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Micro‑Fourier‑transform infrared 
reflectance spectroscopy as tool 
for probing IgG glycosylation 
in COVID‑19 patients
Carla Carolina Silva Bandeira1, Karen Cristina Rolim Madureira2, Meire Bocoli Rossi2, 
Juliana Failde Gallo2, Ana Paula Marques Aguirra da Silva2, Vilanilse Lopes Torres2, 
Vinicius Alves de Lima3, Norival Kesper Júnior3, Janete Dias Almeida4, 
Rodrigo Melim Zerbinati3, Paulo Henrique Braz‑Silva3,5, José Angelo Lauletta Lindoso2,3,6 & 
Herculano da Silva Martinho1*

It has been reported that patients diagnosed with COVID-19 become critically ill primarily around 
the time of activation of the adaptive immune response. However the role of antibodies in the 
worsening of disease is not obvious. Higher titers of anti-spike immunoglobulin IgG1 associated with 
low fucosylation of the antibody Fc tail have been associated to excessive inflammatory response. 
In contrast it has been also reported that NP-, S-, RBD- specific IgA, IgG, and IgM are not associated 
with SARS-CoV-2 viral load, indicating that there is no obvious correlation between antibody response 
and viral antigen detection. In the present work the micro-Fourier-transform infrared reflectance 
spectroscopy (micro-FTIR) was employed to investigate blood serum samples of healthy and COVID-
19-ill (mild or oligosymptomatic) individuals (82 healthcare workers volunteers in “Instituto de 
Infectologia Emilio Ribas”, São Paulo, Brazil). The molecular-level-sensitive, multiplexing quantitative 
and qualitative FTIR data probed on 1 µL of dried biofluid was compared to signal-to-cutoff index of 
chemiluminescent immunoassays CLIA and ELISA (IgG antibodies against SARS-CoV-2). Our main 
result indicated that 1702–1785 cm−1 spectral window (carbonyl C=O vibration) is a spectral marker of 
the degree of IgG glycosylation, allowing to probe distinctive sub-populations of COVID-19 patients, 
depending on their degree of severity. The specificity was 87.5 % while the detection rate of true 
positive was 100%. The computed area under the receiver operating curve was equivalent to CLIA, 
ELISA and other ATR-FTIR methods ( > 0.85 ). In summary, overall discrimination of healthy and 
COVID-19 individuals and severity prediction as well could be potentially implemented using micro-
FTIR reflectance spectroscopy on blood serum samples. Considering the minimal and reagent-free 
sample preparation procedures combined to fast (few minutes) outcome of FTIR we can state that this 
technology is suitable for fast screening of immune response of individuals with COVID-19. It would 
be an important tool in prospective studies, helping investigate the physiology of the asymptomatic, 
oligosymptomatic, or severe individuals and measure the extension of infection dissemination in 
patients.

Accumulating evidence suggests that a subset of patients with severe COVID-19 may have cytokine storm 
syndrome1. It has been recommended that hyperinflammation should be recognized and treated using already 
approved therapies with proven safety profiles to reduce the increasing mortality1.
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It has been noticed that patients diagnosed COVID-19 become severely ill, especially at the time of activation 
of the adaptive immune response2–4. Hoepel et al.2 reported that antibodies play a role in disease exacerbation 
at the time of seroconversion. They found that the excessive inflammatory response depends on two antibody 
features which are specific to patients with severe COVID -19: (1) higher titers of anti-spike IgG and (2) the 
anti-spike IgG of patients with severe COVID -19 is inherently more pro-inflammatory due to different glycosyla-
tion, particularly low fucosylation, of the Fc tail of the antibody. Analogously Chakraborty et al.3 suggested that 
patients with severe COVID-19 have a unique serological signature, including an increased likelihood of IgG1 
with afucosylated Fc glycans. On the other hand, Luo et al.4 showed that NP -, S-, RBD- specific IgA, IgG, and 
IgM were not associated with SARS-CoV-2 viral load, suggesting that there is no obvious correlation between 
antibody response and viral antigen detected in nasopharyngeal swabs. They analyzed antibody and cytokine 
responses in COVID-19 from asymptomatic to severe patients (123 serum samples from 63 COVID -19 patients) 
and evaluated the impact of various risk factors, including comorbidities, male sex, and advancing age on the host 
immune response COVID-19 patients. These antagonistic data highlight the relevance of investigating structural 
aspects of serum IgG from COVID-19 patients to establish its rule as a severity marker.

Vibrational spectroscopic techniques such as Fourier-transform infrared absorption (FTIR) have been suc-
cessfully used to study biological samples. They provide quantitative and qualitative multiplexed information at 
the molecular level, even when triggered by subtle changes in a sample5. Vibrational spectroscopy involves label-
free techniques that allow detection of electronic changes in the internal vibrational energy levels of biomolecules. 
It has been used in the study of cells, tissues and biofluids and provided valuable insights into pathologies5–8. 
Barauna et al.9 investigated saliva samples from throat swabs using Attenuated Total Reflectance FTIR (ATR-
FTIR). Initial classification of swab samples into negative and positive COVID-19 infections was based on 
symptoms and PCR testing results(n = 111 negatives and 70 positives). A blind sensitivity of 95% and specificity 
of 89% were achieved. Artificial saliva samples containing inactivated γ-irradiated COVID-19 virus particles 
at concentrations up to 1582 copies/mL were also analyzed to understand the spectral response of the virus9. 
Proof-of-concept study by Nogueira et al.10 conducted on 243 patients indicated that ATR-FTIR could be a cost-
effective solution for high-throughput screening of suspect patients for COVID-19 using oropharyngeal swab 
suspension fluid. Sensitivity, specificity, and accuracy better than 84%, 64%, and 76.9% were found, respectively. 
Kitane et al.11 reported a method for COVID -19 discrimination based on spectral ATR-FTIR analysis of 280 
RNA extracts from nasopharyngeal samples (100 SARS-CoV-2 PCR-positive patients and 180 SARS-CoV-2 
PCR-negative patients). The proposed method is based on ATR-FTIR analysis of the extracted RNA and machine 
learning modeling. The authors report that this technique achieves 97.8% accuracy, 97% sensitivity, and 98.3% 
specificity while reducing the testing time from hours to minutes after RNA extraction. The reported area under 
the ROC curve (AUC​) ranged from 0.54 to 1, depending on the statistical model used. Wood et al.12 proposed a 
portable infrared spectrometer with custom-made transflectance accessories for rapid point-of-care detection of 
COVID-19 markers in saliva. They tested the system on samples from 29 subjects who tested positive for SARS-
CoV-2 by RT-PCR and 28 who were negative, and achieved a sensitivity of 93% and a specificity of 82%. However 
the work of Wood et al. did not aim to explore the rich biochemical information contained in the spectral data.

Some clues concerning immune response and COVID-19 had been considered by Dogan et al.13. They used 
ATR-FTIR to investigate serum samples from 56 patients and revealed that the CoronaVac-Sinovac COVID-19 
vaccine administration induced significant changes in some functional groups belonging to lipids, proteins and 
nucleic acids. FTIR has been used to investigate the secondary structural composition and changes in structural 
dynamics of IgG upon glycation, oxidation and glycoxidation14. Thus, it is a suitable technology to study struc-
tural changes in IgG induced by COVID-19.

Aiming to investigate possible correlation between antibody response and SARS-CoV-2 infection blood 
serum samples from adult healthcare workers with COVID-19 (asymptomatic or mild level) and healthy indi-
viduals were investigated here by micro-FTIR reflectance spectroscopy. Detailed characterization of the immune 
response of asymptomatic or oligosymptomatic individuals is important for prospective studies to describe the 
physiology of these cases compared to cases with higher severity and also to determine the extent of spread of 
infection by these patients.

Methods
Sampled population.  Serum samples from 82 healthcare workers volunteers of the “Instituto de Infecto-
logia Emilio Ribas”, São Paulo, Brazil were included in this study. These samples are part of a cohort study to 
evaluate the seroprevalence of SARS-CoV-2 infection in healthcare population. Samples were collected from 
July to November of 2020, before the beginning of the vaccination program in Brazil. Levels of illness were mild 
or oligosymptomatic. This study was conducted in accordance with the Declaration of Helsinki, and the protocol 
was approved by Research Ethics Committee of the “Instituto de Infectologia Emílio Ribas”, São Paulo, Brazil, 
protocol number CAAE 32264120.5.2001.0061. Invited volunteers were informed about the objectives, propo-
sitions and conditions of this project, and those who agreed to participate in the research signed the free and 
informed consent term. A volume of 5 mL of whole blood was collected by peripheral vein puncture and stored 
in a 10 mL dry tube for each patient. Then it was centrifuged at 2052 g for 10 min to separate the serum. Two mL 
of serum were stored in a −20

◦ C freezer until performing the immunoassays and FTIR tests.

Detection of antibodies anti‑SARS‑CoV‑2.  Chemiluminescent immunoassay (CLIA).  A CLIA (IgG 
Antibodies against SARS-CoV-2; reagents pack # 619 9919; VITROS Immunodiagnostic calibrator # 619 992; 
Ortho Clinical Diagnostics, Raritan, NJ, USA) immunoassay was performed to detect immunoglobulin G anti-
Spike protein from SARS-CoV-2. This assay does not differentiate binding IgG antibodies from virus-neutral-
izing IgG antibodies15. The results were expressed in terms of ratio of the sample signal to a calibrator-assigned 
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cutoff signal with threshold of 1.0. Negative diagnosis were considered for outcomes with reactivity index < 1 
otherwise they were considered positive16. The test sensitivity was reported to be 90.0% ( ≥ 8 days) and specificity 
of 100.0%16. This CLIA diagnostic test uses S antigens for SARS-CoV-2 detection17.

Enzyme‑linked immunosorbent assay (ELISA).  Anti-SARS-CoV-2 IgG ELISA (Euroimmun Medizinische 
Labordiagnostika, Lübeck, Germany; # EI 2606-9601 G; Indirect ELISA) assay was performed to detect IgG anti-
bodies against SARS-CoV-2. In this diagnostic test IgG antibodies against SARS-CoV-2 spike protein subunit 
1 (S1) are detected in human serum or plasma. Following the instructions of the manufactures, serum samples 
were 1 : 101 diluted, added to wells coated with recombinant SARS-CoV-2 antigen and incubated for 60 min at 
37

◦ C. Then, wells were washed three times and followed by the addition of HRP-conjugated anti-human IgG and 
subsequent incubation for 30 min at 37 ◦ C. Wells were washed three times and a chromogen solution was added. 
After 30 min of incubation at room temperature, the reaction was stopped and the absorbance at 450 nm with 
reference at 620 nm was read on a microplate reader. A ratio between the extinction of the sample and calibrator 
on each plate were calculated. According to the recommendations of the manufacturer, a signal-to-cutoff ratio 
smaller than 0.8 is considered negative, while a positive one if greater than 1.1. The borderline region falls into 
0.8–1.1 interval. The sensitivity and specificity of this assay were reported to be 90.0% and 100%, respectively17.

Fourier‑transform infrared absorption (FTIR) reflectance spectroscopy.  All samples were brought 
to room temperature prior to preparation for micro-FTIR measurements. Aliquots of 1 µL of serum (1 : 3 in 
ultrapure water) were deposited in platinum sample holder and dried at 80% relative moisture under a desiccator 
with NaCl saturated solution in order to avoid coffee ring effect and obtain a homogeneous biofilm18. The final 
droplet presented an average radius of 1000± 150 µm. A Varian 610 FT-IR micro-spectrometer equipped with a 
linearized MCT detector with a 100× 100 µm detector element (InfraRed Associates, Inc.) coupled to a 640-IR 
FT-IR spectrometer was used in reflectance mode for spectra acquisition. After optical focusing, the microscope 
aperture in the Cassegrain collecting lens ( 60× magnification) was reduced to 150× 150 µm2 to set the area of 
interest for measurement on the sample. The spectral resolution was set to 2 cm−1 in order to obtain the maxi-
mum throughput in the IR microspectrometer. The number of scans was 32 per sample (equivalent to 30 s time 
of acquisition). The scheme of methodology is shown on Fig. 1.

Statistical analysis.  Principal components analysis (PCA).  The classical Principal Components Analysis 
(PCA)19 was performed on mean centered raw data to extract outliers and identify possible experimental bias. 
All spectral analysis steps were implemented in the ChemSpec vignette available in the software R20. Outliers 
were identified using the Q and T2 Hotelling’s statistics. The Q statistics indicates how well each observation 
matches to the PCA model and the Q-residuals measure the residual between a sample and its projection on the 
factors retained in the model. Large residual outliers can be detected by inspection of Q-residuals. On the other 

Figure 1.   Scheme for micro-FTIR reflectance measurements for human serum. One µL of diluted (1 : 3 
in ultra-pure water) serum sample solution (1) was transferred to a circular platinum sample holder (2). 
Then the sample holder was installed in a desiccator with saturated solution of NaCl (3) which controls the 
relative moisture in 80%. The drying time was 10 min. After this period the sample holder was installed on 
the FTIR reflectance accessory of the micro-FTIR spectrometer. The IR beam (4) passing through the IR 60× 
magnification Cassegrain lens (5) focuses the light on a given sample (6). The reflected light is collected by the 
same lens and analyzed by the spectrometer.
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hand, Hotelling’s T2 value represents a measure of the variation in each sample within the model, indicating how 
far each sample is from the center (scores = 0 ) of the model. It is a quantifier for scores outliers. The T2 Hotel-
ling’s versus Q-residuals (reduced) plot were inspected raw spectral data.

Partial least squares: discriminant analysis (PLS‑DA).  All spectra were pre-processed to become comparable 
for statistical analysis. The baseline was corrected using the least-squares polynomial curve fitting method as 
described by Lieber and Mahadevan-Jansen21. All spectra were normalized and scaled using probabilistic quo-
tient normalization22. Then PLS-DA analysis was performed. It is a multivariate supervised method that uses 
linear regression of original variables to predict the class membership. In our case the PLS regression was per-
formed using the plsr function provided by R pls package20,23. The classification and cross-validation were per-
formed using the corresponding wrapper function using the caret package20. A permutation test was performed 
to assess the performance of class discrimination. In each permutation, a PLS-DA model was built between 
the data and the permuted class labels using the optimal number of components determined by leave-one-out 
cross validation for the model based on the original class assignment. The class discrimination performance was 
measured using classification accuracy, R2 , and Q2 parameters. The first one is based on prediction accuracy. The 
R2 parameter is the “goodness of fit” or explained variation which is based on the ratio of the between group sum 
of the squares and the within group sum of squares. On the other hand, Q2 is the ”goodness of prediction”, or 
predicted variation, calculated from cross validation. In each round, the predicted data are compared with the 
original data, and the sum of squared errors is calculated and then summed over all samples (Predicted Residual 
Sum of Squares or PRESS). For convenience, the PRESS is divided by the initial sum of squares and subtracted 
by 1 to scale to R2 . Good predictions will have low PRESS or high Q2 while negative Q2 means the model is 
not predictive at all or is overfitted8,24,25. Two quantifiers were used to measure the vibrational band frequency 
importance in PLS-DA model. The first, Variable Importance in Projection (VIP) is a weighted sum of squares 
of the PLS loadings taking into account the amount of explained spectral intensity-variation in each dimension. 
The other importance measure is based on the weighted sum of PLS regression. The weights are a function of 
the reduction of the sums of squares across the number of PLS components. For multiple-group analysis, the 
same number of predictors will be built for each group and the average of the feature coefficients were used to 
indicate the overall coefficient-based importance. The receiver operating characteristic (ROC) analysis was used 
to evaluate the discriminating performance and the area under the ROC curve (AUC​) as its summary index. In 
general tests with excellent discriminating capability will furnish AUC > 0.8026,27.

Normality and F tests.  The Kolmogorov-Smirnov test of normality28 was applied to test the hypothesis that 
IgG data does not differ significantly from that which is normally distributed. The F-test was used to test the 
hypothesis of equality of averages of two sets of data populations of unequal size (IgG and demographic data)29.

Results and discussion
The main clinical and demographic pieces of information about volunteers are presented on Table 1. Percentages 
of 40.2% ( n = 33 ) and 59.8% ( n = 49 ) of individuals tested positive and negative, respectively. Female individuals 
predominated in the sampled groups ( > 72 % of total number of patients). However we notice that this unbal-
ance did not induce a bias on the positive or negative rates within the confidence value of 5%. The average age of 
patients in positive and negative groups was 44± 14 years and 49± 12 years, respectively. Again these differences 
were not statistically relevant for COVID-19 diagnostic purposes. Likewise the body mass index did not repre-
sent a statistically relevant variable comparing negative and positive groups. On the other hand, the presence of 
comorbidities presented a well-defined increased risk for positive test against COVID-19. A percentage of 39.4% 
of individuals which tested positive presented some kind of comorbidity (rheumatoid arthritis, asthma, diabetes, 
systemic arterial hypertension, chronic obstructive pulmonary disease, obesity, or hypothyroidism) while this 
rate is only 16.3% in negative group. The outcome of F-test indicated that there is enough evidence against the 
hypothesis that the population sampled with positive and negative test has the same average ( p = 45.4%). The 
correlation between comorbidities and prevalence of COVID-19 is well reported in literature and our findings 
give one more piece of evidence concerning this important aspect of etiology of COVID-1930. We notice that 
CLIA and ELISA tests were 100% concordant about the patient’s diagnosis in our cohort.

Average FTIR spectra for negative (black line) and positive (red line) classes of samples in the fingerprint 
spectral window (880–1800 cm−1 ) are shown on Fig. 2. Assignments for the main vibrational bands (vertical 

Table 1.   Demographic data of volunteers, a set of 82 healthcare workers from “Instituto de Infectologia Emilio 
Ribas”, São Paulo, Brazil. The list of comorbidities includes rheumatoid arthritis, asthma, diabetes, systemic 
arterial hypertension, chronic obstructive pulmonary disease, obesity, and hypothyroidism.

Variable Positive ( n = 33) Negative ( n = 49) p-value

Female 76.7% 72.1% < 5%

Male 23.3% 27.9% < 5%

Age 44± 14 49± 12 < 5%

Comorbidities 39.4% 16.3% 45.4%

Body mass index (kg/m2) 25± 12 30± 12 < 5%
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lines in Fig. 2a) are presented on Table 2. Proteins, amino acids, and nucleic acids vibrational bands dominate 
the spectra in accordance with the average chemical composition of the blood serum31.

Prior data processing and multivariate statistical analysis, a quality check evaluation was performed on raw 
spectral data to identify anomalous spectra, outliers and/or biased patterns. The PCA was calculated on mean-
centered raw data and then Q residuals (reduced) versus T2-Hotelling’s plot8,25 was checked (Fig. 2b) in order to 
find residuals and scores outliers. Data outside of the confidence limits of 97% for scores and 3% for residuals 
were considered outliers (indicated by “*” in Fig. 2b) and removed in further analysis. PLS-DA analysis was 
then performed on processed, normalized, and scaled spectra. The optimal number of factors was determined 
by cross-validation after inspection of accuracy, R2 , and Q2 . Figure 3 presents the pairwise scores up to 5th PC 
(4.7% of explained variance) for positive and negative groups. At first glance, combinations including components 
1 and 2 are prone to discriminate betwenn positive and negative samples.

The best performance of PLS-DA classification was observed considering 2 components (Fig. 4a). In this case 
the observed accuracy on groups discrimination was 76% while R2 = 0.39 and Q2 = 0.34 (Fig. 4a). Regression 
coefficients are shown in Fig. 4b). Both curves for discriminating positive and negative groups appeared smooth, 
showing no random fluctuations around positive and negative values, which would be a symptom of overfitting. 
However, the coefficients for positive and negative classes appeared superimposed in many spectral windows, 
indicating greater similarity among them. The calculated response is shown in Fig. 4d). Sensibility and specificity 
were 53.1% and 87.5%, respectively in this case. Interestingly, there is a distinct subgroup of misclassified samples 
(labeled here as “mix” group). This subgroup showed a clear spectral signature, as seen in the heatmap in Fig. 5.

The performance of the PLS-DA model with 3 possible groups (positive, negative, and mix) is shown in 
Fig. 4c). R2 and Q2 presented a consistent increase of ∼ 0.1 while the accuracy was around 76%. The coefficient 
and response obtained are indicated in green in Fig. 4b,d, respectively. Specificity was 87.5% while the detection 
rate of true positive and true mix increased to 100%. However, one outstanding result was observed contrast-
ing the IgG Signal-to-Cutoff index from CLIA of each positive, mix, and negative groups to FTIR PLS-DA 

Figure 2.   Average spectra and outliers. (a) Average micro-FTIR blood serum spectra for negative (black 
line) and positive (red line) groups. The vertical lines represents the main vibrational bands contributing to 
discrimination of groups (see band assignments on Table 2). (b) Outliers identification by inspection of Q2 
residuals (reduced) versus T2 Hotelling’s. The outliers were indicated by “*”. Dashed horizontal lines and vertical 
lines represent confidence limits of 3% (Hotelling’s T2 ) and 97% (Q residuals), respectively.
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classification data. Histograms in Fig. 6a–c summarize this finding. The positive group presented a broad IgG 
reactivity index distribution between 1 and 17 while the mix group presented reactivity ranging from 1 to 8. 
Obviously, the negative group presented a narrow histogram centered on 0.1 value. The outcome from the Z-test 
( p < 5 %) indicated that these IgG distributions come from distinct populations. Interestingly the histograms 
of signal-to-cutoff from ELISA (Fig. 6e,f,g) showed no evidence that positive and mixing groups belongs to 
distinct populations ( p > 5 % for Z test). Thus, the question that arises concerns the characteristics that gives 
rise to these distinct populations. Important vibrational bands that contribute to discrimination can help find 
the answer to this question.

The important vibrational frequencies (VIP) identified by PLS-DA are represented in Fig. 6d,h. For positive 
and negative discrimination (Fig. 6h and Table 2), β-sheet structure of Amide I of proteins (1689–1698 cm−1 ) 
and deoxyribose from DNA bands (840–856 cm−1 ) contributed to the greatest over-expression in the positive 
group. Immunoglobulins are heterodimeric proteins composed of two heavy (H) and two light (L) chains. They 
can be functionally separated into variable (V) domains that bind antigens and constant (C) domains that drives 
its functions, such as complement activation or binding to Fc receptors38. The basic H2L3 structures consist of 
the Fc region (fragment, crystallizable) and Fab region (fragment, antigen binding), both composed mainly of 
β-pleated sheets38.Thus the increased intensity of β-sheet band in the positive group is completely correlated 
with antibody recruitment in COVID-19 disease. Likewise, the increase in cellular activity due to Sars-Cov-2 
inflammatory response explains the observed increase in DNA band intensity. However, for 3 groups (positive/
mix/negative) discrimination, a very narrow set of vibrations confined to 1702–1785 cm−1 spectral window 
is the most important (Fig. 6d). The 1735–1785 cm−1 region had been reported as spectral marker for lipids, 
C = O cholesteryl esters, and triglycerides35. Besides, the C = O bond for the methyl-esterified carbonyl groups 
also presents a relatively strong absorption peak at 1730–1760 cm−136. Also it had been reported that the FTIR 
spectrum of glycated human serum albumin presents a new peak carbonyl group at 1737 cm−134. Also 1739 cm−1 
and 1781 cm−1 bands were reported as predictors for classifying anti-neutrophil cytoplasmic antibodies in sera 
samples39.

In our case bands in 1702–1785 cm−1 spectral window could be grouped in two classes: (1) those overex-
pressed in the mix group and subexpressed in the positive group which are both related to IgG glycosylation and 
(2) those overexpressed in the positive group and underexpressed in the mix group which are both related to thy-
mine. As long as we can argue that the mix group relates to a COVID-19 sub-population with highly glycoyilated 
IgG. As all patients in the present study were mild or oligosymptomatic, the above feature is in agreement with 
the Chakraborty et al. findings3 which proposed that patients with severe COVID-19 are more likely to have IgG1 
with afucosylated Fc glycans as signature. It is well reported that IgG glycosylation can determine whether an anti-
body glycoform is pro-inflammatory (such as IgG with galactose-deficient N-glycans) or anti-inflammatory (such 
as IgG with sialylate N-glycans)37. Since 1768–1786 cm−1 region is related to methyl-esterified carbonyl vibration 
we argue that this band is related to C=O on sialic acid on IgG with sialylate N-glycans. One important point to 

Table 2.   Assignments for the main vibrational bands of micro-FTIR blood serum (Fig. 2a).

Wavenumber (cm−1) Assignment References

840–845 Left-handed helix DNA (Z form) 32

850–856 C
′

2
 endo/anti of deoxyribose in B-form helix conformation 32

886 C–C, C–O deoxyribose 32

930 Left-handed helix DNA (Z form) 32

1030 Stretching C–O ribose 32

1080 Ring stretching vibrations in phenylalanine, tryptophan or tyrosine 32

1120 Symmetric stretching P–O–C, phosphorylated saccharide residue 32

1165 C–O stretching mode of C–OH groups of serine, threonine, tyrosine 32

1245 Amide III α-helix conformation of proteins 32

1315 Amide III of proteins 32

1350 Stretching C–O, deformation C–H, deformation N–H 32

1400 Symmetric stretching vibration of COO– group of fatty acids and amino acids 32

1440 Stretching C–H in polysaccharides, pectin 32

1450 Asymmetric CH3 bending in proteins 32

1470 CH2 bending vibration in lipids and proteins 32

1500 In-plane CH bending vibration from the phenyl ring in phenylalanine, tryptophan or tyrosine 32

1515–1580 Amide II of proteins 14,32,33

1630–1665 β-sheet structure of Amide I of proteins 14,32,33

1683 Unordered random coils and turns of Amide I of proteins 32,33

1689–1698 β-sheet structure of Amide I of proteins 32,33

1700–1708 C=O in thymine 32

1735 C=O in polysaccharides; new COO– group vibration due to glycated human serum albumin 32,34,35

1768–1786 methyl-esterified C=O vibration in IgG COO– group—glycosilation (IgG with sialylate N-glycans) 33,35–37
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clarify is the difference between CLIA and ELISA distribution of Signal-to-cutoff ratio (Fig. 6). It appears that 
the fluorescence yield of murine monoclonal anti-human IgG anti-body complexed to HRP of CLIA is depend-
ent on the fucosylation of the Fc tail of human IgG. This point needs to be explored in additional experiments.

Concerning the diagnostic performance we mention that spectral windows at 820–890, 1025–1180, and 
1685–1727 cm−1 presented excellent capability for discriminate negative and positive classes (AUC = 0.80–0.86, 
Fig. 7a). The positive and mix classes were also discriminated in excellent grade (AUC = 0.80–0.98) in spectral 
windows 850–940, 1015–1170, 1500–1570, 1612–1652, 1695–1735, 1755–1790 cm−1 (Fig. 7b). This curve is 
comparatively nosiest respect to the positive/negative case due to the low-N (only 30% of data) in this case. The 
representative ROC curves for negative and positive (Fig. 7c,d) and mixing and positive (Fig. 7e,f) classes with 
highest AUC​ are also shown. The ROC curves for positive/negative (Fig. 7c,d) have binormal curve shapes while 
mixing/positive ones have straight line shapes due to low-N. The classification boxplots for two discriminating 
classes presented a significant statistical difference among groups ( p < 0.05 for t-Student test).

Micro‑FTIR reflectance compared to other methods.  At this point it is important to compare our 
results to previous reports concerning blood testing for COVID-19. The usage of ATR-FTIR for analysis of 

Figure 3.   Pairwise score plots for selected PLS-DA components. The explained variance of each component is 
shown in the corresponding diagonal cell.
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plasma from COVID-19 patients have been recently reported in literature. This technique shares a great similar-
ity with our methodology and for this reason a detailed comparison is important.

Banerjee et al.40 investigated a cohort of 160 clinicopathologically confirmed SARS-CoV-2 patients using 
ATR-FTIR. They proposed a plasma processing with 75% ethanol v/v for virus inactivation followed by vortex-
ing and drying over ATR-crystal. The reported AUC​ was 0.851 when considering the set of spectral and clini-
cal (age, sex, diabetes mellitus, and hypertension) data. The discriminating performance of the spectral data 

Figure 4.   Discrimination performance of micro-FTIR. PLS-DA classification performance using different 
number of components following accuracy, R2 and Q2 criteria for two (positive/negative, (a) and three (positive/
mixture/negative, (c) groups. Regression coefficients and calculated response in PLS-DA for sample classes are 
shown in (b,d), respectively.

Figure 5.   Heatmap for micro-FTIR data. Clustering result shown as a heatmap organized by samples (vertical 
axis) and wavenumber (horizontal axis). Negative, positive, mix classes grouped into distinct clusters.
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alone was not reported. Zhang et al.41 investigated by ATR-FTIR blood samples from 20 healthy donors and 76 
patients, of which 41 were confirmed with COVID-19, 15 had respiratory viral infections caused by influenza 
A/B or respiratory syncytial virus (RSV), and 20 were with inflammation-related diseases. In this case the AUC​ 
for COVID-19 discrimination was reported to be 0.9947. To the best of our knowledge only these two exciting 
articles reports COVID-19 diagnosis using ATR-FTIR on blood or plasma samples. In spite of diverse sample 
preparation method and amount of individuals included in the cohort, our AUC​ is very similar to that found by 
Banerjee et al. and Zhang et al. The key differences between our approach and the ATR-FTIR relies on waiting 

Figure 6.   micro-FTIR and CLIA comparison. (a)–(c) Histograms of signal-to-cutoff data of CLIA IgG 
antibodies against Sars-Cov-2 for positive (a), mix (b), and negative (c) classes as discriminated by micro-
FTIR. (d) Important vibrational frequencies (VIP) identified by PLS-DA for three classes classification. (e)–(g) 
Histograms of signal-to-cutoff data of ELISA IgG antibodies against Sars-Cov-2 for positive (e), mix (f), and 
negative (g) classes as discriminated by micro-FTIR. (h) VIP for two classes discrimination. Color boxes on the 
right of (d),(h) indicate the relative intensity (high, intermediate and low) of the corresponding band in each 
group.
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time for result outcome, amount of samples which would be tested by row, and COVID-19 fatality capability 
prediction since we explored in deep the biochemical pieces of information in the FTIR spectra. For spectrum 
acquisition on ATR-FTIR a single drop of sample need the deposited and dried over the surface of ATR crystal. 
Then only a single patient could be tested at once. This process demands usually > 5 h35. It is not well reported 
whether the proteins degradation over this time would impact on quality of diagnosis. Moreover the morphologi-
cal characteristics of the deposited bio-film (heterogeneity, size, wettability, dilution, among others) is dependent 
of drying conditions as relative moisture and temperature. The quality of spectrum (artifacts, reproducibility) 
is very sensitive to the morphology of the bio-film. These points impose challenges to the standardization of 
the method35. On the other hand, our approach enables the preparation of drops of several patients over the 
substrate. Over an equivalent area of a microplate of 96 wells it is possible the deposition of 500 droplets. Using 
the microscope re-positioning the IR beam over each patient drop is relatively easy which increases the scale of 

Figure 7.   Diagnostic performance of micro-FTIR. Area under receiver operating characteristic (AUC​) against 
wavenumber showing those bands with excellent discriminating power ( AUC > 0.80 , dashed horizontal 
line) for positive/negative (a) and positive/mix (b) classes. Selected representative curves of receiver operating 
characteristic (ROC) and corresponding classification box-plot of the intensity of the left-handed helix DNA (Z 
form) ( 848 cm−1 , c), β-sheet structure of Amide I of proteins ( 1693 cm−1 , d), C=O in IgG carbonyl group (1772 
and 1784 cm−1 in (e,f), respectively) bands. The horizontal red line is the threshold for classification.
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testing. Banerjee et al. reported the fatality prediction only when considering in the statistical analysis a larger 
set of data of different kinds as spectra and clinical pieces of information which in some aspect would represent 
a bias in the statistical test. We were able to discriminate 3 possible groups in an independent way of validation. 
The clinical data were used to compare and discuss the data but not as input.

Other comparison is with the gold standard method for COVID-19 testing ELISA and also with CLIA 
method. Both were used to validate our results. Jagtap et al.42 evaluated the performance of spike protein antigens 
for SARS-CoV-2 serology compared four spike proteins: RBD, S1, S2 and a stabilized spike trimer (ST). They 
used indirect ELISA in serum from COVID-19 patients and pre-2020 samples. ROC curves indicate that ST is 
the best candidate for serological testing with the highest AUC​ ( AUC = 0.94 ). AUC for IgG was 0.934. Huang 
et al.43 compared the serological test of SARS-CoV-2 using ELISA test and reported that AUC(IgM) = 0.812 
while AUC(IgG + IgM) = 0.983 . The reported AUC​ for CLIA anti-Sars-CoV-2 test include 0.84644 , 0.914345, 
0.9846, and 0.83144. Thus we can conclude that the performance of our micro-FTIR approach is in the same level 
of ELISA and CLIA.

However as summarized by Liu and Rusling47, in general the nucleic acid-based tests against COVID-19 
have reported high false-negative rates which are dependent of the day of the symptom (38% on the day, 20% 
3 days, and 66% 16 days, after of symptom onset, respectively). Factors such as sampling time, viral mutation, 
inadequate handling, improper storage, transportation of samples, among others had been cited to influence the 
result. The requirements to perform these tests evolve high workload, skilled personnel for testing and sample 
collection, special reagent kits, costly centralized infrastructure with specific equipment for process and meas-
ured the sample signal, and professional bio safety level (BSL)-2 lab47 imposing elevated costs, relatively longer 
time to delivery of results (2–3 h) and dependence of international chain of suppliers. This last aspect would be 
disrupted during the pandemic period. One important advantage of the micro-FTIR method is the minimal need 
of sample preparation which impacts lower cost per testing and relative independence of external suppliers. The 
time elapsed pipetting , drying, acquiring spectra is typically 10 min. Another aspect to mention is that ELISA 
and CLIA tests are able to detect a single protein at once. Nevertheless FTIR has multiplexing advantage enabling 
comparison of several metabolites which increases the quality of prognosis being a suitable tool for precision 
medicine48. Our method enables in principle to probe 500 samples per row while ELISA and CLIA usually are 
limited to 96 samples. Table 3 summarizes the comparison between all techniques.

Conclusions
Our results showed that micro-FTIR was able to probe key structural aspects of serum IgG from COVID-19 
volunteers. The 1702–1785 cm−1 spectral window is a spectral marker of the degree of IgG glycosylation, allowing 
to probe distinctive sub-populations of COVID-19 patients, depending on their degree of severity. Furthermore, 
the β-sheet structure of Amide I of proteins (1689–1698 cm−1 ) and deoxyribose from DNA (840–856 cm−1 ) 
bands presented most significant contributions to positive and negative discrimination with a specificity of 
87.5% and sensibility of 100%. The computed AUC​ was comparable to the ELISA, CLIA, and other ATR-FTIR 
methods ( AUC > 0.85 ). In summary, overall discrimination of healthy and COVID-19 individuals and severity 
prediction could also be potentially implemented using micro-FTIR reflectance spectroscopy on blood serum 
samples due to direct probe of glycosylation degree of IgG. However, experimental efforts need be devoted to 
isolate immunoglobulins molecules from plasma samples from healthy and COVID-19-ill patients and charac-
terize their spectral properties what would give detailed clues on IgG glycosilation and other structural changes 
related to pathology.

Received: 17 September 2021; Accepted: 23 February 2022

Table 3.   Parameters for maintenance, management, operating, and performance of the main anti-Sars-Cov-2 
clinical tests ELISA and CLIA compared to the ATR-FTIR and micro-FTIR.

Parameter Micro-FTIR ATR-FTIR ELISA CLIA

Sample preparation Minimal Minimal Complex Complex

Waiting time for result < 10 min > 5 h 2–3 h 2–3 h

Laboratory equipment requirements Intermediate Intermediate High High

Specialization of human resources for usage Intermediate Intermediate High High

AUC​ > 0.85 > 0.85 > 0.85 > 0.85

Multiplexing capability Yes Yes No No

COVID-19 fatality prediction Yes Depends No No

Reagents Free Free Expensive Expensive

Cost of single test (US$) 1–10 1–10 50–100 50–100

Cost of main equipment for testing (US$) 20,000–50,000 20,000–50,000 10,000–30,000 10,000–30,000

Amount of samples tested by row > 500 1 96 96

Dependence of international logistic and supply chains Weak Weak Strong Strong

Operator dependence level of reproducibility of outcome Intermediate Intermediate High High
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