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Abstract

The Islamic necropolis discovered in Tauste (Zaragoza, Spain) is the only evidence that a

large Muslim community lived in the area between the 8th and 10th centuries. A multi-iso-

tope approach has been used to investigate the mobility and diet of this medieval Muslim

population living in a shifting frontier region. Thirty-one individuals were analyzed to deter-

mine δ15N, δ13C, δ18O and 87Sr/86Sr composition. A combination of strontium and oxygen

isotope analysis indicated that most individuals were of local origin although three females

and two males were non-local. The non-local males would be from a warmer zone whereas

two of the females would be from a more mountainous geographical region and the third

from a geologically-different area. The extremely high δ15N baseline at Tauste was due to

bedrock composition (gypsum and salt). High individual δ15N values were related to the

manuring effect and consumption of fish. Adult males were the most privileged members of

society in the medieval Muslim world and, as isotope data reflected, consumed more animal

proteins than females and young males.

Introduction

Muslims invaded most of the Iberian Peninsula in the Early Middle Ages (AD 711) and

remained for the next seven centuries, until 1492 when the Christian Kingdoms totally recon-

quered the peninsula. The northern frontier of the country captured by the Muslims, known

as al-Andalus, extended eastward on the southern slopes of the Cantabrian range from the

present Galicia to Catalonia. Following the Muslim conquest, al-Andalus was at first (711–

750) a province of the Umayyad Caliphate centered on Damascus. From 740 a series of civil

wars between various Muslim groups resulted in the breakdown of the Arab empire and the

Emirate of Cordova (c. 750–929) emerged. In 929 the emir of Cordova proclaimed himself

Caliph and the period of the Caliphate of Cordova was established (929–1031). The Cordova
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Caliphate collapsed during a civil war and Al-Andalus broke up into a number of mostly inde-

pendent states called taifa kingdoms. The independent taifas were too weakened to defend

themselves against the Christian Kingdoms in the north and west, allowing the Reconquest.

The Christian reconquest of Iberia ended with the final assault on the Emirate of Granada in

1492. From 711 to 1492, as political dominions changed, the boundaries between the Christian

north and the Islamic south shifted constantly.

In the Ebro Valley, the first Muslims arrived in the early 8th century conquering the main

towns without any relevant or attested resistance and the Upper March (or northern frontier)

was established along the Ebro basin. Thus began the Muslim period in the Ebro Valley that,

for four centuries, was centered on the metropolis of Saragossa. Shortly after the Muslim con-

quest, the nobleman Count Cassius converted to Islam to preserve his lands and political

power and founded the Banu Qasi dynasty. In the 9th century the Upper March was under the

dominion of the Banu Qasi dynasty as a semi-autonomous territory within the Cordova

caliphate [1,2]. During the 9th century, the Banu Qasi lineage was successively loyal and rebel-

lious toward the Cordova emir. In the second half of the century, the Banu Qasi domains

increased considerably, extending north to the Pyrenees and east nearly to the Mediterranean

coastline. However, in the later 9th century the Cordova emir recovered most of the Upper

March territories and in the early 10th century, harassed by its Christian neighbors and with-

out the support of Cordova, the Banu Qasi dynasty lost all its territories [3].

The society of Al-Andalus was made up of three main religious groups: Christians, Muslims

and Jews, who inhabited distinct neighborhoods in the cities. Islamic society stratification was

mainly by ethnic division. The kinship system ascribed importance only to relationships

through males and endogamous marriages were viewed as the ideal system [4]. The more pow-

erful a tribal group was, the more women it would attract from outside and the fewer it would

lose, and the more endogamous it would become. Under Islamic law, the most privileged

members of society were devout Muslim men, and women were treated as second-class citi-

zens [4]. In particular, women’s rights were contingent on their place within society on several

levels, including their religious, economic and marital status. Under Islamic law, other groups

in society such as Jews and Christians had fewer rights and privileges, to varying degrees.

Within this framework, Tauste was placed midway between the two most significant cities:

Saragossa, metropolis of the Upper March, and Tudela, the center of the Banu Qasi territory.

The Muslim occupation of Tauste (Zaragoza, Spain) has been considered incidental and

even non-existent, according to traditional and written sources. However, recent excavations

suggest a large stable Muslim population lived in the town from the early Islamic period in the

Iberian Peninsula. In 2010, a cemetery with several human skeletons aligned perpendicular to

Mecca was discovered. The bodies were placed on their right side, facing towards Mecca, as is

characteristic of a Muslim cemetery [5]. In contrast, no remains of the Muslim village associ-

ated with this necropolis have yet been found. Multi-isotopic studies, including radiogenic

strontium, stable oxygen, carbon, and nitrogen, have been used to reconstruct the geographic

origin, mobility and dietary practices of the Tauste individuals during the Islamic period in the

Iberian Peninsula. Stable isotope composition of bone collagen reveals information about

nutrition, life history, and mobility in past populations [6–10].

Isotope analyses in bioarchaeology

The analysis of carbon and nitrogen isotope composition in bone collagen constitutes an

approach to palaeodietary reconstruction. It can provide information about the protein por-

tion of the diet averaged over roughly the last 10 years prior to death and also about different

protein sources [11,12].
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Carbon isotope analysis provides information about the ecosystem that foodstuffs come

from, distinguishing between terrestrial and marine ecosystems. In the case of a terrestrial diet,

it informs about the plants that were consumed. Two classes of plants are distinguished

according to their photosynthetic pathways: C3 plants and C4 plants. C3 plants are most vegeta-

bles, wheat (Tritium) and barley (Hordeum vulgare), while C4 plants include millet (Pennise-
tum), maize (Zea mays) and sugar cane (Saccharum officinarum). C4 plants exhibit more

enriched carbon values than C3 plants, so that the mean δ13C values are -13‰ and -27‰

respectively [13,14]. Marine plants are all C3 plants and their average values are about 7.5‰

higher than terrestrial C3 plants. Carbon isotope composition can be used to distinguish

marine protein consumption in terrestrial C3-based diets, but when C4 plants are involved

marine and terrestrial values can overlap [15,16]. Carbon fractionates in δ13C by only about

1‰ throughout the food chain [6–8,17]. In freshwater ecosystems the δ13C composition of

plants is variable and consequently freshwater fish exhibit a broad range of δ13C values that are

largely depleted [18,19]. Therefore, δ13C ratios more negative than -22‰, the value corre-

sponding to the low-end of a diet based only on C3 terrestrial plants, suggest freshwater fish

consumption.

Nitrogen isotope values reflect the intake of animal proteins and inform about the trophic

level of an individual [10,20,21]. Thus, nitrogen isotopes in terrestrial ecosystems are enriched

in δ15N by 2–5‰ (on average, 3‰) from food to body tissue as trophic levels increase

[8,22,23] Terrestrial protein sources have δ15N values ranging from 5‰ to 12‰, while aquatic

food sources range from about 12‰ to 22‰ for marine fish and 7.2‰ to 16.7‰ for freshwater

fish [24–28]. When C3 plants are consumed, nitrogen isotope analysis is combined with car-

bon isotope analysis to distinguish between proteins derived from terrestrial, freshwater and

marine resources. Other reasons for variability in δ15N ratios of plants and animals include

natural environmental conditions such as salinity and aridity or anthropogenic factors like

manuring [29,30]. In general, human diet corresponds to a mixture of food with different iso-

tope signatures. Plots of collagen δ13C vs δ15N values can be interpreted as mixtures of multiple

components [31,32] that do not yield unique solutions, but may outline the dominant compo-

nents in the diet of the studied individuals. Besides, stable nitrogen isotope analysis can also be

used to investigate breastfeeding and weaning practices. In fact, during breastfeeding, children

exhibit δ15N values enriched about 2–3‰ over that of their mothers [33]. Strontium and oxy-

gen isotopes are two independent isotopic systems in which strontium reflects local geology

and oxygen reflects geography and can be used to reconstruct movements of past populations.

The combination of these two isotopic systems is able to constrain possible areas and provide

information about an individual’s area of origin and thus determine mobility patterns [34–36].

Oxygen and strontium are fixed in phosphate in teeth and bones through ingested food and

water. Strontium isotopes appear by substituting calcium in biogenic phosphate [37–39]. After

formation during infancy, tooth enamel does not incorporate other elements and thus will

reflect the geological composition of the place of residence during childhood, assuming that

childhood residence and food production area coincide, at least for the majority of the food

intake [37,40]. However, these patterns are not perfectly predictable at any level, because of

vagaries in available food over time, and because the strontium ratio reflects an average value

that synthesizes the geological composition of the different food provenances ingested during

childhood. The average expected patterns are used to predict the most likely geographic links

between tissue and location. In contrast, bones are continuously remodelled throughout an

individual’s lifetime.

The radiogenic strontium isotopes are related to geology and vary according to the compo-

sition and age of bedrock. The strontium concentration in organisms varies according to the

trophic level but the 87Sr/86Sr isotope signature of humans and fauna has negligible metabolic
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fractionation and will reflect the isotope signature of the underlying bedrock [39,41–48].
87Sr/86Sr ratios in bedrock, soils, water and plants will be reflected in humans and animals that

consume food and water from those sources [21,38,49]. Since the 87Sr/86Sr isotope ratio is

inherited from the local environment, it is necessary to define the local bioavailable strontium

isotope signature to evaluate residential mobility of individuals. There are several methods to

establish the local baseline of the isotope signature by analyzing environmental samples

including freshwater, soil leachates, ancient fauna and present-day small wild animals [38,50–

52]. However anthropogenic activities such as the use of fertilizers could modify the strontium

isotope ratios of modern ecosystems [53–56].

In contrast, the oxygen isotope reflects the isotopic composition of ingested water that is

derived from meteoric water. The δ18O in precipitation varies regionally according to temper-

ature and other climatic parameters, such as distance from the coastline, altitude and latitude

[57–60]. Oxygen isotopes in the body are subject to several steps of metabolic fractionation.

The fractionation mechanisms are relatively well known, allowing the calculation of approxi-

mate drinking water (δ18Ow) values from the δ18Op of biogenic phosphate by means of conver-

sion equations [57,60–66]. Despite complexities in the calculation of meteoric water isotope

composition in the past, the oxygen isotope composition of human remains allows the identifi-

cation of palaeomobility patterns.

The aim of this study was to reconstruct palaeomobility and palaeodiet patterns in the

medieval Muslim population at Tauste. Tauste Muslim necropolis constitutes a suitable site to

examine human mobility since it was located on the northern frontier during a very convulsive

period of time. In addition, the palaoedietary pattern can illustrate the basic dynamics of medi-

eval Muslim social life. For these purposes, stable isotopes (δ13C, δ15N, δ18O) and radiogenic

strontium (87Sr/86Sr) were investigated to obtain information about nutrition and social

stratification.

Archaeological setting

Tauste archaeological site is located in the town with the same name in the province of Zara-

goza (northern Spain) (Fig 1). Tauste is in the Ebro basin, on the River Arba, a tributary of the

River Ebro. The Muslim archaeological site of Tauste is formed only by the cemetery, with a

total absence of other vestiges of Islamic population. All the graves were aligned SW-NE and

the human bodies were carefully placed on their right side, facing Mecca, indicative of a Mus-

lim necropolis [67] (Fig 2). All individuals were found in anatomical connection. Graves were

dug in clay soil without any structure, or only a minimum structure formed by rammed earth

on the sides according to Muslim burial rituals. More complex tombs corresponding to double

grave burials (shaq or ladj) were found. A similar burial system has been documented in other

Muslim necropolises in the Iberian Peninsula, such as Marroquı́es Bajos (Jaen) [68], Tossal de

Manises (Alicante) [69] or the recent find at Valdeherrera (Calatayud). The human remains

extended over an area of two hectares and the density of graves (0.25–0.30 individuals/m2)

indicates a minimum of 4.500 burials, excluding children [70,71]. Only a simple bronze hoop

earring was found in a female’s grave, and the lack of grave goods is also indicative of Islamic

funeral rituals. The excavations have found at least two levels of burials, indicating this ceme-

tery was in use during an extended period of time.

Radiocarbon dating of human bones dates the graveyard in the 8th to 10th centuries and it

could be one of the oldest Muslim necropolises in the Iberian Peninsula (Table 1, Fig 3). Calen-

dar ages were determined using the Oxcal v 4.2.4 program [72] with the latest IntCal13 calibra-

tion curve for atmospheric data [73]. Calibrated age ranges correspond to 95.4% probability

(2σ) and are expressed in years cal AD. The age and extent of the necropolis suggest Tauste
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was a thriving village in the times of the Banu Qasi dynasty, when the northernmost limit of

Al-Andalus was established [74,75].

Geologically, the Muslim necropolis of Tauste is located in the Ebro Basin, composed by

Tertiary (Miocene) and Quaternary sedimentary rocks of continental origin (Fig 4) [76]. Mio-

cene materials around Tauste are composed by claystones with interbedded gypsum layers.

These materials correspond to evaporite lacustrine facies, i.e. sediments deposited in the centre

of a continental sedimentary basin. Miocene deposits are overlaid by Quaternary materials

Fig 1. Location of Tauste archaeological site and the excavated areas. Reprinted from under CC by

license, with permission from [Instituto Geográfico Nacional (IGN)], original copyright [2015].

https://doi.org/10.1371/journal.pone.0176572.g001
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consisting mainly of river terrace deposits and fluvial sediments. The evaporitic nature of the

bedrock causes a large increment in salt contents in the environment. In fact, high levels of

sodium chloride and sulphate ions have been found in the freshwater River Arba [77,78].

Materials and methods

This study deals with archaeological skeletal material and all necessary permits were obtained

for the described study, which complied with all relevant regulations. The excavation licenses

were issued by the General Director of Cultural Heritage of the Gobierno de Aragon (Spain)

and are stored in its archives. Following excavation campaigns 2010/2013, the bones and teeth

samples were transferred to the Heritage and Cultural Landscape Research Group (GIPyPAC)

at the University of Basque Country-UPV/EHU, Spain for investigation. At present all archae-

ological remains, including the human bones, recovered at the site of Tauste are stored in the

Museo de Zaragoza.

Carbon and nitrogen isotope measurements have been performed in bone collagen

extracted from 31 human individuals corresponding to the sectors excavated in 2012 and 2013

(Fig 5) and nine faunal bone samples. Additionally, 23 teeth and 8 bone samples were analyzed

Fig 2. Aerial view of some burials showing individuals placed in the graves following the Muslim burial

rituals (facing east).

https://doi.org/10.1371/journal.pone.0176572.g002

Table 1. Calibrated radiocarbon dating of the Tauste site.

Sample Lab. Code Age BP Age cal AD

from to %

Tomb 1 CSIC-2180 1072 ±32 895 929 22.7

939 1021 72.7

Tomb 2 CSIC-2235 1286±31 664 772 95.4

777 791 3.3

Tomb 3 CSIC-2234 1133±28 806 842 5.7

861 986 86.4

https://doi.org/10.1371/journal.pone.0176572.t001
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for strontium and oxygen isotope studies. In order to define the strontium isotope baseline,

four soil samples and one freshwater sample were analyzed. The soil samples were collected in

different parts of the cemetery, while the freshwater sample was collected from the River Arba

near Tauste. Surface waters were collected from the banks of the river. Before analysis, water

samples were filtered to remove suspended particles.

Water aliquot was filtered with disposable syringe filters (0.45 um) and 10 mL aliquot was

transferred to a 15 mL Teflon (Savillex™) vial, evaporated down on a hot plate at 80˚C over-

night and then dissolved in 1.5 mL of 2N HNO3.

The measured individuals were corresponded to 12 males, 10 females and 9 of indetermi-

nate sex [71]. The individuals were categorized by age into infants (0–3 years), children (6–12

years), juveniles (12–17 years), young adults (18–34 years), middle-aged adults (35–50 years),

and older adults (older than 50 years). According to these categories, 2 individuals are older

adults, 11 are middle-aged adults, 6 are juveniles, 7 are young adults, 4 are infants and 1 is of

indeterminate age. Sex determination was carried out according to the classical patterns of

dimorphism and age was defined by the most reliable markers: changes in auricular surface

and pubic symphysis, epiphyseal closure, cranial sutures and dental eruption [79]. The faunal

samples corresponded to three wood mice (Apodemus sylvaticus), three shrews (Crocidura rus-
sula) and two common barbels (Barbus barbus) and a madrilla (Parachondrostoma miegii).

For carbon and nitrogen isotope analyses, bone collagen was extracted following the proce-

dure in Bocherens et al. [80]. 300 mg of bone sample powder were demineralised in 1M HCl

for 20 min at room temperature until the sample dissolved. To remove humic acid the samples

were rinsed with distilled water and treated with 0.125 M NaOH. The resulting insoluble frac-

tion after being rinsed again with distilled water was gelatinized in HCl solution at pH3 for 17

h at 90˚C. Then, samples were filtered with disposable syringe filters (5 um), freeze-dried and

finally lyophilized. Lyophilized collagens (2.5–3.5 mg) were enclosed in tin capsules for isoto-

pic analysis. Carbon and nitrogen isotope analyses were performed using an elemental ana-

lyzer on line with a continuous-flow isotope ratio mass spectrometer (EA-IRMS) at Iso-

Analytical (Cheshire, UK). Replicate measurements of the liver standard NBS-1577B and

ammonium sulphate IA-R045 working standard were run to confirm instrument accuracy.

Replicate analysis of the NBS-1577B δ13C standard during runs gave a 13C/12C of −21.62 ± 0.02

(1σ, n = 7) and 15N/14N of 7.62 ± 0.13 (1σ, n = 7), and the IA-R045 working standard during

runs gave a 15N/14N of −4.56 ± 0.17 (1σ, n = 4) and 13C/12C of −26.1 ± 0.03 (1σ, n = 4). Isotopic

values are reported as δ values in per thousand (‰) relative to international defined standards

CSIC-2180

CSIC-2235

CSIC-2234

Calibrated data (cal AD)

Fig 3. Radiocarbon dating of human bone samples from Tauste calibrated with OxCal v4.2.4 [72] and

IntCal13 atmospheric data [73].

https://doi.org/10.1371/journal.pone.0176572.g003
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for carbon (VPDB: Vienna Pee Dee Belemnite) and nitrogen (AIR: Ambient Inhalable Reser-

voir). The instrumental precision for δ13C was ± 0.06‰ or better and for δ15N was

between ± 0.06‰ and ± 0.08‰, determined by replicated analyses of internal standards.

Tooth enamel and bones were used to determine strontium and oxygen isotope composi-

tion. The samples were washed in an ultrasonic bath to remove impurities and further cleaned

by mechanical abrasion to remove the outer surface and avoid potential contamination.

0 10 20 30 40 50 km

TAUSTE

Quaternary

Paleogene
Cretaceous

Neogene
Jurassic
Triassic
Paleozoic

Legend

Fig 4. Geological map of the Tauste region showing evaporitic nature of the bedrock. Reprinted from

[76] under CC by license, with permission from [Instituto Geológico y Minero de España (IGME)], original

copyright [2015].

https://doi.org/10.1371/journal.pone.0176572.g004
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Sector 2012

Sector 2013

Fig 5. Detailed map of two excavated areas (sectors 2012 and 2013) showing studied individuals.

https://doi.org/10.1371/journal.pone.0176572.g005
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For strontium isotope analysis a fraction of dental enamel was collected mechanically with

a diamond-coated trepanation drill (MF-perfect, W & H Dentalwork, Bürmoos, Austria). The

enamel sample was taken transversally. Enamel and bone samples (~10 mg) were dissolved in

7 mL Savillex1 vials (Minnetonka, MN, USA) with 1.5 mL of 2N HNO3 (analytical grade

purified by subboiling distillation). In order to establish the local isotopic composition, two

water samples and four soil samples were also analyzed. 15 mL of freshwater was evaporated to

dryness and then dissolved in 2 mL HNO3. A 1g aliquot soil sample was leached by adding 2.5

mL 1 M ammonium nitrate (NH4NO3) and shaking for 8 h to obtained the bioavailable Sr.

After samples were centrifuged at 3000 rpm for 15 min, the supernatant was extracted (~1–2

mL) and evaporated to dryness and then redissolved in 2 mL HNO3. The solutions were

loaded into cation exchange columns filled with Sr.spec1 (ElChroM industries, Dariel, IL,

USA), a strontium selective resin. The resin was used once to elute the sample and then dis-

carded. Strontium procedural blanks were less than 100 pg and hence provided a negligible

contribution.

The radiogenic strontium isotope samples were analyzed on a Neptune multi-collector

inductively coupled plasma mass spectrometer (MC-ICP-MS) at the Advanced Research Facil-

ities (SGIker) of the University of the Basque Country (UPV/EHU). 87Sr/86Sr measurements

were corrected for krypton (Kr) and rubidium (Rb) interferences and normalized for instru-

mental mass bias using 87Sr/86Sr = 8.375209. Repeated analyses of NIST SRM-987 interna-

tional standard yielded a value of 87Sr/86Sr = 0.710262 ± 0.000026 (2σ, n = 3). Long-term
87Sr/86Sr value, determined over a twenty-two month period, was 0.710266 ± 0.000021 (2σ,

n = 47).

Tooth enamel was also prepared for oxygen isotope analysis following the procedure

described in Stephan [81]. 60 mg of dental enamel powder was processed. The organic matter

was removed with a solution of 2.5% NaOCl for 24 h at room temperature followed by a 48 h

treatment in 0.125M NaOH at room temperature. The hydroxyapatite powder free of organic

matter was dissolved in 2 mL of HF for 24 h. The phosphate solution and the residue com-

posed of CaF2 were separated by centrifugation, pipetted into a 100 mL glass tube and neutral-

ized with 3 mL 2M KOH. Silver phosphate (Ag3PO4) was precipitated by adding 30 mL of a

buffered silver amide solution (0.2 M AgNO3; 1.16 M NH4NO3; 0.75 M NH4OH) gradually

warmed up to 70˚C, holding the temperature for 5–6 h and cooling down slowly. Silver phos-

phate crystals were filtered on a weighed 0.2μm filter and washed several times with double

distilled water, then dried at 50˚C for 1–2 h. Subsequently, 0.3 mg of Ag3PO4 was mixed with

0.5–1 mg of AgCl and 0.3 mg of graphite in silver capsules. The capsules were transferred into

the autosampler carousel of the Temperature Conversion Elemental Analyser (TCEA) and

degassed for 30 minutes at 80˚C in a vacuum. The oxygen isotope analyses were performed on

a Thermo Finnigan TCEA coupled to a Delta Plus XP Spectrometer at the University of

Parma. Isotopic compositions were given in the conventional δ-notation relative to V-SMOW

(Vienna-Standard Mean Ocean Water). Normalization to the V-SMOW scale was based on

four replicated international reference materials provided by the International Atomic Energy

Agency (IAEA): IAEA-601, IAEA-602, IAEA-CH6, and IAEA-SO-6. The analytical precision

of a single determination was better than ±0.4‰.

To identify outliers in δ18OPO4 and in 87Sr/86Sr within the Tauste population two statistical

techniques were used. Boundaries of intra-sample variation based on two measurements of

scales were defined: ± 2 standard deviation (2SD) from the mean and Tuke’s inter-quartile

range method (IQR) considering 1.5xIQR and 3xIQR [82]. Parametric statistics were used to

describe isotope distribution and compare isotope values between groups. Differences between

sample groups were analyzed by applying an unpaired Student’s t-test. Statistical significance
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was accepted as p< 0.05. Statistical analysis was performed with SPSS v.20 (Statistical package

for Social Sciences).

Results and discussion

Residential mobility

Strontium and oxygen isotope data for 23 tooth enamel samples, 8 rib bones and local geologi-

cal materials to establish the strontium baseline signature at Tauste are shown in Table 2.

To establish local bioavailable strontium, bedrock, fauna, soils and surface water are used

but archaeological microfauna or snail shells are considered the most appropriate material

[32,43,45,38,83,84]. Since the site is a Muslim necropolis, no fauna remains are associated with

the burials. Therefore, to define the Tauste bioavailable strontium isotope baseline, surface

water and soils were considered. Local 87Sr/86Sr isotope composition determined by the local

soils varies between 0.70867 and 0.70869, while the freshwater composition is 0.70843. The
87Sr/86Sr ratios of enamel vary between 0.70837 and 0.70867 and human bone samples range

from 0.70867 to 0.70883 (Fig 6).

According to the defined local baseline, most individuals buried in Tauste have a 87Sr/86Sr

signature consistent with local origin. Only two individuals plot outside the estimated local

compositional range (1σ) according to outliers identifying by 1.5xIQR and 2SD method.

Enamel of young adult female T-24 displays a lower radiogenic strontium isotope value

(87Sr/86Sr = 0.70837) and the rib of adult female T-32(b) presents a higher strontium value

(87Sr/86Sr = 0.70883) (Fig 6). These compositions indicate two different mobility patterns for

these females. The female T-24’s strontium value suggests she was born in another place and

died in Tauste. Whereas female T-32(b)’s isotope value suggests that she spent her childhood

in Tauste, during adulthood moved to another location and came back to Tauste a few years

before she died.

The enamel phosphate oxygen ratios (δ18Op) cover a broad range of values from 14.25‰ to

19.30‰. Based on kernel density estimations (Fig 7), data can be split into three groups: a

larger group (n = 18) with δ18Op ratios between 16.4‰ and 18‰ and two smaller groups, one

formed by two males with δ18Op signature higher than 19.2‰ and the other formed by two

females with δ18Op signature lower than 14.4‰. Local meteoric water δ18Odw is -5.6‰ (aver-

age values from 2000 to 2006) considering data from Zaragoza airport station [85]. δ18Odw val-

ues for humans from Tauste were calculated using the available phosphate/drinking water

equations [58,60,61,63,66], and comparing them with expected local water values derived from

IAEA/WISER data set [85]. The equation by Iacumin and Venturelli [66] was used to estimate

the drinking water isotope value. The larger group of individuals show calculated δ18Odw rang-

ing from -3.7‰ to -6.9‰, consistent with local meteoric water which ranges between -4.1‰

and -6.3‰ as annual average [85]. The number of outliers identified was determined using

1.5xIQR and 2SD statistical methods. The two males and two females whose isotope values fall

outside the larger group may come from a warmer, more coastal or possible more arid climate,

and from a colder or higher altitude region, respectively. When oxygen isotope data are com-

pared with 87Sr/86Sr ratios of the same teeth the individuals in the three groups display isotopic

values compatible with bio-accessible strontium measured to establish the local signature.

Only the female T-24 falls strictly outside the expected strontium range for local origin

although she falls into the expected range of the calculated drinking water values for Tauste

(Fig 7). Similar values of δ18O for Tauste meteoric water showed a broad geographic distribu-

tion (Fig 8) overlapping different geological areas. The lack of a strontium isotope composition

database in the Iberian Peninsula prevents a determination of the regional provenance of the

non-local female T-24.
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Table 2. Strontium, carbon, nitrogen and oxygen isotope results for human bones and teeth, and freshwater and soil samples from Tauste.

Sample Sex Material Tooth

Type

Age % N δ15N % C δ13C C/N δ18O 87Sr/86Sr 2SE

T-9 F Rib 50–60 15.4 12.7 42.7 -19.3 3.23 0.70868 0.00001

Enamel M2 16.35 0.70855 0.00002

T-11 M Rib 45 14.9 15.4 40.8 -19.5 3.19

Enamel M2 16.72 0.70855 0.00002

T-12 M Rib 40–45 16.7 15.7 45.8 -19.5 3.20

Enamel I 16.78 0.70858 0.00001

T-13 M Rib 40–50 15.6 16.3 42.8 -19.0 3.21

Enamel M2 18.00 0.70857 0.00002

T-14 ? Rib 2–4 16.6 16.8 45.6 -18.9 3.21

T-15 F Rib 33–45 13.9 15.6 39.2 -18.5 3.29 0.70867 0.00001

Enamel M2 14.25 0.70860 0.00001

T-16 ? Rib 2 15.2 16.3 42.3 -17.0 3.25

Enamel M2 17.03 0.70863 0.00001

T-17 M Rib 33–45 15.5 15.3 42.5 -19.3 3.21 0.70868 0.00001

Enamel M2 16.65 0.70861 0.00002

T-18 M Rib 25–35 15.1 13.7 42.1 -18.8 3.24 0.70869 0.00001

Enamel M2 17.17 0.70862 0.00001

T-19 F Rib 33–45 14.5 14.1 40.2 -19.0 3.24

Enamel M2 17.14 0.70850 0.00002

T-21 ? Rib Indet 15.0 9.6 41.7 -19.3 3.25 0.70869 0.00001

T-22 ? Rib >17 15.0 15.9 41.3 -19.1 3.22

T-23 F Rib 30–35 15.8 14.3 43.2 -19.1 3.20

T-24 F Rib 25–35 13.9 16.3 38.5 -19.3 3.23 0.70868 0.00001

Enamel M2 17.9 0.70837 0.00001

T-25 F Rib >20 15.3 16.0 42.4 -19.0 3.24

T-26 M Rib 25–35 15.9 16.0 43.6 -19.4 3.19

Enamel M2 16.64 0.70862 0.00002

T-27 (m) Rib 15–17 15.1 13.5 41.7 -19.3 3.23

Enamel C 16.92 0.70857 0.00002

T-28 ? Rib 12–15 14.8 15.8 40.9 -19.3 3.22

Enamel M2 17.8 0.70858 0.00002

T-29 ? Rib >25 13.1 15.5 36.2 -19.1 3.23

T-30 F Rib 35–45 15.4 14.3 42.2 -18.4 3.21

Enamel M2 18 0.70864 0.00001

T-31 F Rib 16–20 15.8 14.2 43.7 -18.8 3.22

Enamel M2 14.48 0.70859 0.00002

T-32 F Rib 45–55 15.8 10.8 43.6 -19.0 3.23 0.70883 0.00002

Enamel M2 17.9 0.70867 0.00002

T-33 ? Rib 4–6 15.7 14.6 43.7 -19.5 3.24

Enamel M2 17.0 0.70864 0.00002

T-34 M Rib 12–15 15.8 15.5 43.9 -18.7 3.25

Enamel M2 16.9 0.70853 0.00002

T-35 ? Rib 40–50 15.1 16.9 41.9 -19.2 3.25

T-36 F Rib 50–65 14.9 13.9 41.4 -19.1 3.24

T-39 M Rib 40–50 14.1 16.5 39.2 -19.5 3.23 0.70867 0.00001

Enamel M2 17.4 0.70860 0.00002

(Continued )
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During Muslim period the Ebro valley was a trade route between Mediterranean coast

towards north of the Iberian Peninsula and trans-Pyrenean Europe. Taking on account both

oxygen and strontium isotope data the origin areas for these two outliers groups would be con-

fined to the Ebro Valley. Though, during the Early Middle Ages few people regularly travelled

because it was simply too difficult and too dangerous. Muslim females were subject to inbreed-

ing marriages so that Tauste outlier females would move by patrilocal marriages. Males would

move to get better economic opportunities and possibility of improving status. Tauste non-

local males would move from farms to a large village to find new kinds of works. The political

instability of the Upper March frontier region also favored displacement of people towards

larger and safer urban centers [88].

Dietary reconstruction

The bone collagen obtained was very well preserved with an average yield of 6.27±4.19%wt

(1s.d.). The content of carbon and nitrogen in bone collagen was about 13.1–16.8% and

25.6%–36.2%, respectively, so well-preserved bone collagen should display a carbon/nitrogen

molar ratio, based on the content (in %) of these elements in the sample between 2.9 and 3.6

[89,90]. The individual data are given in Table 2.

The δ13C ratio for human bone samples ranges between -17.0‰ and -19.9‰ with a mean

value of -19.1±0.50‰, and δ15N ratios range between 9.6‰ and 17.5‰ with a mean value of

14.9±1.74‰. The rather strong δ15N signal of nearly all individuals is noteworthy, with values

more than 5‰ over the terrestrial ecosystem baseline (Fig 7), an offset unusually large for a

single trophic level effect [91,92,21].

Individuals from Tauste were compared with broadly coetaneous Muslim and Christian

populations at several locations in the Iberian Peninsula (Fig 9). There are no significant

differences in δ13C ratios between Tauste (-19.1±0.5‰) and most neighboring Muslim pop-

ulations (δ13C -19.0±0.3‰ in Zaragoza and -19±0.2‰ in Albarracı́n), or between Tauste

and Christian populations (δ13C -18.4±1.1‰ in Jaca, -18.4 ±0.6‰ in Valencia, -19.0±1‰ in

Table 2. (Continued)

Sample Sex Material Tooth

Type

Age % N δ15N % C δ13C C/N δ18O 87Sr/86Sr 2SE

T-40 ? Rib 3–5 16.1 17.5 44.1 -19.9 3.20

Enamel M2 17.06 0.70866 0.00002

T-41 M Rib 20–30 16.3 15.0 45.3 -19.5 3.24

Enamel M2 17.0 0.70860

T-42 M Rib 35–45 16.7 17.0 46.4 -19.0 3.23

Enamel M2 19.1 0.70851

T-44 M Rib 25–35 16.7 14.0 46.2 -18.9 3.23

Enamel M2 19.3 0.70856

T-39* Soil 0.70868 0.00002

T-41* Soil 0.70869 0.00002

T-42* Soil 0.70867 0.00001

T-44* Soil 0.70867 0.00001

W-Arba Freshwater 0.70843 0.00001

m = male; (m) = probably male; M = molar; C = canine; I = incisor;? = undetermined; f = female.

* = Soil samples.

2SE = standard error.

https://doi.org/10.1371/journal.pone.0176572.t002

Mobility and palaeodiet in a medieval Muslim population in Spain

PLOS ONE | https://doi.org/10.1371/journal.pone.0176572 May 4, 2017 13 / 27

https://doi.org/10.1371/journal.pone.0176572.t002
https://doi.org/10.1371/journal.pone.0176572


Aistra, -19.8±0.7‰ in Zaballa, -18.1±1.1‰ in Zornoztegi and -19.6±0.7‰ in Treviño [93–

95]) (Table 3, Fig 10). However, the Benipeixcar Muslim population showed enrichment in

δ13C (-16.36±0.9‰) attributed to marine resource consumption [95]. In contrast, the δ15N

ratios at Tauste (average 15.0±1.7‰) are unusually high compared with contemporaneous

Christian and Muslim populations in the Iberian Middle Ages, whose average values are

lower 11‰ (Table 3).

Faunal samples are required to strengthen conclusions about human diet. Establishing the

local isotope composition baseline was problematic since the Islamic burial ritual forbade any

objects being buried with the body. Additionally, there is no evidence of Muslim settlement in

Tauste to provide coeval fauna. Thus it was not possible to obtain the local baseline with

archaeozoological data. Furthermore, present-day local faunal must be discarded because live-

stock are fed with non-local resources and the isotopic signal will not correspond to local plant

resources. Pasture-fed livestock will also exhibit nitrogen isotope depletion due to the wide-

spread use of mineral fertilizers [96,97]. In addition to the fodder and fertilizer effect, livestock

trade is another factor affecting isotope composition. All these factors prevented the use of

present-day macro-mammals to establish the carbon and nitrogen isotope local baseline.

For these reasons, two local species of small mammals and freshwater fish were analyzed to

establish the dietary baseline for Tauste medieval population. Small mammals were selected

since present low mobility with restricted home ranges more accurately reflects the local isoto-

pic composition baseline. The analyzed species were wood mice (Apodemus sylvaticus), as they

are herbivorous (seed eaters), and shrews (Crocidura russula), which are one level higher than

wood mice in the trophic chain.
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To address this issue, the isotope enrichment of one trophic level has to be established. For

this purpose, both faunal and human values from the nearest coeval Christian and Muslim set-

tlements were compared (Table 4, Fig 11). Livestock from Alava archaeological sites and Beni-

peixcar Muslim site displayed different average δ13C and δ15N values. The nitrogen values of

plants and fauna are strongly influenced by local climate conditions [98]. Fauna at the Alava

sites, located in the northern Iberian Peninsula, displayed lower nitrogen isotope values due to

a more humid climate than Benipeixcar, on the warmer and drier Mediterranean coastline.

Comparison of human values with fauna revealed the average offset between human and

livestock of c. 1.5‰ in δ13C and 4–4.5‰ in δ15N (Fig 11) typical of one trophic level [99].

In an attempt to establish the trophic level offset in Tauste, small mammal isotope values

were considered. The average of wood mice values (-18.4±0.9‰ in δ13C and 8.7±0.7‰ in

δ15N) and shrew values (-19.1±2.8‰ in δ13C and 12.4±2.2‰ in δ15N) exhibited an offset of c.

-1‰ in δ13C and 4‰ in δ15N. Considering the predictable trophic level offset, the isotope val-

ues of the Tauste population should fall within the average of c. -21±1‰ in δ13C and 11±0.5‰

in δ15N, which is the enrichment typical of one trophic level. Such an enriched δ15N baseline

can be explained by regional environmental conditions. Regional aridity and the local high rel-

ative salinity led to this δ15N enrichment [100]. In fact, chemical analysis performed in teeth
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from Tauste individuals showed the log (Ba/Sr) = -2.35; similar high concentrations of stron-

tium are found in both arid/semiarid region soils and in marine food sources [101,102]. Tauste

site is located far from the coastline and the possibility large-scale consumption of marine food

can be discarded. Thus Ba/Sr values and the δ15N enrichment can be explained by the local

bedrock (gypsum and salt) and environmental factors in the Tauste region.

The offset between the isotope ratios of the mice collagen (as equivalent to livestock) and

the average of the expected range for human diet suggested a mixture of protein from terres-

trial and freshwater sources in their foodstuffs. The relative proportion of terrestrial and fresh-

water resources in diet can be estimated c. 50–50% using a simple linear mixing model.

However, a particularly high consumption of freshwater fish does not appear justified from

either historical or anthropological points of view. Islamic texts about the daily diet in Muslim

medieval Spain indicate it was based mainly on cereals: wheat (Tritium), barley (Hordeum vul-
gare) and rye (Secale cereale), together with such C4 grains as millet (Pennisetum) and sorghum

(Sorghum), vegetables and pulses, such as chickpeas (Cicer arietinum), lentils (Lens culinaris),
and peas (Pisum sativum), with some regional differences [103–105]. The main sources of pro-

teins were meat and pulses, and the type and quantity of protein consumed varied according

to social status and gender. The most highly regarded meats were lamb and poultry. Pork and

any animal not slaughtered in a way considered halal were excluded from the diet because

Islamic law forbade it. People from lowly backgrounds consumed little meat and often made
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do with offal because it was cheap. Pulses such as broad beans, chickpeas and lentils consti-

tuted another source of protein and were classified as medical food. Although fish was not con-

sidered food of great dietetic value, it was part of the diet of the people from more humble

backgrounds, particularly in river or coastal areas [106].

Another possible interpretation for the high δ15N enrichment in the Tauste population is to

consider the manuring effect on plants. Since the use of manure was an advanced agricultural

method introduced by Muslims in the Iberian Peninsula [107] all plants from manured soils

showed a δ15N enrichment that can be about 5‰ in cereal δ15N [30]. Consequently, domestic

animals foddered with manured chaff and grains will present higher δ15N values. Assuming

the consumption of plants enriched in δ15N by the manure effect, the contribution of freshwa-

ter resources may decrease and become less than 10% of dietary protein intake.

Another interesting aspect of the reconstruction of the Tauste inhabitants’ palaeodiet is the

variation in isotope composition by sex and age. For the comparison, female T-32 was

excluded because her strontium isotope composition indicates a return to Tauste in the last

years of her life preventing δ15N and δ13C remodeling to the local isotope signature. The mean

values of the male samples are 15.5±1.00‰ for δ15N and -19.2±0.31‰ for δ13C. In female sam-

ples, the mean values are 14.6±1.15‰ for δ15N and -19.0±0.32‰ for δ13C. Comparison of the

results with the Student’s t-test for males and females confirms the significant differences in

δ15N (t18, p = 0.026). These differences suggest that females and males had different access to

animal protein, probably due to the sexual division of labor [108]. In fact, written evidence

suggests the diet of Muslim females and males differed. Medical treatises make recommenda-

tions about diet, and special recommendations were made for females during pregnancy or

lactation [109]. Two meals a day were recommended but in practice a smaller meal as breakfast

was taken by working males. Lower dietetic needs were expected of females since female labor

was restricted to domestic tasks and other activities in the household [110]. However, the

Table 3. Mean collagen δ13C and δ15N of individuals at Tauste and coeval Christian and Islamic sites.

Site Faith N δ13C (‰) δ15N (‰)

Mean Std Dev Max Min Mean Std Dev Max Min

Tauste (8th-10th) I 31 -19.1 0.5 -17.0 -19.9 15.0 1.7 9.6 17.5

Male I 11 -19.2 0.3 -18.7 -19.5 15.5 1 17.0 13.7

Female I 10 -19.0 0.3 -18.4 -19.3 14.2 1.6 17.5 10.8

Infant I 4 -18.8 1.3 -17.0 -19.9 16.3 1.2 17.5 14.6

Juvenile I 6 -19.0 0.3 -18.7 -19.3 15.1 1.0 16.0 13.5

Young adult I 7 -19.2 0.3 -18.8 -19.5 15.0 1.0 16.3 13.7

Adult I 11 -19.1 0.4 -18.4 -19.5 15.3 1.8 17.0 10.8

Older adult I 2 -19.2 0.2 -19.1 -19.3 13.3 0.9 14.0 12.7

Alava (8th-15th) C 71 -19.1 0.8 -18.1 -19.8 8.7 0.8 9.6 7.9

Zaballa (10th-15th) C 14 -19.8 0.7 -18.8 -21.3 9.0 0.8 10.4 7.6

Zornoztegi (12th-14th) C 7 -18.1 1.1 -16.7 -19.9 8.3 0.6 9.2 7.5

Aistra (8-9th) C 35 -19.0 1.0 16.7 -22.0 7.9 1.0 12.1 6.8

Treviño (12th-14th) C 15 -19.6 0.7 -18.7 -22 9.6 1.2 12 7.5

Jaca (13th-15th) C 25 -18.4 1.1 -15.3 -19.6 10.0 0.8 12.2 8.6

Valencia (14th-15th) C 18 -18.4 0.6 -16.8 -19.3 10.5 1.1 11.7 8.0

Zaragoza (10th-12th) I 36 -19.0 0.3 -18.2 -19.6 10.9 1.4 14.1 9.0

Albarracı́n (10th-12th) I 31 -19.0 0.2 -18.5 -19.4 10.8 0.6 12.1 9.4

Benipeixcar (15th-16th) I 20 -16.36 0.9 -14.2 -18.0 10.7 0.6 11.9 9.2

C., Christian; I., Islamic. Isotope data of coeval Muslim and Christian sites taken from [93–95].

https://doi.org/10.1371/journal.pone.0176572.t003

Mobility and palaeodiet in a medieval Muslim population in Spain

PLOS ONE | https://doi.org/10.1371/journal.pone.0176572 May 4, 2017 18 / 27

https://doi.org/10.1371/journal.pone.0176572.t003
https://doi.org/10.1371/journal.pone.0176572


differences in nitrogen composition related to sex are determined by the middle-aged adult

male (ages 35–50 years) composition. In fact, excluding middle-aged adult males differences

between sexes are not significant. Middle-aged adult males show higher δ15N values than
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centuries (6) Valencia 14th-15th centuries (7) Albarracı́n 10th-12th centuries (8) Zaragoza 10th-12th centuries; (9) Benipeixcar 15th-16th

centuries (1)-(4) [93], (5)-(8) [94], (9) [95].

https://doi.org/10.1371/journal.pone.0176572.g010
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young males and females of any age. Variations between adult males and the other age seg-

ments of population indicate a different dietary intake which may be related, for instance, to a

greater meat protein consumption.

Finally, the highest δ15N values were found in children younger than 3 years, whereas chil-

dren older than 4 years old have similar δ15N values to those of adults. In younger infants,

higher δ15N values are due to a “nursing effect” indicating a diet based mainly on maternal

milk.

However considering the significantly wide chronological span and the small number of

radiocarbon dates, it is not possible to rule out temporal dietary differences, which is to say

that there may have been variations in the diet in the course of time.

Conclusions

Isotope signatures in archaeological human remains have been used to investigate palaeomobi-

lity and the palaeodiet of the medieval Muslim population at Tauste, on the changing frontier

between Muslim and Christian kingdoms in the 8th to 10th centuries.

The combination of strontium and oxygen isotope analyses was able to discriminate non-

local and local individuals. Although Tauste was located on the northern al-Andalus frontier

most individuals were of local origin and only three females and two males were non-locals.

Establishing the provenance of incoming individuals is difficult as strontium isotope ratios

indicate a similar geological region. According to the oxygen isotope composition, two males

would come from a warmer region while two females would come from a more mountainous

geographical area. Also T-24 was of non-local origin since the different strontium values indi-

cate a different geological provenance. Within the local population, the female T-32 stand out

because she was born in Tauste, some years later she moved and lived in another geological

region and then returned to Tauste a few years before she died.

Table 4. Present-day fauna carbon and nitrogen isotope data from Tauste region and archaeofauna data from their coeval sites of Alava and

Beneipeixcar.

Site Specie N δ13C (‰) δ15N (‰)

Mean Std Dev Max Min Mean Std Dev Max Min

Tauste Common barbel 2 -22.7 0.3 -22.5 -23 12.7 0.1 12.8 12.7

Madrilla 1 -22.7 - - - 12.9 - - -

Shrew 3 -19.1 2.8 -16 -21.5 12.4 2.2 14.5 10.1

Wood mouse 3 -18.4 0.9 -18 -19.4 8.7 0.7 9.3 7.9

Alava Cow 6 -21.3 1.1 -19.8 -22.7 4.7 1.1 6.1 3.5

Sheep/goat 2 -19.3 0.9 -18.7 -19.9 4.6 2 6.1 3.2

Pig 3 -21.5 0.6 -20.8 -22.0 4.1 1.9 6.1 2.3

Horse 1 -20.1 - - - 6.3 - - -

Dog 2 -19.2 0.7 -18.6 -19.7 8.4 1.4 9.4 7.4

Poultry 2 -17.5 2.4 -15.8 -19.1 7.4 0.1 7.5 7.4

Benipeixcar Cow 5 -17.8 2.8 -14.3 -20.1 7.0 1.2 8.5 5.7

Sheep/goat 9 -19.3 0.2 -19.1 -19.5 4 0.8 5.6 2.9

Pig 1 -17.8 - - - 6.6 - - -

Poultry 4 -17.8 2.0 -13.3 -17.5 7.0 4.0 9.7 1.0

Cat 3 -16.0 0.5 -15.5 -16.3 8.7 0.5 9.1 8.1

School shark 1 -12.4 - - - 9.9 - - -

Isotope data of coeval Muslim and Christian sites taken from [93,95].

https://doi.org/10.1371/journal.pone.0176572.t004
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Fig 11. Plot of δ13C and δ15N values of present-day fauna and medieval human at Tauste and the comparative Alava and

Benipeixcar archaeofauna and human dataset [91,93]. Colored rectangles indicate local carbon and nitrogen baseline. Doted
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As regards the medieval Muslim diet, the δ13C and δ15N results illustrate not only differ-

ences in diet according to sex and age but also the environmental conditions. The extremely

high δ15N values in Tauste population (δ15N = 15.0‰ on average) indicate an anomalously

high δ15N baseline that can be explained by the concurrence of (1) geological and environmen-

tal conditions, (2) the manuring effect on vegetables, cereals and livestock and (3) the con-

sumption of freshwater fish. The amount of fish in the diet varies from 50% to<20% as the

manuring effect increases. Significant differences were observed in δ13C and δ15N by sex, indi-

cating different diets that may be related to the sexual division of labor since Muslim female

work was restricted to the household. The main dietary differences between males and females

were amongst adult individuals, suggesting adult males were differentially valued in medieval

Muslim society and consumed more animal protein than females and young males. The lower

δ15N values of the elder females indicated lower protein consumption due to lesser dietary

needs. In contrast, the significant higher δ15N values in the children younger than 4 years

could be related to the “nursing effect”.
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76. Rodrı́guez Fernández LR, López Olmedo F, Oliveira JT, Medialdea T, Terrinha P, Matas J, et al.
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