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Abstract: Capacitive Micromachined Ultrasonic Transducer (CMUT) is a promising ultrasonic
transducer in medical diagnosis and therapeutic applications that demand a high output pressure.
The concept of a CMUT with an annular embossed pattern on a membrane working in collapse mode
is proposed to further improve the output pressure. To evaluate the performance of an embossed
CMUT cell, both the embossed and uniform membrane CMUT cells were fabricated in the same
die with a customized six-mask sacrificial release process. An annular nickel pattern with the
dimension of 3 µm × 2 µm (width × height) was formed on a full top electrode CMUT to realize an
embossed CMUT cell. Experimental characterization was carried out with optical, electrical, and
acoustic instruments on the embossed and uniform CMUT cells. The embossed CMUT cell achieved
27.1% improvement of output pressure in comparison to the uniform CMUT cell biased at 170 V
voltage. The fractional bandwidths of the embossed and uniform CMUT cells were 52.5% and 41.8%,
respectively. It substantiated that the embossed pattern should be placed at the vibrating center of
the membrane for achieving a higher output pressure. The experimental characterization indicated
that the embossed CMUT cell has better operational performance than the uniform CMUT cell in
collapse region.

Keywords: capacitive micromachined ultrasonic transducer (CMUT); embossed CMUT; collapse
mode; output pressure

1. Introduction

Capacitive Micromachined Ultrasonic Transducer (CMUT) is a promising ultrasonic transducer [1]
and has been widely applied in medical imaging [2,3], nondestructive measurement [4], chemical
sensing [5], and photoacoustic tomography [6]. CMUT is an electronic transducer based on
micro-electro-mechanical system (MEMS) technology so that it owns intrinsic advantages, such as
compatible process with integrated circuits, wide bandwidth, and excellent stability of electrical
and thermal. However, the low output pressure is still one major limitation of CMUT that restricts
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its further development in areas dominated by the piezoelectric ultrasonic transducer. As for a
CMUT with a uniform membrane, the clamped membrane and the arising spring force from the
bending of a uniform membrane restricts the amplitude in vibrating that results in a limited output
pressure [7]. In recent years, several solutions have been proposed to alter CMUT structure or the
working mode for achieving higher output pressures. Researchers have developed novel CMUT
structures to improve the membrane displacement, e.g., making a thicker center on membrane to
make it move like a piston [8], using a structure of dual-top-electrode to achieve a higher volume
displacement [9], designing an indirectly clamped membrane to enlarge the average diaphragm
displacement [10], using multiple moving membranes to increase the amplitude of membrane
displacement [11], introducing a structure with substrate-embedded springs to achieve a large
average volume membrane displacement [12], proposing an annular cell geometry to enlarge the
average membrane displacement [13,14], and forming trenches on the membrane to obtain more
displacement [15]. Some other solutions apply a DC bias voltage larger than the pull-in voltage for
driving CMUTs to work from the conventional mode to other working modes, for instance, collapse
mode [16,17], collapse-snapback mode [18], and deep collapse mode [19]. A method by constructing an
annular embossed pattern on the membrane of a collapse mode CMUT to enhance the output pressure
has been proposed in our previous works [20,21]. However, the improvement of output pressure
brought by the embossed pattern has not been verified on devices yet. In this work, the design and
experimental characterization of an embossed CMUT cell is to be presented.

2. Design and Fabrication of Embossed CMUT

The concept of an embossed CMUT cell working in collapse mode is described in Figure 1.
An annular embossed pattern is attached on a CMUT with a full top electrode. When an exerted DC bias
voltage is larger than the pull-in voltage, the high electric field inside the gap will make the membrane
collapsed, which is denoted as collapse mode. In collapse mode, the central membrane contacts on
the substrate while the outer membrane vibrates to generate ultrasound when superimposing an AC
voltage. Similar to the approach of making a thicker center membrane [8], the embossed pattern at the
outer vibrating membrane can increase the membrane average displacement and therefore the output
pressure is improved. Analyzed with a simply supported beam model in [20], the optimum position
of the embossed pattern should be consistent with the vibration center of membrane. Since the contact
radius of a collapsed membrane changes with different DC bias voltages, it is a possible way to adjust
the membrane vibration center to the embossed pattern. In order to achieve more improvements in
output pressure, the embossed pattern was made of nickel for its high density.

Figure 1. (a) Overview of an embossed Capacitive Micromachined Ultrasonic Transducer (CMUT) cell;
(b) two-dimensional axisymmetric cross sectional view of an embossed CMUT cell in collapse mode.

2.1. Embossed CMUT Design

The dimension of membrane and gap height directly affect the pull-in voltage and center frequency
of a CMUT. Based on the fabrication limitations, there are ways to make the uniform and embossed
CMUTs with similar pull-in voltages and/or center frequencies. However, as the variations in
fabrication processes and misalignments can greatly affect the performances of the CMUT cells working
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in collapse mode [16], our experiments were designed to minimize these variations. In our current
work, all CMUT cells were fabricated on one wafer with the sacrificial release process so that they share
the same membrane thickness, gap height, and insulator thickness. Most importantly, all the uniform
and embossed CMUTs underwent nearly the same production processes, fabrication variations, and
alignment errors in a fair comparison environment, except that the embossed CMUT cells required an
additional mask and process for forming the embossed pattern on the membrane. Therefore, in this
study, we did not design the uniform and embossed CMUT that have similar pull-in voltages and/or
center frequencies. Both the uniform and embossed CMUTs shared the same dimensions except for
the embossed pattern.

In this design, both the full top electrode embossed CMUT and the uniform membrane cells
were fabricated together for comparison. Firstly, analytical methods were used to estimate the initial
design parameters of both CMUT cells. Because the analytical equation for calculating the center
frequency of an immersion CMUT working in collapse mode has not been well developed yet, the
equation for evaluating the center frequency of a uniform membrane CMUT immersed in liquid was
used for initially investigating the relationship of frequency and design parameters, as shown in
Equation (1) [22].

fr =

2.98h
r2

√
E

ρp(1−σ2)√
1 + 0.67 ρlr

ρph

(1)

In this equation, fr is the damped angular resonant frequency of a circular membrane, h is the thickness
of membrane, r is the radius of circular membrane, E represents the Young’s modulus of membrane
material, σ is the Poisson’s ratio of membrane material, and ρp and ρl depict the densities of membrane
and liquid, respectively. It can be found that the membrane’s properties and dimensions affect
the center frequency of a CMUT cell. A low stress silicon nitride with the material prosperities of
E ≈ 220 GPa, σ ≈ 0.263, and ρp ≈ 3270 kg/m3 is used for membrane [21]. The liquid medium is corn
oil with density of ρl ≈ 920 kg/m3 [23]. An explicit equation depicts the relationship of the resonant
frequency with a DC bias voltage and pressure was also introduced to analyze the frequency range of
the uniform CMUT [24].

Pull-in voltage is also a critical factor that determines the operating point of a CMUT.
The pull-in voltage of a uniform membrane CMUT without loads or initial stress can be estimated by
Equation (2) [25].

Vpull−in =
5.369d0

r2

√
Dd0

ε0
(2)

where D is the flexural rigidity of membrane, which is calculated with material prosperities and
membrane dimensions, d0 is the effective gap height between top and bottom electrodes, ε0 is the
permittivity of free space.

With the aforementioned Equations, the CMUT design parameters including membrane
dimensions and gap height can be approximately estimated at the initial investigation stage. However,
these equations are not suitable for the embossed CMUT working in collapse mode. Therefore, finite
element analysis (FEA) assisted with COMSOL Multiphysics 4.4 (COMSOL Inc., Stockholm, Sweden)
was applied to finalize design parameters. Both the uniform and embossed membrane CMUT cells
were simplified as two-dimensional axisymmetric models to represent the bottom electrode, insulators,
vacuum gap, membrane, and embossed pattern, as depicted in Figure 2. Upon each CMUT cell model,
a hemispherical waveguide filled with corn oil was built to represent the surrounding media of a
CMUT working in immersion. The radius of waveguide was 400 µm which was larger than one
wavelength of ultrasound in corn oil and its outer surface was applied with an absorbing boundary to
eliminate wave reflection in simulation [26].
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Figure 2. Two-dimensional axisymmetric finite element analysis (FEA) models in COMSOL (Not
drawn in scale). (a) A uniform CMUT cell; (b) An embossed CMUT cell.

The electromehanics (emi) physics in COMSOL was used to govern both the CMUT cell and the
waveguide, whereas pressure acoustic (acpr) physics was applied to the waveguide. The maximum
mesh size inside the acpr physics was one-eighth of the ultrasound wavelength. In the FEA simulation,
non-convergence arises as the membrane contacts with the insulator when applying a DC bias voltage
larger than the pull-in voltage. To avoid this problem, a penalty or barrier method was used to deal
with the contact process [27]. A prestressed analysis was used to calculate the pressure generated by
the CMUT cell over a range of frequency. With this manner, a DC bias voltage was firstly exerted step
by step even after the membrane collapsed, then a small AC voltage was superimposed with sweeping
frequencies and the surface pressure upon the CMUT cell was calculated by averaging pressures
along the interface between the CMUT membrane and medium. By using the FEA models, the design
parameters of the embossed membrane CMUT were defined as in Table 1. The nickel embossed pattern
was centered at r = 12 µm with the dimension of 3 µm × 2 µm (width × height) in consideration of
our fabrication process ability. The design parameters of the uniform CMUT were the same with the
embossed CMUT but with no embossed pattern. The material of membrane was a low stress silicon
nitride deposited with low pressure chemical vapor deposition (LPCVD) according to our fabrication
process. The residual tensile stress of the membrane was set as 60 MPa. As for the embossed CMUT
model, an internal tensile stress of the nickel pattern was set as 370 MPa in consideration of the Watts
electroplating method [28]. In addition, the gravity of the embossed pattern was introduced as a load
on top of the membrane.

Table 1. Design parameters of the embossed CMUT.

Dimensions (µm)

Membrane (Si3N4) radius 20
Membrane (Si3N4) thickness 0.65
Gap height 0.30
Insulator1 (SiO2) thickness 0.15
Insulator2 (Si3N4) thickness 0.15
Top electrode (Gold & Chromium) radius 20
Top electrode (Gold) thickness 0.18
Top electrode (Chromium) thickness 0.02
Embossed pattern (Nickel) width 3.0
Embossed pattern (Nickel) height 2.0
Embossed pattern (Nickel) inner radius 10.5
Embossed pattern (Nickel) outer radius 13.5



Micromachines 2020, 11, 217 5 of 15

With the FEA simulation, the estimated pull-in voltages of the embossed and uniform membrane
CMUT were 88 V and 122 V, respectively. The additional tensile stress and the gravity of the embossed
pattern on the membrane formed a more curved initial gap height that resulted in a lower pull-in
voltage of the embossed CMUT than that of the uniform CMUT. Figure 3 showed the output pressure
improvement of the embossed CMUT compared with the uniform CMUT in collapse mode and the
maximum improvement was about 23% at 180 V.

Figure 3. Output pressure improvement of the embossed CMUT cell in FEA simulation.

2.2. Embossed CMUT Fabrication

For the sake of comparison, both the embossed and uniform CMUT cells with the same dimensions
were fabricated in one die. The CMUTs were fabricated at the Nano Facility Center (NFC) of National
Chiao Tung University, Nano-Electro-Mechanical-System (NEMS) Research Center, National Taiwan
University, and Bio-MEMS Laboratory of Chang Gung University, Taiwan. Figure 4 illustrates the
customized six-mask sacrificial release process for fabricating the embossed CMUTs with top and
cross-sectional views from the dashed lines.

In this process, the CMUTs were designed and fabricated on an n-type highly doped silicon
wafer that also acted as the common bottom electrode of devices. Firstly, a 150-nm SiO2 and 150-nm
Si3N4 layers were deposited in sequence with a dry thermal oxidation and a LPCVD process to form a
combined insulator layer. Then a 300-nm poly-silicon layer was deposited on the insulator layer as
the sacrificial layer. Each cell with four release channels was defined with the Mask #1 and formed
on the sacrificial layer by a reactive ion etching (RIE) process, as shown in Figure 4a. Afterwards, the
wafer was coated with a 650-nm low stress silicon nitride membrane by LPCVD and four 2-µm vias to
the sacrificial layer were formed at the end of release channels by the Mask #2 and a RIE process, as
depicted in Figure 4b. In order to construct the cavity, the poly-silicon layer underneath the membrane
was fully etched away with potassium hydroxide (KOH) solution. After releasing the sacrificial layer,
the wafer was deposited by a 1.2-µm Si3N4 layer with a plasma-enhanced chemical vapor deposition
(PEVCD) process to seal the vias for forming vacuum cavity, as shown in Figure 4c. Therefore, the
membrane was thickened by the coated nitride layer and should be etched back to its initial thickness
of 650-nm. In the thinning process, the coated nitride layer around the sealed vias should be preserved
with the Mask #3 in photolithography and an RIE process, as shown in Figure 4d. Since the whole
wafer was coated with multiple insulation layers, these materials in the bottom pad area must be etched
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before depositing metal. The Mask #4 defined the bottom pad areas with photolithography and the
insulation layers in these areas were etched away by a RIE process as depicted in Figure 4e. The wafer
was firstly deposited with 20-nm chromium as the adhesion layer and subsequently with 180-nm gold
layer as the electrode. The wafer was exposed with the Mask #5 to define the design for the embossed
pattern on gold. Nickel patterns were constructed using the Watts nickel electroplating method [29]
with a recipe of NiSO4·6-7H2:NiCl2·6H2O:H3BO3:H2O = 676:114:96:2400 (g) in the condition of 80 m
DC current and 48 ◦C bath temperature. It took 50 s to plate a nickel layer of 2 µm on the wafer, as
shown in Figure 4f. In consideration of the total area on the wafer for plating, the calculated current
density was about 135 mA/cm2. The final process was to form the top electrodes, bonding pads, and
interconnections of CMUT elements by the Mask #6 and using wet etching methods for removing the
residual gold and chromium, as depicted in Figure 4g. The details of the whole fabrication process can
be found in reference [21].

Figure 4. Illustration of the fabrication process flows for the embossed CMUTs. (a) Forming a CMUT
cell; (b) forming etching vias; (c) sealing vias; (d) thinning the membrane; (e) exposing bottom
electrodes; (f) forming an embossed pattern; (g) forming electrodes and connections.

3. Characterization of Embossed CMUT

The CMUT array containing both the uniform and embossed CMUT cells were diced and bonded
to external pads on a PCB with aluminum wires for device characterization.
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3.1. Optical Metrology Characterization

In this study, a 3-D optical microscope (NanoX-2000, ZhenJiang Subnano Instruments Inc.,
Zhenjiang, China) was employed to measure the vertical and lateral dimensions of the embossed
CMUTs. By using a scanning white light on the embossed CMUTs and processing with interference
technology and phase shifting interferometry, the 3D surface profile of the embossed CMUT can
be precisely measured. The vertical and lateral resolutions of NanoX-2000 are 0.1 nm and 0.48 µm.
Figure 5 was the pseudo-color image of an embossed CMUT with an annular embossed pattern, the full
top electrode, interconnections, release channels, and sealed vias.

Figure 5. Pseudo-color image of an embossed CMUT (The scale in z-axis was not the same to x-axis
and y-axis).

To measure the dimensions of the nickel embossed pattern, a 2-D profile was plotted in Figure 6.
The width and height of the annual embossed pattern was approximate 2.9 µm and 2.0 µm, which
were close to the design parameters. It can be found that the top surface of the embossed pattern was
tilted because the nickel was electroplated on a deflected membrane under an atmospheric pressure.

Figure 6. Measured profile of an embossed pattern.
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3.2. Electrical Characterization

The electrical input impedances of both the uniform (left) and embossed (right) CMUT cells
arranged in Figure 7 were measured by an impedance analyzer (Model: 4395A, Agilent Technologies
Inc., Santa Clara, CA, USA) with an RF impedance adapter (Model: 43961A, Agilent Technologies Inc.,
Santa Clara, CA, USA) and a spring clip fixture (Model: 16092A, Agilent Technologies Inc., Santa Clara,
CA, USA). A programmable DC power supply (Model: HSPY-400-01, Beijing HanShengPuYuan
Technology Co., Ltd., Beijing, China) was used for proving bias voltage.

As for CMUTs working in collapse mode, a charging effect is a common issue as the high electric
fields can force charges into insulator materials. In order to reduce the charging effects in measurements,
a step DC bias voltage was used instead of applying the DC bias gradually. In addition, after each
measurement, the DC power supply was shut down for several minutes before the next measurement.

The resonant frequencies of CMUT cells under various DC bias voltages were measured with
the input impedance measurement results, from which the pull-in voltages can also be estimated.
The pull-in voltages of the embossed and uniform CMUT cells were about 55 V and 110 V, respectively.
The pull-in voltages were lower than the simulation results and it might be ascribed to the deviations
of membrane thickness control in fabrication.

It was also found that the embossed CMUT cell owned a much lower pull-in voltage that might
be caused by several reasons. According to reference [30], a high current density in nickel plating
produces a high tensile stress in the nickel layer. In our fabrication, the low stress silicon nitride
membrane deposited by LPCVD also yielded a tensile stress. The overlapped embossed pattern would
enlarge the effective tensile stress of the combined layers that resulted in more deflections towards
the insulator and formed a smaller initial gap height. In addition, it was mentioned that the modulus
of elasticity of nickel decreases linearly on increasing the current density in the reference [30]. In this
work, the high current density of 135 mA/cm2 in electroplating might produce the embossed pattern
with a high tensile stress and a lower modulus of elasticity, which lead to a much lower pull-in voltage
than that in FEA simulation.

Figure 7. A uniform CMUT cell (left) and an embossed CMUT cell (right).

Figure 8 depicted the electrical input impedances in real and imaginary parts of the embossed
and uniform CMUT cells biased at 150 V, which was higher than the pull-in voltages of both devices.
The resonant frequency of the embossed CMUT was about 8 MHz that was lower than 11.4 MHz of
the uniform CMUT because the attached embossed pattern decreased the elasticity of membrane.
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Figure 8. Electrical input impedance of the embossed and uniform CMUT cells bias at 150 V. (a) Real
parts; (b) imaginary Parts.

3.3. Acoustic Characterization

In this work, a calibrated hydrophone (Model: HGL-200, ONDA Co., Sunnyvale, CA, USA)
connected with a 20-dB preamplifier (Model: AG-2020, ONDA Co., Sunnyvale, CA, USA) was used
to measure output pressures of the embossed and uniform CMUT cells bonded on a PCB. Both
the CMUTs were immersed in a box filled with corn oil for providing electrical insulation and the
hydrophone was attached on a 3-axis translation stage. Both the uniform and embossed CMUT
cells were biased with the DC power supply and superposed with periodic unipolar pulses (20 Vpp,
90 ns pulse width and 100 kHz repetition frequency) provided by a waveform generator (Model:
33500B, Keysight Technologies Inc., Santa Rosa, CA, USA). The hydrophone was placed at a distance
of 3 mm above the CMUTs and measured three times at each DC bias. For the reason of increasing
signal-to-noise of signal [31], the peak-to-peak voltages were averaged 32 times and recorded by
a digital oscilloscope (Model: DSOS254A, Keysight Technologies Inc., Santa Rosa, CA, USA). The
measured pressure value P was converted to the unattenuated pressure on the surface of CMUT P0

with Equation (3) in consideration of the acoustic pressure attenuation in liquid.

P0 = Peβ f jz, (3)

where f depicts the frequency, z is the distance of acoustic wave propagating in meter, and β and j are
the attenuation coefficients depending on the properties of liquid. In this case, β was 6.43 ×10−12 and
j was 1.85 for corn oil [32].

The compensated output pressures of the embossed and uniform CMUT cells working in collapse
region were plotted in Figure 9, which also depicted the pressure improvement of the embossed CMUT
DC biased from 110 V to 210 V. These acoustic measurement results indicated that the embossed
pattern on a collapse mode CMUT can enhance output pressure between 130 V to 200 V, which covered
most of the collapse region. The pressure of the embossed CMUT was smaller than the uniform CMUT
when the DC bias voltage was less than 130 V. However, with increasing bias voltage, the embossed
CMUT cell owned higher pressures than the uniform CMUT cell and the improvement increased
almost monotonically until a peak value of 27.1% occurred at 170 V. Then, the improvement dropped
with increasing DC bias and became negative when the DC bias voltage was above 200 V. The trend of
improvement with the DC bias voltage in measurement was similar to the FEA simulation as shown in
Figure 3.
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Figure 9. Output pressures of the uniform/embossed CMUT cells and the improvement of the
embossed CMUT over uniform CMUT under different DC bias voltages.

The position of the embossed pattern plays an important role in the pressure improvement. When
it is located at the vibrating center, the structure can achieve the best performance in output pressure.
However, if the embossed pattern is deviated from the vibrating center, the membrane displacement
will be restricted in a way that lowers the pressure improvement, especially when the embossed pattern
is close to the edge of the vibrating membrane. This is the major reason for a single peak improvement
in both simulation and experiment. In this experiment, the embossed CMUT cell owned a smaller gap
height and pull-in voltage than FEA simulations so that the relative operational range of the embossed
pattern to achieve higher output pressures was reduced in the experiment. The improvements of
pressure were negative when the DC bias voltages were less than 130 V or higher than 200 V, in which
cases the embossed patterns were moved towards the outer or inner edge of the vibrating membrane
that restricted the membrane vibration. Therefore, the output pressure of the embossed CMUT became
lower than that of the uniform CMUT.

It should be noted that both the embossed and uniform CMUT cells were compared at the same
DC bias voltage as [13,14,16,17] because it is useful for investigating the relationship between the
optimal embossed pattern position and output pressure improvement. In our experiments, we aimed
to measure the output pressure of the embossed CMUT for locations of embossed pattern. As it is not
feasible to fabricate a series of embossed CMUTs under the same fabrication conditions, we therefore
fixed the embossed pattern on the membrane and then tuned the relative position by changing the
DC bias voltage. From the experiments, the maximum improvement value of 27.1% indicated that the
embossed pattern was tuned to the optimal position (vibrating center) on the vibrating membrane
when the embossed CMUT was biased at 170 V. Although this method is adopted from previous
studies and is fitted for our initial purposes, it is not fair for the uniform CMUT cell since it was not
working under its optimal operating point. Considering from this point of view, the improvement
value was 10.2% by comparing the maximum values of embossed CMUT and uniform CMUT biased
at 170 V and 125 V, respectively.

Figure 10 gave the normalized frequency spectrum of pressures generated by the uniform and
embossed CMUTs biased at 170 V. The center frequency of the uniform CMUT cell was 6.7 MHz,
which was 0.6 MHz higher than that of the embossed CMUT cell. The 6-dB fractional bandwidths
of the uniform and embossed CMUT cells were 41.8% and 52.5%, and the 6-dB pressure-bandwidth
products [33] of the uniform CMUT and the embossed CMUT biased at 170 V were 8.71 kPa-MHz
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and 11.70 kPa-MHz, respectively. The acoustic measurements indicated that the embossed CMUT cell
owned better performance in output pressure, fractional bandwidth and pressure-bandwidth product.

Figure 10. Normalized frequency spectrum of output pressures generated by (a) the uniform CMUT
cell and (b) the embossed CMUT cell biased at 170 V.

4. Discussion

It was revealed that the position of the embossed pattern was critical to the output pressure
improvements in [20]. In the experiment, the contact radii of the embossed CMUT were measured
under different DC bias voltages. Based on the contact radius, the relative position of the embossed
pattern on vibrating membrane can also be calculated. Since the embossed pattern is centered at
r = 12 µm, the relative position of the embossed pattern Rr is defined in Equation (4).

Rr =
12 − Rc

20 − Rc
, (4)

where Rc is the contact radius of the membrane biased at a certain DC bias voltage. The correlation
of pressure improvement, DC bias voltage, and relative position of the embossed pattern is depicted
in Figure 11, in which the x, y, and z axes refer to DC bias voltage, relative position of the embossed
pattern, and pressure improvement. The relationships of these variables were projected on the X–Y,
X–Z, and Y–Z planes.

In this figure, the light blue area in the X–Z plane depicted the range of DC bias voltages in which
the embossed CMUT can generate more output pressures. The gray shadow in the Y–Z plane indicated
the relative positions where the embossed pattern can achieve higher pressures than that of the uniform
CMUT. The overlapped area of the light blue and gray shadow in the X–Y plane represented the
effective ranges of DC bias voltages and relative positions where the embossed pattern can achieve
more output pressures. The maximum pressure improvement of 27.1% was achieved under 170 V
DC bias voltage, in which case the relative position of the embossed pattern was 0.456. This value
was less than the optimum position of 0.481 that was deduced as the vibrating center in our previous
paper [20] and the deviation was 5.2%, which can be ascribed to several reasons. First, the optimum
value of 0.481 was deduced from a simply supported beam model with an infinitely small embossed
pattern. Due to the ability of our fabrication process, we had to fabricate a flat embossed pattern on
the vibrating membrane that would blur the center of mass of the embossed pattern. Secondly, the
misalignment in multiple-photolithography processes would affect the horizontal position accuracies
of the embossed pattern, full top electrode, and membrane. Thirdly, the lateral resolution of the 3-D
optical microscope is 0.48 µm, which also restricted the accuracies of the measured contact radii.
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Figure 11. Correlation of DC bias, relative position of the embossed pattern, and pressure improvement.

Although there was a deviation between the measured optimal relative position of the embossed
pattern and the analytical value of 0.481, the result substantiated the conclusion that the embossed
pattern should be placed at the vibrating center instead of the geometry center of the vibrating
membrane for a CMUT working in collapse mode, as stated in our previous paper.

5. Conclusions

In this study, both the uniform and embossed CMUT cells were designed and fabricated in one die
with a customized six-mask sacrificial release process. An annular embossed pattern was constructed
on the full top electrode with nickel electroplating method to form an embossed CMUT. The fabricated
devices were then characterized with optical, electrical, and acoustic methods. The embossed CMUT
cell achieved about 27.1% higher output pressure in comparison with the uniform CMUT cell.
In accordance with the analysis in reference [20], the position of an embossed pattern played a
critical role on the improvement of output pressure and the maximum value can be achieved by
forming an embossed pattern at the membrane vibration center. Different to simulation, the pattern
was centered at r = 12 µm on a fabricated CMUT cell and it cannot be moved. However, for a CMUT
working in collapse mode, the ring width of vibrating membrane is changed by exerting various
DC bias voltages. Therefore, it is able to tune the membrane vibration center to the location of the
embossed pattern by gradually adjusting the DC bias voltage for achieving the best improvement.
In this work, both the simulation analysis and acoustic measurement showed this behavior that there
was a single peak of pressure improvement at a certain DC bias voltage. It was also found that the
measured optimal position of the embossed pattern biased at 170 V was close to the analytical value of
the vibrating center on the membrane.

In our previous research [20], it revealed that to minimize the effect on the stiffness of membrane,
the embossed pattern should be small in width and large in height. However, in this work, the
width of pattern was designed as 3 µm due to some limitations in fabrication that constrained the
membrane vibration and resulted in a limited improvement. In this case, the embossed CMUT cell
achieved better performance than the uniform CMUT cell in output pressure, fractional bandwidth,
and pressure-bandwidth product. In the future, we will explore more advance processes to fabricate an
ideal embossed pattern on top electrode to further improve the performance of embossed CMUTs, and
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to develop the embossed and uniform CMUTs with similar pull-in voltages and/or center frequencies
as well.
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