cancers (Rossetti et al.,

2016).

Meanwhile, ANXA8 overexpression in gastric cancer has

been correlated with disease stage and differentiation grading,

and it emerged as an independent predictor of worse OS and DFS

and a potential poor prognosis biomarker for gastric cancer

patients (Ma et al., 2020). ANXA8 has also been found

upregulated in squamous cell carcinoma of the uterine cervix

(Chao et al., 2006). Mechanistically, ANXA8 inhibition by miR-

185-3p reduced the proliferation of cervical cancer cells (Zhang

and Han, 2021).

In pancreatic cancer, ANXA8 overexpression was also

associated with higher histological grades and a lower survival

in I-II stage patients, thereby emerging as a poor prognosis

biomarker for early stages of pancreatic cancer (Pimiento

et al., 2015). Another study from Karanjawala et al. found

ANXA8 overexpression in infiltrating ductal pancreatic

adenocarcinomas compared to normal ducts, suggesting its

possible use as a diagnostic biomarker (Karanjawala et al.,

2008). There are also evidences for a protumor role of

ANXA8 in bladder cancer. Expression was consistently found

upregulated in bladder tumors and derived cell lines and

promoted tumor growth and metastases in vitro and in vivo,

while ANXA8 silencing reduced tumor growth, migration,

invasion and EMT (Yuan et al., 2021).

In ovarian cancer, ANXA8 expression was also found to

increase during tumor progression. High ANXA8 levels were

significantly associated with advanced stages, differentiation

grade and nodal metastases, and proposed as a poor prognosis

biomarker in epithelial ovarian cancer (Zhu et al., 2020).

ANXA8 mRNA levels were also upregulated and correlated

with poor overall survival and progression-free survival in

patients with ovarian serous tumors. Immunohistochemical

ANXA8 expression in malignant ovarian tumors correlated

with FIGO stages and tumor progression, and it was revealed

as an independent predictor of outcome and survival and a

powerful poor prognosis biomarker for these tumors (Gou

et al., 2019).

Besides, it has been demonstrated that ANXA8 regulates

VEGFR-driven angiogenesis, showing a crucial role for

sprouting, invasion and adhesion of human umbilical vein

endothelial cells (HUVECs) to ECM proteins (Heitzig et al.,

2017). Given such implications, to deepen investigation on a

plausible role of ANXA8 as a therapeutic target for anti-

angiogenic strategies should be encouraged.

Despite all the aforementioned studies strongly supporting a

relevant role for ANXA8 in numerous cancer types, it has so far

been poorly investigated in HNC. A study from Kudo et al.

reported ANXA8 upregulation in maxillary squamous

carcinomas harboring TP53 mutation (Kudo et al., 2017). It

has also been published that ANXA8 mRNA expression levels

could serve as a biomarker to detect OSCC lymph node

metastases that were histopathologically undetectable (Oka

et al., 2016).

Annexin A9

Annexin A9 (ANXA9) was first discovered in 1999 (Morgan

et al., 1999a). Its structure is similar to ANXA2 and displays

certain conserved domains; however, ANXA9 is an atypical

annexin member, unable to bind calcium since its sequence

lacks the acidic cap residue in the calcium binding domains

required for such interaction. This unique structural

characteristic of ANXA9 whose biological function is not

regulated by calcium, subsequently, leads to distinct

subcellular locations, biochemical properties and biological

functions beyond the scaffold features shared by other family
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members (Morgan et al., 1999a; Gerke and Moss, 2002; Goebeler

et al., 2003).

Little is known about ANXA9 biological functions. Of special

interest for epithelial biology is the finding that ANXA9 interacts

with the N-terminal domain of periplakin, a protein that is

especially relevant in the epidermis for the formation of

epidermal cornified envelopes, and as a scaffold for several

cytoskeleton proteins (Boczonadi and Määttä, 2012).

ANXA9 dysfunctions have been reported in several human

cancers, showing a protumor role mainly linked to invasion and

metastasis processes. ANXA9 expression has been involved in

colorectal cancer invasion and metastases by regulating genes

such as ADAM17, MMP-9, TIMP-1 and E-cadherin (Yu et al.,

2018), and proposed as an independent factor of poor prognosis

(Miyoshi et al., 2014; Yu et al., 2018). Likewise,

ANXA9 expression has been associated with a higher

incidence of bone metastasis in breast cancer and so included

in a predictive gene panel (Cosphiadi et al., 2018), and related to

breast cancer prognosis (Xiao et al., 2019).

In gastric cancer, ANXA9 upregulation has also been

associated to poor prognosis in gastric cancer patients. In

addition, ANXA9 was able to promote cell migration and

growth in gastric cancer cell lines via TGF-β signaling, which

reinforces its oncogenic role in these tumors (Zhou et al., 2021).

ANXA9 expression was also associated with a poor prognosis in

ovarian cancer and resistance to cisplatin in vitro and in vivo,

posing ANXA9 as an interesting candidate for targeted therapies

to overcome cisplatin-resistant cancers (Kou et al., 2021). Given

that cisplatin-based chemotherapy is commonly used to treat

HNSCC patients, it would be of major interest to address the role

and expression of ANXA9 in cisplatin resistance in these tumors.

In the context of HNC, our group was first to evaluate by

immunohistochemistry ANXA9 protein expression using a large

homogeneous cohort of 372 surgically treated HPV-negative

HNSCC patients. In normal tissues, ANXA9 expression was

observed in the most differentiated layers of the squamous

stratified epithelium but not proliferative basal cells.

ANXA9 expression was downregulated in 42% of HNSCC

samples compared to normal epithelia. This result was also

further confirmed using transcriptomic data from the TCGA,

which suggests possible transcriptional mechanisms underlying

ANXA9 downregulation in HNSCC (Salom et al., 2019).

Noteworthy, positive ANXA9 expression HNSCC was tightly

associated with the histological differentiation grade,

predominantly detected in well-differentiated tumors and

oropharyngeal tumor location (Salom et al., 2019).

Annexin A10

Annexin A10 (ANXA10) was first identified in 1999 (Morgan

et al., 1999b). Similar to ANXA9, changes and inactivation of

well-conserved calcium binding sites provide unique membrane-

binding properties and calcium-independent functions to

ANXA9 and ANXA10, suggesting that both proteins could act

in environments where calcium sensitivity is not functionally

determining (Morgan et al., 1999b; Gerke andMoss, 2002). Some

of these known singular functions for ANXA10 are related to a

nuclear subcellular location, regulation of transcription and

mRNA processing (Quiskamp et al., 2014).

ANXA10 plays a dual role in human cancers. Although most

malignancies exhibit an oncopromoter role, there are also

evidences for a tumor-suppressor role in several cancers, such

as hepatocellular carcinoma, gastric cancer, bladder cancer and

lung cancer. ANXA10 downregulation in hepatocellular

carcinoma has been associated with poor survival rates, higher

early intrahepatic tumor recurrence, higher vascular infiltration

and a higher grade. Interestingly, this downregulation was

correlated with mutated p53, and both alterations

synergistically contributed to tumor progression (Liu et al.,

2002, 2012). Loss of ANXA10 expression is frequent in early

gastric cancer, and constitutes an independent biomarker of poor

prognosis (Ishikawa et al., 2020). Kim et al. found that

ANXA10 may display a tumor-suppressor role by reducing

tumor growth and promoting apoptosis in gastric cancer cells

(KIM et al., 2010). It has also been suggested that ANXA10 may

constitute a predictive biomarker of chemotherapy response in

gastric cancer (Ishikawa et al., 2022a). In bladder cancer, low

ANXA10 expression was associated with a shorter progression-

free survival and proposed as a poor prognosis biomarker in both

early and advanced tumors (Munksgaard et al., 2011). In

addition, ANXA10 has been proposed to be a tumor

suppressor in NSCLC based on migration and invasion assays

and in vivo studies conducted by Hung et al. (Hung et al., 2019).

Opposing to this, high ANXA10 expression was detected in lung

adenocarcinomas, and promoted the migration of A549 cells

(Yumura et al., 2022).

In relation to its oncopromoter role, ANXA10 has been

proposed as a prognostic biomarker and therapeutic target in

many tumor types. Of special interest, high ANXA10 expression

was reported as an independent poor prognostic biomarker in

lung adenocarcinoma (Yumura et al., 2022), glioblastoma

multiforme (Xu et al., 2021), serous epithelial ovarian cancer

(Wang et al., 2019), pancreatic ductal adenocarcinoma (Ishikawa

et al., 2022b), small bowel adenocarcinoma (Ishikawa et al., 2021)

and papillary thyroid cancer (Liu X. et al., 2021). Interestingly,

ANXA10 has also been proposed as a useful and highly specific

biomarker for adenocarcinomas of the upper gastrointestinal

tract and pancreatobiliary system, and also included in a panel of

biomarkers to trace the origin of adenocarcinomas with

unknown primary sites (Lu et al., 2013).

High ANXA10 expression has been correlated with depth of

invasion and poor disease-free survival in ESCC patients.

Moreover, ANXA10 promoted growth of ESCC cell lines via

activation of Akt and ERK1/2 pathways (Kodaira et al., 2019).

ANXA10 expression was also correlated with poor overall
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survival in colorectal cancer (Bae et al., 2015), and intrahepatic

cholangiocarcinoma (Shao et al., 2022). In addition,

ANXA10 expression was found upregulated in primary and

metastatic melanoma and associated with tumor progression,

observations reinforced by its promoting role of cell migration

in vitro and metastases in vivo (Zhang X. et al., 2021).

ANXA10 expression has been postulated as a useful

biomarker for early detection of pancreatic ductal

adenocarcinoma since it can be detected in precancerous

lesions (Zhu et al., 2017).

In HNC, ANXA10 upregulation was detected in primary

OSCC compared to normal tissue, which was more frequent in

advanced cases and associated to tumor size. Mechanistically, it

has been reported that ANXA10 promotes G1 cell cycle

progression and cell proliferation enhancing ERK

phosphorylation and ERK/MAPK pathway activation (Shimizu

et al., 2012). These findings support a protumor role of

ANXA10 in oral tumorigenesis by promoting proliferation

and tumor growth. In accordance to these data, results from

our group confirmed ANXA10 upregulation both at protein and

mRNA level in HNSCC tissue samples compared to the normal

counterpart (Salom et al., 2019). Thus, ANXA10 protein was

detected in 64% of the HNSCC specimens but absent in normal

epithelia. ANXA10 expression was significantly associated with

differentiation grade, and higher in oropharyngeal tumors;

however, no correlations with HNSCC patient survival were

observed (Salom et al., 2019).

Annexin A11

Annexin A11 (ANXA11) displays a long N-terminal domain

(aprox. 200 aminoacids), which resembles that of ANXA7, with a

3D structure that differs from the typical amphipathic helix

motifs present in N-terminal domains from other family

members. Together with ANXA7 and ANXA13, these are the

earliest vertebrate annexins, and are considered the ancestor of

the remaining annexin members (Gerke and Moss, 2002).

This protein is tightly involved in Ca2+-regulated exocytic

processes, interrupting midbody formation during cytokinesis

(and hence cell cycle progression), sex differentiation throughout

gonad development and apoptosis regulation. Of note,

ANXA11 interaction with S100A6 protein (calcyclin) is

especially relevant for the aforementioned biological functions

(Wang et al., 2014). As many other annexins, ANXA11 is

involved in membrane curvature mechanisms, similar to

ANXA7, and both proteins share their unique ability to form

mobile lens structures in the bilayer (Boye et al., 2018).

ANXA11 dysfunction has been associated with several

human diseases such as autoimmune diseases and

thrombolysis (Wang et al., 2014), and especially with

amyotrophic lateral sclerosis (ALS) (Siddique and T, 2001;

Smith et al., 2017). Regarding human cancers, ANXA11 has

been related to drug resistance and metastasis in several human

malignancies, as discussed below.

ANXA11 acts as a tumor-suppressor in hepatocarcinoma

regulating apoptosis, invasion and lymph node metastases.

ANXA11 downregulation led to reduced apoptosis and

enhanced invasion and metastatic abilities, as well as

enhanced chemoresistance to 5-FU in both in vitro and in

vivo models (Liu et al., 2015; Liu et al., 2016 S.). In bladder

cancer, ANXA11 expression levels were decreased in tumor

tissue compared to the normal counterpart, and together with

other annexins, serves to identify luminal-subtype bladder

tumors (Wu et al., 2021). Moreover, high ANXA11 levels

were associated with a higher overall survival in bladder

cancer patients (Yao et al., 2022), further supporting an

oncosuppressor role in this malignancy.

ANXA11 was found upregulated in gastric tumors

compared to normal tissue, and increased ANXA11 levels

were significantly associated with tumor size and infiltration,

lymph node metastasis, TNM stage and vascular invasion,

emerging as a bad prognosis factor and a potential

therapeutic target for this cancer type. In vitro

ANXA11 silencing reduced cell proliferation and invasion

and migration capabilities, supporting a protumor role in

gastric cancer (Hua et al., 2018).

ANXA11 has been involved in chemotherapy resistance in

several malignancies. Downregulated ANXA11 expression is

associated with cisplatin resistance in ovarian cancer, and

pointed as a useful biomarker to predict chemoresistance to

platinum-based therapies and early tumor recurrence (Song

et al., 2007). Given that cisplatin is the gold-standard therapy

for HNC patients, it would be interesting to explore the possible

implication of ANXA11 in HNC chemoresistance, and its

potential as a predictive biomarker of cisplatin response. Even

though ANXA11 expression has not been detected in HNC tissue

samples (Song et al., 2007), the small sample size in the only

published study demands further investigation.

ANXA11 has also been associated with chemotherapy

response in metastatic colorectal cancer, and ANXA11 nsSNP

rs1049550 has been proposed as a biomarker to predict

bevacizumab sensitivity in these patients (Kim et al., 2011,

2013; Roh et al., 2016). ANXA11 is overexpressed in colon

primary tumors compared to normal colon, and associated

with tumor stage. Moreover, patients harboring high

ANXA11 and ANXA4 expression displayed poorer survival

than those with low annexin expression (Duncan et al., 2008).

High ANXA11 mRNA levels have also been associated to a poor

overall survival in patients with acute myeloid leukemia, and

related to a resistance mechanism to DR5-targeting agents that

induce apoptosis regulation (Song et al., 2022). Since

ANXA11 plays a role in apoptosis modulation, it could

represent an important player in cancer therapies based on

targeting apoptotic pathways and/or the development of

resistance mechanisms, and hence emerge as a valuable
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biomarker to predict treatment response or to identify/stratify

the subset of patients who are likely to respond (Song et al., 2022).

Annexin A13

Annexin A13 (ANXA13) is the earliest annexin ancestor

in vertebrates. Its expression is tightly restricted to intestine,

and transcribed as two isoforms by alternative splicing

(named A13a and A13b) (Iglesias et al., 2001; Gerke and

Moss, 2002). Of note, it is the only member myristoylated

at its N-terminal domain, allowing specific membrane

association features that may act synergistically with

canonical (Gerke and Moss, 2002; Turnay et al., 2005;

McCulloch et al., 2019). Like other annexins, ANXA13 is

involved in membrane biology, being of special relevance in

lipid-raft dynamics involved in apical transport (Lafont et al.,

1998; Plant et al., 2000).

In cancer, high ANXA13 expression has been associated with

a poor outcome in colorectal cancer (Jiang et al., 2017), and lung

adenocarcinoma where it promotes cell migration, invasion and

EMT (Xue et al., 2020). To date, the clinical significance of

ANXA13 in HNC remains unexplored.

Concluding remarks

According to the herein reviewed data, dysregulation of

annexin expression is a common feature in multiple cancers

(Table 1 and Figure 2) that causes widespread functional

effects on multiple cellular processes critical for tumor

biology, thereby affecting major hallmarks of cancer

(Table 2 and Figure 3). Hence, it is not surprising that this

family of proteins offers enormous opportunities for the

identification of clinically relevant biomarkers and novel

molecular targets for the development of personalized

therapies. In fact, this review compiles comprehensive

information evidencing the great potential of annexins as

biomarkers for cancer diagnosis, prognosis, disease

monitoring, prediction of treatment response and/or

therapeutic targets (summarized in Table 3). Nevertheless,

given that each protein exhibits varying expression levels and

phenotypic specificity depending on the tumor type, in-depth

functional and mechanistic characterization of annexin

dysregulation for each individual cancer poses a

fundamental task to safety translate this knowledge into

clinical application.

Annexins display different expression patterns, some of

them are found upregulated in certain tumor types while

downregulated in others, and such imbalance may trigger a

variety of downstream signaling pathways and functional

regulatory effects. In addition, annexins show important

differences in their calcium binding ability, subcellular

locations, post-translational modifications and a high

number of interaction partners. All these factors jointly

contribute to complicate their precise functions in each cell

and tissue. Ultimately, annexins cannot be overall classified as

an oncogene or a tumor suppressor, they should actually be

considered as double-edged swords depending on the cellular

or tissue context.

HNC encompasses a complex and heterogeneous group of

aggressive malignancies, whose main pitfalls are late diagnosis,

poor prognostication, scarce molecular-targeted therapies, and

drug resistance. Therefore, annexin research represents a

growing area of interest to attempt to overcome the major

challenges of this disease. Based on the existing published

data, ANXA1 and ANXA2 are the most extensively

investigated, revealed as both clinically and biologically

relevant and, as such, highly promising for clinical

application. It has been demonstrated that these two proteins

participate in numerous hallmarks of cancer (Figure 3), which

highlights their central role as key players and possible targets for

therapy in HNC as in other cancers.

Even though targeted therapies based on annexin

dysfunctions are not yet available for cancer treatment,

annexins are potentially druggable targets that could be

therapeutically exploited. Precisely, various strategies have

already been developed successfully targeting ANXA1 and

ANXA2 functions, which have shown efficacy on various

preclinical tumor models. It is therefore strongly

recommended to further extend testing to HNC models. In

particular, we may anticipate that ANXA2 blocking strategies

might be adequate in NPC and OSCC to specifically target its

oncopromoter role, but not in other HNSCC subtypes, such as

laryngeal and pharyngeal carcinomas, where

ANXA2 expression is downregulated and oncosuppressive.

This should also be taken into account when eventually

designing clinical trials in the future, in order to adequately

define the inclusion criteria, to optimize patients’ stratification

and enrollment, and ultimately to maximize clinical efficacy as

well as patient benefit and safety. Similarly, the

ANXA1 mimetic peptide Ac 2-26 (with reported

cardioprotective effects) could also represent a valuable

therapeutic option for some HNC subtypes; however, this

possibility requires in-depth functional characterization in

disease-relevant preclinical models.

It is worth highlighting that ANXA1 and ANXA2 have

been linked to radio-chemoresistance and

immunosuppression in HNC and other cancers, which

poses a plausible application as adjuvant treatments to

jointly improve treatment response and antitumor immune

response. Nevertheless, the mechanisms responsible for these

immunomodulatory actions need a more precise elucidation,

since different results have been reported depending on the

experimental settings and cellular models tested. Other family

members (i.e., ANXA4, ANXA5, and ANXA7) have been
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associated to treatment resistance mechanisms in HNC, which

also merits deeper investigation.

On the other hand, from a biomarker point of view,

various annexins have been pointed as potential

diagnostic, prognostic and/or predictive biomarkers in

HNC. Of great interest and application, results revealing

ANXA1 lost as an early marker to facilitate

histopathological diagnosis of epithelial dysplasia (Garcia

Pedrero et al., 2004). This molecular test based on

immunohistochemical detection has shown a 100%

sensitivity, and it could be easily implemented to routine

clinical practice. ANXA1 (Garcia Pedrero et al., 2004), A2

(Rodrigo et al., 2011b, 2014) and A9 (Salom et al., 2019)

expression has been closely related to histopathological

grading in HNSCC. Interestingly, since ANXA1 can be

externalized (Cooray et al., 2013; Gastardelo et al., 2014),

its expression is detectable in liquid biopsy, changes upon

treatment, and ANXA1 mRNA levels have been proposed as a

blood-based biomarker for OSCC detection (Faria et al.,

2010). In addition, ANXA8 mRNA expression levels have

been postulated as a biomarker to detect OSCC lymph node

metastases histopathologically undetectable (Oka et al.,

2016).
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