GigaScience, 7, 2018, 1-11

n
(GIgA) doi: 10.1093/gigascience/giy028
7 Advance Access Publication Date: 5 April 2018
OXFORD
CIEN%;(\ E Research

RESEARCH

Tracking the NGS revolution: managing life science
research on shared high-performance computing

clusters

Martin Dahlo ©1.23."' Douglas G. Scofield ©24"' Wesley Schaal ©123 and
Ola Spjuth ©®1.23

1Science for Life Laboratory, Uppsala University, Uppsala, SE-750 03, Sweden, ?Uppsala Multidisciplinary
Center for Advanced Computational Science, Uppsala University, Uppsala, SE-751 05, Sweden, 3Department of
Pharmaceutical Biosciences, Uppsala University, Uppsala, SE-751 24, Sweden and *Department of Ecology and
Genetics: Evolutionary Biology, Uppsala University, Uppsala, SE-752 36, Sweden

*Correspondence address. Martin Dahlé. E-mail: martin.dahlo@scilifelab.uu.se © https://orcid.org/0000-0001-5447-9465; Douglas G. Scofield. E-mail:

douglas.scofield@ebc.uu.se © https://orcid.org/0000-0001-5235-6461
fThese authors contributed equally to this work.

Abstract

Background: Next-generation sequencing (NGS) has transformed the life sciences, and many research groups are newly
dependent upon computer clusters to store and analyze large datasets. This creates challenges for e-infrastructures
accustomed to hosting computationally mature research in other sciences. Using data gathered from our own clusters at
UPPMAX computing center at Uppsala University, Sweden, where core hour usage of ~800 NGS and ~200 non-NGS projects
is now similar, we compare and contrast the growth, administrative burden, and cluster usage of NGS projects with projects
from other sciences. Results: The number of NGS projects has grown rapidly since 2010, with growth driven by entry of new
research groups. Storage used by NGS projects has grown more rapidly since 2013 and is now limited by disk capacity. NGS
users submit nearly twice as many support tickets per user, and 11 more tools are installed each month for NGS projects
than for non-NGS projects. We developed usage and efficiency metrics and show that computing jobs for NGS projects use
more RAM than non-NGS projects, are more variable in core usage, and rarely span multiple nodes. NGS jobs use booked
resources less efficiently for a variety of reasons. Active monitoring can improve this somewhat. Conclusions: Hosting NGS
projects imposes a large administrative burden at UPPMAX due to large numbers of inexperienced users and diverse and
rapidly evolving research areas. We provide a set of recommendations for e-infrastructures that host NGS research projects.
We provide anonymized versions of our storage, job, and efficiency databases.

Keywords: high-performance computing; e-infrastructures; bioinformatics; resource usage efficiency; efficiency metrics;
storage; next generation sequencing

Received: 21 December 2017; Revised: 14 February 2018; Accepted: 22 March 2018

© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

http://www.oxfordjournals.org
https://orcid.org/0000-0001-5447-9465
https://orcid.org/0000-0001-5235-6461
https://orcid.org/0000-0001-6770-0878
https://orcid.org/0000-0002-8083-2864
mailto:martin.dahlo@scilifelab.uu.se
https://orcid.org/0000-0001-5447-9465
https://orcid.org/0000-0001-5447-9465
mailto:douglas.scofield@ebc.uu.se
https://orcid.org/0000-0001-5235-6461
https://orcid.org/0000-0001-5235-6461
http://creativecommons.org/licenses/by/4.0/

Ever since the development of next-generation sequenc-
ing (NGS) technology, biology has become increasingly data-
intensive [1]. The number of research groups working with large
amounts of data and requiring significant computing and stor-
age resources has grown immensely, as have the diversity of
research questions for which sequence data are being used [2-
5] and the sophistication of sequence data that are being gen-
erated [6,7]. Hardware resource requirements often greatly ex-
ceed those available in desktop computers. For many research
groups, it is not feasible to purchase and maintain dedicated
computing clusters. As a result, biologists are making increas-
ing use of high-performance computing (HPC) centers with large
amounts of computing power and storage that are shared with
other users. In parallel, research groups have been developing
software tools and databases to assist in the analysis of these
data. Indeed, NGS method development represents a very active
area of research [8,9].

To effectively conduct research, many life science re-
searchers now need to become comfortable with command-line
interaction with Linux operating systems and research-oriented
software tools, which is a major change in expectations com-
pared to just a few years ago. This contrasts strongly with ex-
pectations in research fields that have a longer history of HPC
usage, such as physics, computational chemistry, and climate
science research, in which the general computational sophisti-
cation of researchers and the maturity of software tools are both
considerably higher [e.g., 10].

In Sweden, six large academic HPC centers are managed
by the Swedish National Infrastructure for Computing (SNIC),
which is responsible for planning, funding, and organizing aca-
demic HPC resources. These resources are provided at no cost to
research groups in Swedish academia. The SNIC center, located
at Uppsala University, is the Uppsala Multidisciplinary Center
for Advanced Computational Science, or UPPMAX, at which are
found several computing clusters and high-performance storage
systems (Tables 1 and 2). As with other SNIC centers, UPPMAX
hosts HPC resources used for general computationally intensive
academic research. As a result of targeted development, UPP-
MAX also hosts the HPC resources used for most NGS-related
academic research in Sweden.

Sweden also has a national organization responsible for fa-
cilitating the development of life science research, the Science
for Life Laboratory, or SciLifeLab, located primarily in Uppsala
and Stockholm. ScilLifeLab contributes to funding and, in part,
manages HPC systems for NGS data production and analysis,
both for use by its own sequencing facilities and for use by life
science researchers at Swedish universities and their interna-
tional collaborators. This includes the Milou and Pica resources
for research at UPPMAX that are covered here (Tables 1 and 2).
SciLifeLab-managed HPC resources used for NGS data produc-
tion and delivery have been discussed elsewhere [11].

Because of the novelty of the research field and the rapidly
changing research and technological landscapes, an important
guiding principal for management of computing resources for
NGS projects at UPPMAX has been flexibility, i.e., granting tem-
porary increases in project core hour and storage allocations, al-
lowing long project lifetimes, and investing in user support. An
active NGS project can grow considerably in computing and stor-
age needs and have quite a long duration as new sequencing
datasets are delivered, additional analyses are conducted, and

new subprojects are started that depend upon derived datasets.
This contrasts with management of non-NGS projects through
SNIC at UPPMAX and other SNIC centers, for which monthly
core hour allocations and project duration are fixed at project
approval and disk storage allocations have typically been quite
limited.

Here, our primary aim was to better understand the growing
demands the NGS revolution has made on human and compu-
tational resources of research computing clusters. Specifically,
we compare and contrast research project growth, support ef-
forts, and cluster usage by NGS and non-NGS projects at UPP-
MAX. We note that for non-NGS projects, in particular, our ob-
servations at UPPMAX do not necessarily reflect usage typical
at other HPC clusters in Sweden, which host non-NGS projects
and jobs that are typically much larger. We describe a straight-
forward method for quantifying resource usage and efficiency
and outline our efforts to increase the efficiency of resource us-
age and describe additional tools we have developed for users
to use in their own evaluations. We conclude by considering the
particular demands NGS projects place on UPPMAX systems and
personnel and emphasize that traditional computing infrastruc-
ture is often ill prepared to handle NGS users.

Here, a project is a named allocation of computing and storage
resources for research, with a specific principal investigator (PI)
and a PI-managed set of authorized users. A project that uses
NGS or NGS-derived data is an NGS project, while a project that
does not is a non-NGS project. A job is a computing job submitted
by a user via the SLURM job management system [12], which
charges the core hours used by the job to a user-specified project.
Jobs, users, and similar components are classified as NGS or non-
NGS depending on association with an NGS or non-NGS project.

First, we compare and contrast NGS and non-NGS projects in
terms of project and research group numbers, storage, support
tickets, and software and resource installations. Then, we exam-
ine the profiles of computing jobs run by the different project
types on UPPMAX clusters, by first comparing and contrasting
resources booked for jobs via SLURM, then usage of booked cores
and RAM, and finally efficiency of resource usage and our efforts
to increase this efficiency.

By the end of 2016, there were nearly four times as many ac-
tive NGS projects hosted at UPPMAX as active non-NGS projects
(Fig. 1A). This reflects a much higher (7.5 x) rate of growth in
active NGS projects. Since 2010, the number of NGS projects
has grown by 9.8/month compared to 1.3/month for non-NGS
projects.

The rapid growth in active NGS projects at UPPMAX is largely
due to the entry of new research groups into NGS research, using
unique PIs as a proxy for research group participation (Fig. 1B).
At the end of 2016, the majority of PIs of both project types
headed a single project (75.9% of NGS PIs and 87.4% of non-
NGS research project PIs). For those PIs with two or more ac-
tive projects, NGS PIs had more active projects than non-NGS Pls
(3.55 £ 0.31 projects vs. 2.18 & 0.10 projects, respectively; 2-sided
Mann-Whitney U = 669.5, P = 0.0068; unless otherwise indicated,
all means are presented as mean =+ s.e.m.)

The total amount of storage used by NGS projects far ex-
ceeded that used by non-NGS projects (Fig.1C, expanding on

Table 1: UPPMAX high-performance computing clusters available for NGS and non-NGS projects during the study period, some providing
higher-memory nodes available at user request.

HPC cluster

Kalkyl (2010-2014)
Halvan (2011-2015)
Tintin (2012-2017)
Milou (2013-2017)
Fysast1 (2013-2017)

Nodes

350
1
160
208
40

Total cores RAM/Node Description
2,800 24 GiB; 16 x 48 GiB; 16x 72 GiB Half for NGS projects
64 2 TiB NGS projects
2,560 64 GiB; 16x 128 GiB Primarily non-NGS projects
3,328 128 GiB; 17x 256 GiB; 17x 512 GiB NGS projects
640 128 GiB Non-NGS projects in physics and astronomy

Table 2: UPPMAX high-performance storage systems available for NGS and non-NGS projects during the study period

HPC storage

Bubo (2009-2013)
Lynx (2012-2015)
Gulo (2012-2016)
Pica (2013-2017)

Capacity, PiB

0.7
0.5
1.0
5.5

Format Description

PanFS Shared storage

PanFS Shared storage

Lustre Global scratch storage
NFS Shared storage

900 NGS projects .
(A) 800 - Non—ﬁlG]S rojects (A)'C 40009 == NGS projects
2 70 proj 0 ® 30004 = = Non-NGS projects
.2, 600 2E 2000
2 500 SE
a- =2 1000
[7] T e e e e e e e e = e = -
2 300 o ==
L 200 e ey~
108 - === (B) , 1000-
1 T T . . . [
o Qg 8007
& & & s S s S 32 ool
” 'E_g 400
(B) S D5 2001 T
© @ o =
2
8
£ ©5 . 9
= Q-ﬁ 4 T TTTee———————————
e O 2E a1
< x_gz - = e e e - e, .- - e e - -
= o] {1 =
o T T T " L3
& Q\Q’ Q\"‘ Q\"" 2° Q'(\ = 1-
voro v v v v 2011 2012 2013 2014 2015 2016
(€) 5%
@
a 20 Figure 2: Annual support tickets submitted to UPPMAX by project type. Sup-
% 15 port tickets submitted to UPPMAX each year between 2011 and 2016, by primary
S 10 project type of submitter where this can be determined. Shown are annual totals
o - or means for each project type. A) Total number of tickets submitted. B) Number
‘g 05 of unique ticket submitters. C) Mean number of tickets per unique submitter.
F 004 v \ See text for further methodological details.
Q\'b Q/Q\"‘ (79\(" ’Lb\b r1,°<\

Figure 1: Active projects, unique project PIs, and storage used by projects on
UPPMAX HPC clusters, by project type. A) Number of active NGS and non-
NGS projects since 2006. B) Number of unique PIs for active NGS and non-NGS
projects. C) Total amount of storage used by NGS and non-NGS projects, in pe-
bibytes (PiB, 2 bytes). The maximum storage used by non-NGS projects never
exceeded 0.034 PiB in any month. The extent of the X-axis of each panel reflects
the time period for which we have accurate data.

Fig. 2B from [13]). The maximum total storage used by NGS
projects during any month in 2013 through the end of 2016 was
2,511 TiB, nearly 70 x the maximum total storage of 35 TiB for
all non-NGS projects. Growth in storage usage plateaued during
2016 when the storage system used for NGS projects approached
its useful capacity (Fig.1C). Expansion of storage is problematic
because the costs of providing high-performance storage that
matches the needs of NGS projects can easily exceed the costs
of the computing nodes to which the storage is attached.

This has necessitated more active administration of NGS
project storage by UPPMAX. Since the installation of the Bubo
file system in 2009 (Table 2), UPPMAX has provided NGS projects
with two storage classes: with and without backup. Storage used
by expired projects was reclaimed after a grace period. When
PIs of active NGS projects requested renewal, storage usage was
evaluated by UPPMAX. Users were encouraged to reduce their
usage of backed-up storage for intermediate analyses, to remove
older files that could be readily recreated or were no longer re-
quired, and to archive raw data when possible. UPPMAX also re-
stricted maximum storage available to a single project to be 20
TiB backed-up storage and 20 TiB non-backed-up storage, with
exceptions possible after further review.

After filtering support tickets submitted between 2011 and 2016
using the approach described in the Methods section, we found

6007 M@ NGS-related updates (272)

LR - Y TR S SRS JR S S-S
N A A ST A
S S S S S S
S S S D S S SO

[%2]

(0]

3 NGS-related new installs (226)
S 5001 M Non-NGS updates (20)

o3 Non-NGS new installs (23)

o 400 A

<

2 3001

(0]

G 200 1

=

=

S 100

<

g (O B B o o e O L i i s
[0}

(2]

[0

v

Figure 3: Research software installations and updates by application experts at
UPPMAX between the start of 2014 and the end of 2016. Shown are cumula-
tive numbers of updates and new installations for bioinformatics software and
resources (green tones) and for other domain-specific software (orange tones),
with categorical totals given in the legend. Scheduled updates of database re-
sources are excluded, as are installations and updates of general-purpose soft-
ware such as compilers, interpreters (including Perl, Python, R, and Matlab), and
system tools.

10,752 tickets submitted by users from NGS projects and 1,781
tickets submitted by users from non-NGS projects (Fig. 2A). For
example, in 2016, NGS users submitted 3,357 tickets and non-
NGS users submitted 367 tickets, a 9-fold difference. Part of
the difference in ticket numbers across the years is due to the
greater number of unique NGS users submitting tickets (Fig. 2B).
The number of unique users submitting tickets increased from
similar numbers by NGS and non-NGS users in 2011 (91 vs. 67,
respectively) to 4 times the number of NGS users in 2016 (846 vs.
173, respectively).

Another major factor in explaining the difference in NGS and
non-NGS ticket numbers is that users from NGS projects sub-
mitted nearly twice as many tickets per user as did users from
non-NGS projects (Fig. 2C). Between 2011 and 2016, NGS users
submitted 4.0 + 0.11 tickets per user annually, while non-NGS
users submitted 2.2 & 0.07 tickets per user annually.

To better understand the nature of this nearly 2-fold differ-
ence, we randomly selected 100 NGS-related support tickets sub-
mitted each year between 2013 and 2016. Of the randomly se-
lected tickets, roughly one-third were requests for maintenance
or modifications of project-related computing and/or storage al-
locations, while 13% were requests for software tool installa-
tions or support (Supplementary Table S3).

Between 2014 and 2016, UPPMAX application experts performed
541 installations and updates of research-related software tools
and resources such as databases (Fig. 3; see the Methods section
for additional information on definitions and exclusions). More
than 11 x as many NGS-related installations and updates were
performed than installations and updates of tools and resources
used by non-NGS projects (498 vs. 43, respectively). There was no
difference in the relative number of installations vs. updates by
research type (Fisher exact test, P= 0.34). NGS-related tools and
resources were installed or updated at the rate of 13.8/month
over this three-year period, while installations and updates of
other tools and resources averaged 1.2/month over this same
period. The pace of NGS-related installations and updates has
accelerated from 12.0/month during 2014 to 14.8/month during
2015 and 2016.

The number of core hours (job duration x number of allocated
central processing unit cores, Equation (1)) consumed monthly
by SLURM jobs in both NGS and non-NGS projects approached
and occasionally exceeded 2M (M = million) core hours/month
for all jobs in each project type (Supplementary Fig. S1A, S1B).
Considering jobs with completed or timeout end states (jobs
that did not fail and were not cancelled), both projects regularly
exceeded 1.5M core hours/month at the end of this study (full
height of stacked bars in Fig.4A and 4B). Core hour usage by NGS
projects grew from <200K/month toaround 2M/month, while
over the same period, core hour usage by non-NGS projects was
1-1.5M/month by late 2010 and 1.5-2M/month at the end of 2016.

The trends in monthly core hour usage by projects parallel
the trends in active project numbers presented above. There has
been rapid growth in core hours used by NGS projects to the
present level (Fig. 4A), contrasted with moderate growth by non-
NGS projects from already high levels (Fig. 4B). Discrete changes
apparent in monthly core hour trends occur because of the com-
missioning and decommissioning of computing clusters (Table
1).

From the last quarter of 2010 through the end of 2016, NGS
projects submitted 6.6M jobs that consumed 80.6M core hours,
while non-NGS projects submitted 9.2M jobs that consumed
121.2M core hours (Table 3). Mean job sizes in core hours were
comparable between research project types, as were median job
sizes (Table 3).

The fraction of core hours used by jobs that terminate with dif-
ferent end states also differs between project types. A SLURM
job at UPPMAX has one of five end states: a Completed job ter-
minated autonomously within the requested wall time limit; a
job receives Timeout when terminated by SLURM for exceeding
its requested wall time limit; a Cancelled job was terminated by
the user; a Failed job suffered an autonomous error, perhaps be-
cause a software tool exited abnormally or available RAM was
exceeded; and Node Fail indicates an internal error related to
cluster hardware or software. Node Fail jobs (~1% of core hours)
are excluded from all plots; see the Methods section for more
details.

Roughly one-quarter to one-third of monthly core hours
in NGS projects were used by NGS jobs that terminated with
Timeout, while roughly one-third to one-half of jobs in non-
NGS projects end with Timeout (Supplementary Fig. S1A, S1B).
We attribute this difference to the widespread availability of
task-continuation support in software tools used by non-NGS
projects, which is nearly completely lacking from NGS software
tools, so that the large majority of core hours used by Timeout
jobs in NGS projects are wasted. We discuss this further below.

For this analysis, we divided jobs into four types based on the
number of cores booked by the job: core, with a single core
booked,; partial, with >1 core but less than a complete node; com-
plete, which booked a complete node; and multi, which booked
multiple complete nodes. We also restricted our analysis to jobs
with Completed and Timeout end states (see above).

(A) NGS projects: Completed and Timeout jobs

Dahldetal. | 5

2.5
Cluster and job type
2.04 kalkyl core tintin core fysast1 core milou core
kalkyl partial tintin partial fysast1 partial = milou partial

15 kalkyl node [tintin node [fysast1 node [milou node

’ Wkalkyl mutti [tintin mutti~ [@fysastt multi [@milou mutti
1.04
0.5

0- T T T

Monthly core hours booked (millions)

(B) Non—-NGS projects: Completed and Timeout jobs

Figure 4: Monthly core hours booked by completed or timeout jobs run by projects at UPPMAX, by cluster and job type, from October 2010 through the end of 2016. A)
NGS projects. B) Non-NGS projects. Job booking types: core - single core; partial - partial set of available cores on node; node - complete node, all cores; multi - more than
1 node. For cluster information, see Table 1; for job state fractions, see Supplementary Fig. S1.

Table 3: SLURM job numbers and core hours at UPPMAX for NGS and non-NGS projects, from October 2010 through the end of 2016

Project type Number of jobs Total core hours Mean core hours/job Median core hours/job
NGS projects 6,626,228 80,622,505 12.2 +0.05 0.49[0.11, 2.16]
Non-NGS projects 9,225,861 121,225,241 13.1 £ 0.09 0.56[0.31, 0.85]

Excluded are very short jobs (<60 seconds) and failing jobs due to system error. See text for more details. Mean is + s.e.m.; median includes the 25th and 75th quartiles.

Following the move of NGS projects from the (relatively) low-
memory Kalkyl cluster (3 GiB/core, 24 GiB/node) to the high-
memory Milou cluster (8 GiB/core, 128 GiB/node) at the end of
2013, NGS projects booked more core hours via jobs requesting
less than a complete node (Fig. 4A). In 2013 on Kalkyl, 15.5% of
NGS core hours were booked by core and partial jobs, in contrast
to 2016 on Milou, when 65.4% of NGS core hours were booked by
core and partial jobs. NGS jobs tend to require more RAM in-
dependent of the number of cores (see below), so most of this
shift was due to the availability of increased RAM per core on
Milou, which enabled more memory-demanding jobs to be run
on fewer cores.

There was also an increase in core hours booked by
single-core jobs over this time, in both NGS projects (Fig. 4A)
and non-NGS projects (Fig. 4B). A portion of this increase
in NGS projects reflects methodological innovations, such as
computing-intensive statistical methods that use approximate
Bayesian computation [e.g., 14]. Methodological innovations
may also be responsible for some of a similar shift toward book-
ings with fewer cores in non-NGS research projects over this
same period observed on the Tintin cluster (21.8% of core hours
accumulated by core and partial jobs in 2013 on Tintin vs. 54.3%
in 2016; Fig. 4B), which occurred without a corresponding in-
crease in RAM per core.

NGS projects rarely book multinode jobs

Multinode jobs were rarely used by NGS projects (3.5% of core
hours in 2015, 1.6% in 2016; Fig. 4A) because few software tools
used in NGS research are capable of multinode parallelism via,
e.g., Open MPI [15]. In most cases, multinode jobs were booked
by NGS projects as a result of user error. In contrast, MPI sup-
port is common in tools used by non-NGS projects and roughly
one-third to one-half of core hours in non-NGS projects being
accumulated by multinode jobs (45.6% in 2013, 43.9% in 2015,
31.3% in 2016; Fig. 4B).

NGS jobs use more cores and more RAM

Here, we compare and contrast resource usage of jobs run by
NGS and non-NGS projects in terms of both cores and RAM. Re-
source usage reflects actual usage of cores and memory as de-
termined by direct monitoring of running jobs, rather than the
amount of resources booked via job control examined in the pre-
vious sections. The resources booked for a job represent upper
bounds on core and RAM resource usage over the life of a job,
while actual resource usage is typically lower. See the Methods
section for further details of data collection and Equations (2)
and (3) for calculating resource usage.

The majority of jobs in both NGS and non-NGS projects used
a single core or less (70.5% and 97.5% of all jobs, respectively). For

o 10°1 NGS projects : Niotal = 939841 (unscaled)
2 o v]

Il

£ 10 1

2 102

@ 10%]

B 10 E

g 10 [E
2] T

e 105 Non-NGS projects Niotar = 2330919 (unscaled)
S 10° .

N

£

€

=

Q

()

Qo

o

S

g’.‘r%i%?) N ORI SSkey®
Max GiB of RAM used

O N U N D0 P
Mean CPU usage

NGS projects Non-NGS projects

Max GiB of RAM used

©
I

Mean CPU usage

Figure 5: Resource usage by 3.27M jobs run by NGS and non-NGS projects at UPP-
MAX during the calendar year 2016. Resource usage was determined via moni-
toring. A) Histograms of core and RAM usage, with each range divided into 100
bins and bin counts scaled to sum to 10° within each panel to facilitate com-
parisons (bin count x 10°/Niota1). Non-zero bins where the scaled count <1 show
marks below the 10° line. In the upper left panel, the inverted triangle marks the
number of cores equivalent to a full node on the Milou cluster. B) Joint core and
RAM usage, with each job plotted as a single dot with \raise.17ex~1% opacity.

those jobs using up to a full node, a greater proportion of jobs
used multiple cores in NGS projects than in non-NGS projects
(Fig. 5A, left panels). The same was true for memory usage; a
greater proportion of jobs used more RAM in NGS projects than
in non-NGS projects (Fig. 5A, right panels).

These differences are all the more striking when we examine
the joint distribution of job core and memory usage (Fig. 5B). NGS
jobs use both more cores and more RAM than jobs in non-NGS
projects, up to the limits provided by a single node.

We define efficiency of a single job as the fractional usage of
booked resources, expressed as a percentage. We consider us-
age efficiency for cores (Equation (2)) and memory (Equation (3))
separately and also calculate an aggregate efficiency metric for
each job (Equation (6)) that takes into account both core and
memory efficiency. We calculate mean efficiencies per project,
and we calculate the weekly per project type with Equations (7)-
(9). See the Methods section for details on calculating resource
usage efficiency.

NGS projects had lower median core usage efficiency (44%,
first and third quartiles [23%, 67%]) than non-NGS projects (73%
[28%, 97%)) (Fig. 6). Conversely, median RAM usage efficiency is
higher in NGS projects (12% [5%, 26%)]) than in non-NGS projects

NGS projects
1009 - 100

Non-NGS projects

754 - T 754

1

i

0 25 50 75 100 0 25 50 75 100
Mean percent of booked CPUs used

Mean percent of booked RAM used

Figure 6: Efficiency of core and memory usage in UPPMAX projects by project
type. Efficiency is measured as the average usage of requested cores and the
maximum utilized amount of requested RAM; see the Methods section for fur-
ther details. (Left) NGS projects’ mean percentage of booked core and memory
resources for all jobs in a project during the calendar year 2016. (Right) Non-NGS
projects’ mean percentage of booked core and memory resources for all jobs in
a project during the same one-year period.

NGS projects Non-NGS projects
1 00 W.
r"‘--..—-s Ao . S
801 * B %
. o . e o
X %
2 604 ° .
_5 . . &
R 01 Y
° L] o ®
.o A 'y . e oS o
201 204
Efficiency feedback «
\l/to users began

T 0 T T T
2016 2017 2014 2015 2016 2017
Date

T T
2014 2015

Figure 7: Weekly median efficiency of all jobs at UPPMAX by project type. Each
dot is the median efficiency of all jobs run during that week, weighted by the
fraction of core hours used per job overlapping that week; see the Methods sec-
tion for details. The horizontal trend line is the smoothed LOESS regression of
the dots. Also shown in the left plot is the time point where UPPMAX began pro-
viding feedback on job efficiency within projects whenever a user request for
additional core hours was made.

(7% [2%, 18%)), reflecting greater memory usage by NGS jobs gen-
erally.

When we began weekly monitoring of job efficiencies in 2013,
the difference in job efficiencies between NGS and non-NGS
projects was clear (Fig. 7). Further analysis revealed that for
many NGS jobs, at least some inefficiencies were the result of
easily corrected user error, through misunderstanding compu-
tational demands, misspecifying options to tools, or misbooking
jobs through SLURM. During the first half of 2014, we began an-
alyzing job efficiency whenever an NGS project PI applied for a
continuation or increase in core hour allocation and would make
the requested core hour allocation contingent on increasing job
efficiency, if warranted. We also provided additional tools so that
users could monitor their own resource usage (Supplementary
Fig. S2A, S2B). We observed a steady increase in job efficiency for
the first year after monitoring began, and efficiency stabilized
in NGS projects at 70-75%. Active monitoring remains a central
part of our monitoring strategy, and we continue to develop tools
to aid users in improving job efficiency.

These comparisons reveal the following characteristics that dif-
ferentiate HPC cluster usage for NGS research from that for non-
NGS research at UPPMAX:

Hosting NGS research carries a large administrative burden,
with increased effort arising from management of core hour
and storage allocations, user support tickets, and software
installations.

NGS jobs require more RAM than non-NGS jobs, regardless of
job size, with single-core NGS jobs requiring more RAM/core
and occasional jobs requiring 256 GiB shared memory/node
or more.

NGS jobs very rarely span multiple nodes and can make ef-
fective use of partial nodes down to single cores if there is
sufficient RAM/core.

NGS jobs use HPC resources less efficiently than non-NGS
jobs; some efficiency can be gained with user education, but
some progress is not possible due to lack of maturity in NGS
software tools.

We discuss these in more detail below and conclude with rec-
ommendations for HPC clusters hosting NGS research comput-
ing projects.

Early in the development of academic NGS research in Sweden,
UPPMAX and ScilLifeLab determined to lower barriers to entry of
new research groups by maintaining a great deal of flexibility in
computing and storage allocations for research projects, as com-
puting and storage demands have proven to be quite variable
over NGS project lifetimes [e.g., 21]. As the number of active NGS
projects and users has grown (Fig.1), this flexibility has resulted
in a significant administrative burden on UPPMAX staff that
has scaled roughly linearly with the number of projects. To off-
set this increase, UPPMAX staff have begun exploring some de-
gree of automation for project and resource extensions and in-
creases, as well as automating requests for medium-term high-
performance scratch storage, with the goal of easing some more
repetitive tasks while providing additional services.

Another result of easing entry to HPC computing for new re-
search groups has been an influx of many new users having lim-
ited familiarity with command line interfaces and Linux. UPP-
MAX provides some access to its clusters via ThinLinc [16] but
encourages users to become more familiar with Linux, the Linux
command line, and shell scripting and runs courses to meet this
need.

Even with such training, users have difficulties installing the
tools, packages, and modules required for their research. Reposi-
tories associated with major scripting languages ease this some-
what (Python [17], Perl [18], R [19], and [20]. However, many NGS
software tools are not available through such repositories and
have installation procedures that can vary greatly from tool to
tool and even between tool versions. This reflects the breadth
of experience of NGS software tool developers but also presents
considerable challenges to inexperienced users.

Largely driven by user requests, application experts at UPP-
MAX have expended considerable effort installing NGS software
tools (Fig. 3) that are made available system wide via the Lmod
module system [22]. The number of tools currently installed has
made migration to new clusters labor intensive, so a compre-
hensive package system that simplifies the installation of tools

made available via Lmod is desirable. EasyBuild [23] is one such
system and is widely used to install non-NGS software on HPC
clusters. The amount of bioinformatics software available via
EasyBuild, at first very low, is continually increasing. UPPMAX
staff will consider adopting EasyBuild in the coming months.

All of these factors jointly contribute to the number of sup-
port tickets submitted by NGS users (Fig. 2). A more hands-off
approach would have resulted in less administrative effort, but
it is unlikely that this would have fostered the amount of NGS
research hosted at UPPMAX to date. The Linux and HPC exper-
tise of NGS users is increasing, but we do not anticipate that the
computation experience of a typical NGS user will approach that
of a typical non-NGS user for several years to come.

Given the high RAM demands of many NGS jobs together with
the lack of distributed computation in NGS tools (Fig. 5), clusters
with less than about 32 GiB of shared memory available to jobs
will have difficulties hosting NGS projects. When larger amounts
of RAM are available within single nodes, NGS jobs can make ef-
fective use of partial nodes (Fig. 4A), providing booking of par-
tial nodes is supported by the job control system. High RAM de-
mands by NGS jobs extend down to jobs run on single cores (Fig.
5A), where 4-6 GiB RAM/core are required for many such jobs,
providing the job control system allows booking of single-core
jobs.

Very few NGS jobs use multiple nodes compared to non-
NGS jobs (Figs. 4, 5), and many of the core hours booked as
multinode jobs by NGS projects are the result of user inexpe-
rience. For NGS-dedicated systems, our experience shows that
high-performance node-to-node interconnects such as Infini-
Band are not often used. High-performance connections to high-
performance storage, on the other hand, is of utmost impor-
tance.

Cloud computing represents one possible way to provide
flexible computing architecture for NGS research, but it remains
unclear whether cloud resources, especially those with suffi-
cient RAM and storage, will be cost-effective for NGS analyses
[24]. Our experience with local cloud computing for NGS re-
search is limited. We provide support for virtualization via Sin-
gularity [25] for interested research groups.

NGS projects at UPPMAX had lower resource usage efficiency
(Fig. 6), largely the result of user inexperience. Particularly egre-
gious examples of inefficiency can be readily addressed, e.g.,
booking a complete node but using a single core and little RAM
(Supplementary Fig. S2A). However, for the many less straight-
forward cases, increasing efficiency requires greater familiarity
with tool options, job control options, and knowledge of resource
usage for similar jobs in the past.

The solution UPPMAX has adopted to address these ineffi-
ciencies shifts responsibility to the users and is three-fold: (1)
monitor resource usage of all jobs and provide a tool (jobstats
[26]; example plots in Supplementary Fig. S2A, S2B) that allows
users to examine resource usage by running and completing
jobs; (2) develop efficiency metrics (see the Methods section,
Equations (1)—(11)) and apply these metrics to actively monitor
the efficiency of resource usage by projects and users; and (3)
make project allocation extensions contingent on efficiency, e.g.,

a request for a temporary increase in monthly core hours would
not be granted or would be granted only, in part, if a project or
user has consistently run jobs inefficiently. This approach has
been effective; median efficiency of NGS jobs has increased since
monitoring started in 2013 (Fig. 7).

However, there are other sources of inefficiency that are diffi-
cult for users to control. Heterogeneous resource usage by bioin-
formatics workflows is one such source. For example, a multi-
threaded step may be followed by an extended single-core step
or steps may differ greatly in memory requirements. Addition-
ally, jobs expected to consume large amounts of memory are
likely to underuse memory, as swap space is very limited on
computing nodes and jobs reaching 100% memory usage are at
risk of failure. Tools that allow for specifying memory limits are
relatively few in number and sorely needed. Finally, some mem-
ory inefficiency is unavoidable simply due to the granularity of
resource availability on HPC clusters.

NGS software tools perform a wide range of computational tasks
while managing very large quantities of data input and output
[21]. New methodologies, new approaches, and novel research
areas will continually give rise to new NGS software tools writ-
ten by developers with widely varying levels of experience. This
contrasts with non-NGS research software such as Gaussian [27],
VASP [28], and others, which typically have large code bases, long
lifetimes, and ample opportunities to mature. Aside from obvi-
ous general recommendations, such as code profiling, we sug-
gest three ways in which development of NGS software tools
could mature to further increase the efficiency of HPC cluster
usage.

First, NGS software tools could provide the ability to continue
tasks in progress. Roughly one-fourth of core hours used by NGS
projects at UPPMAX, 400K-500K hours/month, are wasted be-
cause jobs terminated with Timeout (Supplementary Fig. S1A).
The ability to continue common tasks such as read mapping,
variant calling, and sequence alignments would help avoid this
wastage. Non-NGS projects regularly have jobs terminate with
Timeout (Supplementary Fig. S1B) because non-NGS research
software tools such as GROMACS [29] and Amber [30] have sup-
ported task continuation for several years. A few NGS tools (e.g.,
those that use approximate Bayesian computation for statistical
inference [31]) support task continuation on an ad hoc basis, but
formal intermediate checkpoints are found in only a handful of
multistage tools such as the genome assemblers MaSuRCA [32]
and ABySS [33].

Second, NGS software tools could provide the ability to limit
the amount of RAM used. NGS tools that allow the user to spec-
ify memory limits are few in number; Java-based tools and the
assembler SPAdes [34] are notable exceptions. Even experienced
users employ trial-and-error to discover these limits, leading to
more wasted hours. At the least, guidance for expected memory
usage should be provided in documentation wherever possible.

Third, NGS software tool developers could support installa-
tion frameworks such as EasyBuild [23] and Bioconda [35] when
distributing tools in addition to providing access to source bun-
dles or prebuilt binaries within repositories. Such frameworks
have extensive support within end-user and HPC communities;
given the very large number of NGS tools installed monthly
(Fig. 3), this could save HPC center staff considerable effort.

To conclude, we provide some recommendations for HPC clus-
ters that host NGS research, based on our experience hosting
both NGS and non-NGS computing projects at UPPMAX. For
hardware and job control systems:

* Provide 6+ GiB/core and 100+ GiB shared memory/node.

® Job control systems should allow users to book partial nodes,
down to single cores.

* Make high-performance, high-capacity storage accessible
with high bandwidth.

® Multinode jobs are rare, so high-performance internode fab-
rics such as InfiniBand may not be required.

For user and application support:

* Provide courses to introduce both Linux and the cluster en-
vironment.

* Plan for software installations; NGS software tools have
widely varying levels of developer sophistication.

* Monitor NGS project efficiency, and enable users to do so as
well.

¢ Allow flexibility in core-hour and storage allocations.

* Make resource extensions contingent on efficiency, not core
hours usage.

* Consider using installation frameworks such as EasyBuild.

For software tool developers and software distribution:

® Support task continuation.

¢ Allow for metering memory usage and document expected
memory requirements.

® Support installation frameworks such as EasyBuild and Bio-
conda when distributing tools.

The NGS research community is large, dynamic, and contin-
ues to grow rapidly. HPC centers can do much with their exper-
tise to support these new users and foster exciting research.

We retrieved project start and end dates, PIs, and storage usage
from internal databases. We did not begin explicit daily logging
of project storage until 2013.

The identity of project PIs has been standardized in stages,
first by assigning a local identity number and later by linking
the identity number with a countrywide authentication service.
However, for older projects, PI names were entered manually
and could have multiple alternate spellings. To determine PI
identity for older projects, we constructed a Levenshtein dis-
tance matrix (R function adist [36]) for all unmatched names
against all PIs with an identity number. We assigned close
matches (edit distance <7) to existing PIs after manual confirma-
tion. We manually linked the remaining unmatched PI names to
existing PIs where possible and created new PI identities where
necessary.

User-submitted support tickets are not explicitly assigned to lo-
cal usernames or projects at UPPMAX, so project type was in-
ferred for each support ticket. We matched the submitter email
address to an UPPMAX username with user databases. We ex-

cluded tickets for which the submitter email address could not
be matched, tickets that requested user accounts, and tickets
submitted by UPPMAX system experts. We assigned each user-
name to a predominant project type (NGS or non-NGS) based on
project membership; very few users were active in both types of
projects.

Software packages installed by application experts at UPPMAX
are made available to users via the Lmod module system [22].
We used changelog entries to calculate numbers of new instal-
lations and updates of NGS and non-NGS research-related soft-
ware and databases. We defined an installation as the installation
of a tool or resource not previously available on UPPMAX clus-
ters and an update as the installation of an updated version of a
tool or resource already available on UPPMAX clusters. A partial
collection of installation procedures is available at [37].

Examples of NGS-related tools installed at UPPMAX include
BWA [38], ABySS [33], Salmon [39], GATK [40], and Kraken [41].
Examples of tools for other types of research installed at UPP-
MAX include GROMACS [29], Gaussian [27], Amber [30], VASP
[28], and RSPt [44]. We excluded general-purpose tools such as
compilers, interpreters (e.g., Perl, Python, R, Matlab), editors, and
general-purpose libraries such as libcurl [45]. We also excluded
database updates scheduled via crontab.

Details of computing jobs run via the SLURM job management
system [12] were collected from internal databases. The com-
plete jobs dataset, from October 2010 through December 2016,
contained 23.6M jobs that booked 240M core hours. Several types
of jobs are excluded from the data presented in the body of this
article. Jobs with less than 60 seconds of wall time were ex-
cluded; these represented 18.1% of total jobs but just 0.024% of
total core hours. We also excluded jobs run by course projects for
student instruction (37.2K jobs, 544K core hours) and jobs run by
sequencing core facility projects at SciLifeLab (764K jobs, 12.6M
core hours). Finally, we excluded 23.1K jobs (0.1%) that con-
sumed 2.85M core hours (1.2%) that terminated with the SLURM
condition Node Fail, indicating a system error beyond user con-
trol. The data underlying Fig. 4 and Supplementary Fig. S1 are
available as Supplemental Data D1.

For each job, we calculated core and memory usage as the to-
tal usage of resources booked over the duration of a job. A given
job j books «; cores and 1 GiB RAM, with the number of booked
cores specified explicitly and the amount of booked memory de-
pendent upon other user requests, such as the GiB/core available
on the specific cluster and node type on which the job is run (Ta-
ble 1). The number of core hours H; booked by a job that ran for
h; hours of wall time is

For each SLURM job at UPPMAX, the current core usage (frac-
tion busy for each core, 0-100%) and memory usage (RAM in GiB)
are logged every 5 minutes. For job j with ¢; > 1log entries, core
usage at time point t is ¢j(t), the sum of the fraction busy of all
booked cores at t, and memory usage is m;(t) with a maximum
of u;. Core and memory usage for the entire job are calculated

as:

1
CF;ZCJ(t) 0=Cj =<«)
J =1

M;j =max mj(t) 0<M;<y; (3)
€7j

We calculated memory usage as the maximum used at any time
point because the amount of available memory y; serves as a
hard upper bound for the memory available to complete a job
successfully.

Core usage efficiency of a job E; is the core usage divided by
the number of booked cores:

Bj=— 0=<Eg;j=1 4)

Memory usage efficiency is the memory usage divided by the
amount of memory booked:

M.
ri=— o0<rj;<1 (5)
J R J

Hj

Job efficiency is the maximum of either efficiency measure:
E; =max(g;,}) 0<Ej=<1 (6)
Mean efficiencies for a set of jobs Js weight each job by job length

and, for core and job efficiency, also weight each job by booked
cores:

. >iCi xTjkj .
== 7
J
oM x|
Jj)
SLEjx ik .
Es:# jeJs)
>iTik
J ™

For summaries of resource efficiencies by project type, av-
erages for each individual project were calculated using Equa-
tions (7)—(9), with Js containing the jobs run by each project dur-
ing a specified time period. Project averages were then used to
estimate a kernel distribution [46,47]. The contribution of each
project P to the kernel was given a weight wp determined by the
number of core hours Hp used by the project during the time pe-
riod, with the smallest active projects given a minimum weight:

1 0<Hp <10

= 1
log,, Hr otherwise (10)

wp

To examine trends in job efficiency over time, we calcu-
lated the weighted median weekly job efficiency. To calculate the
weekly contribution for each job, we calculated the efficiency of
each job Ej using Equation (6) and calculated the weight w; for

each job using the following procedure. The set of jobs that run
during a given week W is designated Jw. For each job j € Jw, the
fraction of its total wall time that overlaps week W is o;. A sin-
gle job can have o; > 0 for multiple consecutive weeks with the
constraint that for each job) wo; = 1. The weight for job j is the
amount of its core hours accumulated during week W:

wj = 0jHj (11)
Median weighted efficiency for each week is calculated using

these weights and efficiency of each job E; calculated using Equa-
tion (6).

Scripts for analysis and producing figures are available at [48]
as are some smaller datasets. Anonymized versions of the stor-
age, job, and efficiency databases and a snapshot of the above-
mention scripts are available at [49] from the GigaScience GigaDB
server. In the datasets we are releasing, we include anonymized
records for 25M jobs, with efficiency metrics for 15M of those
jobs, run by 2,124 unique projects, as well as storage usage data
from 1,384 days covering 2,848 unique projects. The jobstats tool
is available at [26].

HPC, high-performance computing; NGS, next-generation se-
quencing; PI, principal investigator; RAM, random access mem-
ory; SNIC, Swedish National Infrastructure for Computing; T
UPPMAX, Uppsala Multidisciplinary Center for Advanced Com-
putational Science.

The authors declare that they have no competing interests.

This project was supported by Science for Life Laboratory and
the Swedish strategic research program eSSENCE. The funders
had no role in study design, data collection and analysis, deci-
sion to publish, or preparation of the manuscript.

All authors conceived of and designed the study; M.D., D.G.S.,
and W.S. mined and analyzed data; M.D. and D.G.S. wrote the
draft manuscript; all authors revised the manuscript.

Thanks to Nina Fischer and Diana Iusan for help with molecular
dynamics practice, to UPPMAX system experts for many things,
and to the reviewers for helpful comments.

1. Koboldt DC, Steinberg KM, Larson DE, et al. The next-
generation sequencing revolution and its impact on ge-
nomics. Cell 2013;155(1):27-38.

2. Bleidorn C. Third generation sequencing: technology and its
potential impact on evolutionary biodiversity research. Sys-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

23.

24.

tematics and Biodiversity 2016;14(1):1-8.

Mignardi M, Nilsson M. Fourth-generation sequencing in the
cell and the clinic. Genome Medicine 2014;6(4):31.

Roberts R], Carneiro MO, Schatz MC. The advantages of SMRT
sequencing. Genome Biology 2013;14(7):1-4.

Ekblom R, Wolf JBW. A field guide to whole-genome se-
quencing, assembly and annotation. Evolutionary Applica-
tions 2014;7(9):1026-42.

Eid J, Fehr A, Gray J, et al. Real-Time DNA sequencing from
single polymerase molecules. Science 2009;323(5910):133-
38.

Kuleshov V, Xie D, Chen R, et al. Whole-genome haplotyping
using long reads and statistical methods. Nature Biotechnol-
ogy 2014;32(3):261.

Pabinger S, Dander A, Fischer M, et al. A survey of tools
for variant analysis of next-generation genome sequencing
data. Briefings in Bioinformatics 2014;15(2):256-278.
Harrison R, Li Y, Mandoiu I. Bioinformatics Research and Ap-
plications: 11th International Symposium, ISBRA 2015 Nor-
folk, USA, June 7-10, 2015 Proceedings, vol. 9096. Springer;
2015.

Post DE, Votta LG. Computational science demands a new
paradigm. Physics Today 2005;58(1):35-41.

Spjuth O, Bongcam-Rudloff E, Dahlberg J, et al. Recommen-
dations on e-infrastructures for next-generation sequenc-
ing. GigaScience 2016;5(1):1-9.

Yoo AB, Jette MA, Mark G. SLURM: Simple Linux Utility for Re-
source Management. In: Lecture Notes in Computer Science;
2003.p. 44-60.

Lampa S, Samuel L, Martin D, et al. Lessons learned from
implementing a national infrastructure in Sweden for stor-
age and analysis of next-generation sequencing data. Giga-
Science 2013;2(1):9.

Wegmann D, Leuenberger C, Neuenschwander S, et al. ABC-
toolbox: a versatile toolkit for approximate Bayesian compu-
tations. BMC Bioinformatics 2010;11(1):116.

Gabriel E, Fagg GE, Bosilca G, et al. Open MPI: goals, concept,
and design of a next generation MPI implementation. In: Pro-
ceedings, 11th European PVM/MPI Users’ Group Meeting Bu-
dapest, Hungary; 2004. p. 97-104.

Cendio ThinLinc https://www.cendio.com/thinlinc.
cessed 1st Feb 2018

The Python Package Index https://pypi.python.org. Accessed
1st Feb 2018

The Comprehensive Perl Archive Network https://www.cpan
.org/. Accessed 1st Feb 2018

CRAN Archive https://cran.r-project.org/. Accessed 1st Feb
2018

Bioconductor https://www.bioconductor.org/. Accessed 1st
Feb 2018

Muir P, Li S, Lou S, et al. The real cost of sequencing: scal-
ing computation to keep pace with data generation. Genome
Biol 2016;17(1):53.

Ac-

. Geimer M, Markus G, Kenneth H, et al. Modern scientific soft-

ware management using easybuild and Imod. In: 2014 First
International Workshop on HPC User Support Tools; 2014.
Hoste K, Timmerman], Georges A, et al. EasyBuild: building
software with ease. In: Proceedings of the 2012 SC Compan-
ion: High Performance Computing, Networking Storage and
Analysis SCC '12, Washington, DC, USA: IEEE Computer So-
ciety; 2012; p. 572-582. http://dx.doi.org/10.1109/SC.Compan
ion.2012.81.

Emeras J, Varrette S, Plugaru V, et al. Amazon Elastic Com-
pute Cloud (EC2) vs. in-house HPC platform: a cost analysis.

https://github.com/douglasgscofield/pubs/tree/master/Dahlo-et-al-1
https://www.cendio.com/thinlinc
https://pypi.python.org
https://www.cpan.org/
https://www.cpan.org/
https://www.bioconductor.org/
http://dx.doi.org/10.1109/SC.Companion.2012.81

25.

26.

27.

28

29.

30.

31.

32.

33.

34.

35.

36.

IEEE Transactions on Cloud Computing 2016;.

Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific con-
tainers for mobility of compute. PLoS ONE 2017; 12(5):1-20.
UPPMAX jobstats https://github.com/UPPMAX/jobstats. Ac-
cessed 1st Feb 2018

Guassian http://gaussian.com/. Accessed 1st Feb 2018

. Vienna Ab initio Simulation Package https://www.vasp.at/.

Accessed 1st Feb 2018

Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high per-
formance molecular simulations through multi-level paral-
lelism from laptops to supercomputers. SoftwareX 2015;1-
2:19-25.

Case DA, Cheatham TE, Darden T, et al. The Amber biomolec-
ular simulation programs. Journal of Computational Chem-
istry 2005;26(16):1668-88.

Csilléry K, Blum MGB, Gaggiotti OE, et al. Approximate
Bayesian computation (ABC) in practice. Trends in Ecology
& Evolution 2010;25(7):410-18.

Zimin AV, Margais G, Puiu D, et al. The MaSuRCA genome
assembler. Bioinformatics 2013;29(21):2669-77.

Simpson JT, Wong K, Jackman SD. ABySS: a parallel
assembler for short read sequence data. Genome Res
2009;19(6):1117-23.

Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome
assembly algorithm and its applications to single-cell se-
quencing. Journal of Computational Biology 2012;19(5):455-
77.

Griining B, Dale R, Sjodin A, et al. Bioconda: a sustainable
and comprehensive software distribution for the life sci-
ences. bioRxiv 2017; https://www.biorxiv.org/content/early/
2017/10/27/207092.

R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,

37.

38.

39.

40.

41.

44.

45.
46.

47.

48.

49.

Austria; 2017; https://www.R-project.org/.

UPPMAX install methods https://github.com/UPPMAX/instal

I-methods. Accessed 1st Feb 2018

Li H, Durbin R. Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics 2010;26(5):589.

Patro R, Duggal G, Love MI, et al. Salmon provides fast and

bias-aware quantification of transcript expression. Nat Meth

2017; 14(4):417-19.

McKenna A, Hanna M, Banks E, et al. The Genome

Analysis Toolkit: a MapReduce framework for analyzing

next-generation DNA sequencing data. Genome Res 2010;

20(9):1297-1303.

Wood DE, Salzberg SL. Kraken: ultrafast metagenomic se-

quence classification using exact alignments. Genome Biol-

ogy 2014;15(3):R46.

Wills JM, Alouani M, Andersson P, et al. Full-potential elec-

tronic structure method. Energy and Force Calculations

with Density Functional and Dynamical Mean Field Theory.

Berlin: Springer; 2010.

https://curl.haxx.se/libcurl/. Accessed 1st Feb 2018

Wand MP. Fast computation of multivariate kernel estima-

tors.] Comput Graph Stat 1994;3(4):433.

Backlin CL, Andersson C, Gustafsson MG. Self-tuning den-

sity estimation based on Bayesian averaging of adaptive ker-

nel density estimations yields state-of-the-art performance.

Pattern Recognition 2018;78:133-43.
https://github.com/douglasgscofield/pubs/tree/master/Da

hlo-et-al-1. Accessed 1st Feb 2018

Dahlo M, Scofield DG, Schaal W, et al. Supporting data

for “Tracking the NGS revolution: managing life science re-

search on shared high-performance computing clusters.” Gi-
gaScience Database 2018; https://doi.org/10.5524/100421.

https://github.com/UPPMAX/jobstats
http://gaussian.com/
https://www.vasp.at/
https://www.biorxiv.org/content/early/2017/10/27/207092
https://www.R-project.org/
https://github.com/UPPMAX/install-methods
https://curl.haxx.se/libcurl/
https://github.com/douglasgscofield/pubs/tree/master/Dahlo-et-al-1
https://doi.org/10.5524/100421

