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Background: Glioblastoma is a common malignant neuroepithelial neoplasm

with poor clinical outcomes and limited treatment options. It is extremely

important to search and confirm diverse hub genes that are effective in the

advance and prediction of glioblastoma.

Methods: We analyzed GSE50161, GSE4290, and GSE68848, the three

microarray datasets retrieved from the GEO database. GO function and

KEGG pathway enrichment analyses for differentially expressed genes (DEGs)

were performed using DAVID. The PPI network of the DEGs was analyzed using

the Search Tool for the Retrieval of Interacting Genes database and visualized by

Cytoscape software. Hub genes were identified through the PPI network and a

robust rank aggregation method. The Cancer Genome Atlas (TCGA) and the

Oncomine database were used to validate the hub genes. In addition, a survival

curve analysis was conducted to verify the correlation between the expression

of hub genes and patient prognosis. Human glioblastoma cells and normal cells

were collected, and then RT-PCR, Western blot, and immunofluorescence

were conducted to validate the expression of the NDC80 gene. A cell

proliferation assay was used to detect the proliferation of glioma cells. The

effects of NDC80 expression on migration and invasion of GBM cell lines were

evaluated by conducting scratch and transwell assays.

Results: A total of 716 DEGs were common to all three microarray datasets,

which included 188 upregulated DEGs and 528 downregulated DEGs.

Furthermore, we found that among the common DEGs, 10 hub genes

showed a high degree of connectivity. The expression of the 10 hub genes

in TCGA and the Oncomine database was significantly overexpressed in

glioblastoma compared with normal genes. Additionally, the survival analysis
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showed that the patients with low expression of six genes (BIR5C, CDC20,

NDC80, CDK1, TOP2A, and MELK) had a significantly favorable prognosis (p <
0.01). We discovered that NDC80, which has been shown to be important in

other cancers, also has an important role in malignant gliomas. The RT-PCR,

Western blot, and immunofluorescence results showed that the expression

level of NDC80 was significantly higher in human glioblastoma cells than in

normal cells. Moreover, we identified that NDC80 increased the proliferation

and invasion abilities of human glioblastoma cells.

Conclusion: The six genes identified here may be utilized to form a panel of

disease progression and predictive biomarkers of glioblastoma for clinical

purposes. NDC80, one of the six genes, was discovered to have a potentially

important role in GBM, a finding that needs to be further studied.
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Introduction

Glioblastoma multiforme (GBM) is considered the most

malignant brain tumor, with high proliferative capacity and

invasion characteristics that result in rapid progression and a

high degree of malignancy. GBM is classified as grade IV by the

World Health Organization (WHO), and the mortality rate of

patients in the first year after diagnosis is close to 80% (Strepkos

et al., 2020). GBM is also the most common and fatal primary

malignant brain tumor in adults (Bi et al., 2020), and the 5-year

survival rate of patients diagnosed with GBM is less than 6%

(Sabbagh et al., 2020). Currently, the standard treatment for

GBM is surgical resection followed by radiotherapy with or

without concurrent adjuvant temozolomide chemotherapy

(Stupp et al., 2002; Tan et al., 2020). Tumor-treating fields,

delivering low-intensity alternating electric fields, can also be

used concurrently with adjuvant temozolomide. While there

have been many reports on immunotherapy and gene therapy

for GBM, the effects are not completely confirmed due to the

inconsistency in treatment methods and evaluation criteria. Gene

expression profiling that provides rich data on genetics, gene

expression, and promoter methylation can aid in the early

diagnosis and validation of specific biomarkers (Cloughesy

et al., 2014). However, several studies using a single or small

sample dataset for gene expression analysis require further

reproducibility testing and independent validation or

experimental studies (De Preter et al., 2010; He et al., 2015;

Cheng et al., 2016). In order to generate robust results, we

performed gene expression profiling analysis across different

expression datasets to explore sensitive and specific biological

markers for early diagnosis and validation of interventions

among GBM patients. Furthermore, we conducted

experiments using quantitative real-time PCR, Western

blotting analysis, and immunofluorescence between GBM and

normal control cells, with the purpose of verifying a newly

identified biological marker.

Materials and methods

First, we provide a workflow chart related to this study to

make the research idea of this study clearer (Figure 1).

Microarray data source

Gene expression datasets were obtained from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih. gov/geo/). There were 50,044 series on human GBM

cancer retrieved from the GEO database. After a careful

review, three gene expression profiles (GSE50161, GSE4290,

and GSE68848) were selected. All of them are based on

platform GPL570 [(HG-U133_Plus_2) Affymetrix Human

Genome U133 Plus 2.0 Array]. All the data were freely

available online.

Data processing of DEGs

The DEGs between GBM and normal samples were

identified by using the online analysis tool GEO2R (https://

www.ncbi.nlm. nih.gov/geo/geo2r/) for the GEO database,

based on the R language. We considered DEGs as

differentially expressed if genes met the cutoff criteria of an

adjusted p < 0.05 and |logFC| ≥ 2.0 (Ward et al., 2013; Saura et al.,

2014). The Venn diagram webtool (bioinformatics.psb.ugent.be/

webtools/Venn/) was used to identify the overlapping DEGs

between datasets.

GO and KEGG pathway analysis of DEGs

GO functional and KEGG pathway enrichment analyses were

performed using the Database for Annotation, Visualization, and
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Integrated Discovery (DAVID v6.8, http://david-d.ncifcrf.gov/)

to identify the DEG pathways (Huang et al., 2009). p < 0.05 was

considered statistically significant.

Protein–protein interaction network
construction and hub gene identification

The STRING database (v11.5, http://string-db.org/) aims to

collect and integrate the knowledge of all functional interactions

between expressed proteins by consolidating known and

predicted protein–protein association data for a large number

of organisms (Szklarczyk et al., 2017). We uploaded the

overlapping DEGs to the online STRING database and

obtained the data for the PPI network. Next, we used

Cytoscape software (v3.9.0) to construct a PPI network. We

screened the PPI network modules using the MCODE plug-in in

Cytoscape. The default settings were used, with a degree cutoff set

to 2, node core cutoff set to 0.2, K-core set to 2, and max depth set

to 100. Generally, we always denote the most highly connected

genes in the PPI network as hub genes, which are expected to play

an important role in understanding the biological mechanism of

a response under specific conditions (Das et al., 2017). In order to

identify the hub genes in this study, CytoHubba, a Cytoscape

plug-in, was used to analyze the data obtained from STRING.

Finally, we obtained the top 10 hub genes.

Validation of hub gene expression levels

Gene Expression Profiling Interactive Analysis (GEPIA,

v2017, http://gepia.cancer-pku.cn) and Oncomine (https://

www.oncomine.org) were used to validate the expression of

the candidate hub genes (Giordano et al., 2009; Tang et al., 2017).

Survival analysis of hub genes

The gene expression data of 325 patients (203 males and

122 females), with an average age of 43.38 years, were downloaded

from the CGGA (http://www.cgga.org.cn). Patients were categorized

into either a high-expression group or a low-expression group

according to the expression level of the 10 hub genes. We

regarded OS as the prognostic outcome of patients with glioblastoma.

Cell culture

Human glioblastoma U251 and U-87MG cells and normal

control HA1800 cells were provided by G. F. Vande Woude, Van

Andel Research Institute, Grand Rapids, MI. The cells were

cultured in Dulbecco’s modified Eagle medium containing

10% fetal bovine serum and placed in a 5% carbon dioxide

and 37°C cell culture incubator.

FIGURE 1
Workflow chart to better represent the analyses performed and to link some of the methods across the fields in this study.
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Quantitative real-time PCR

Total RNA was extracted from cells by using TRIzol reagent

(Invitrogen, United States) following the manufacturer’s

protocol. A cDNA synthesis kit (Takara, China) was used for

the synthesis of cDNA according to the manufacturer’s

instructions. RT-PCR was performed using a PrimeScript II

reverse transcription kit from Takara. The primer sequence

was as follows: NDC80 sense strand: 5′-ATCAAGGACCCG
AGACCACT-3′, NDC80 antisense strand: 5′-ATGTATGAG
GAGCCCCCACT-3′; β-actin sense strand: 5′-CTGGAACGG
TGAAGGTGACA-3′, and β-actin antisense strand: 5′-CGG
CCACATTGTGAACTTTG -3′.

Western blot assay

Cells were lysed, and the protein in the supernatant extracts

was quantified using a BCA protein assay kit (Beyotime Institute

of Biotechnology). Fifty micrograms per lane of total cell lysates

were resolved on sodium dodecyl sulfate-polyacrylamide gel

electrophoresis gels and transferred onto polyvinylidene

fluoride membranes (Millipore, Billerica, MA, United States).

Membranes were incubated with the primary antibody overnight

at 4°C. The next day, the membranes were incubated with a

horseradish peroxidase–linked secondary anti-rabbit or anti-

mouse antibody (Bio-Rad). Immunoreactivity was detected

using enhanced chemiluminescence (Amersham Biosciences,

Piscataway, NJ, United States) with a Chemidoc imaging

system and Quantity One software (Bio-Rad). A densitometric

analysis was performed by using the Quantity One software. β-
actin was used as a loading control. NDC80 antibodies were

purchased from Abcam, United States.

Immunofluorescence

Cells were seeded on coverslips and incubated for 24 h under

normoxic conditions. Subsequently, the cells were fixed with 4%

paraformaldehyde at room temperature and permeabilized with

0.2% Triton X-100 for 10 min. Next, cells were washed with

phosphate-buffered saline (PBS) and blocked in PBS containing

5% bovine serum albumin (Sigma-Aldrich, St. Louis, MO,

United States) for 90 min. The cells were washed with PBS,

and the primary antibody rabbit anti-NDC80 (1:200; Abcam,

United States) was diluted with PBS containing 2% bovine serum

albumin and incubated overnight at 4°C. The cells were washed

with PBS and incubated for 2 h with an anti-rabbit fluorescent

secondary antibody (Amersham) at room temperature. Finally,

DAPI (Beijing ComWin Biotech Co., Ltd., China) was added to

each sample for nuclear counterstaining. The cells were observed

and photographed using an Olympus BX61WI-FV1200MPE

confocal microscope to show representative cells.

Cell proliferation assay

Cell viability was measured using a Cell Counting Kit-8 (CCK-

8) assay (Dojindo Molecular Laboratories, Inc.) according to the

manufacturer’s instructions. Transfection withNDC80 or the non-

specific control was performed in 96-well plates in quadruplicate.

The cell culture medium was replaced at 24 h following

transfection. CCK-8 (10 µl) was added to each well, and the

absorbance at 450 nm was measured following incubation for

2 h at 37°C. Each experiment was repeated in triplicate.

Scratch assay

Briefly, cells were grown to full confluence in 6-well culture

plates. After reaching confluency, monolayers were scratched

with a sterile pipette tip to make a scratch of approximately

0.4–0.5 mm in width, and cells were cultured in a serum-deprived

medium. After 24 h, the wound gap was observed, and images

were captured. All scratch assays were performed in triplicate.

Transwell invasion assay

Transwell invasion assays were performed with 24-well

Matrigel-coated chambers (8-μm pore size) from BD

Biosciences. According to the manufacturer’s protocol, cells

were permitted to grow to 75–80% confluence and then were

serum starved for 24 h. Next, the nonmotile cells were removed

with a cotton swab. The remaining cells at the lower surface of the

filter were fixed with cold methanol and stained with 0.1% (w/v)

crystal violet (Sigma). The invading cells were quantified by

counting 10 random fields at × 200 magnification. All transwell

invasion assays were performed in three independent experiments.

Statistical analysis

In this study, each experiment was carried out at least three

separate times. Data are presented as mean ± standard error of

mean (SEM). Statistical tests were performed using SPSS version

19.0 software for Windows (SPSS Inc., Chicago, United States).

Two-tailed Student’s t-test was used for comparisons between

groups. p < 0.05 was considered to be a significant difference.

Results

Identification of differentially expressed
genes

Our study consisted of three datasets: GSE50161, GSE4290,

and GSE68848. GSE50161 contained 34 GBM and 13 normal
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samples, GSE4290 contained 77 GBM and 23 normal samples,

and GSE68848 contained 228 GBM and 28 normal samples

(Table 1). Based on the cutoff criteria of p < 0.05 and |

logFC| ≥ 2, a total of 2,116 DEGs were identified from

GSE50161, including 876 upregulated genes and

1,240 downregulated genes. There were 1,175 DEGs identified

in gene chip GSE4290; 400 genes were upregulated, and

775 genes were downregulated. GSE68848 had 1,087 DEGs,

including 360 upregulated genes and 727 downregulated

genes. A Venn analysis was performed to find the overlap of

the DEGs (Figure 2). Finally, 716 DEGs were identified as

significantly differentially expressed among all three groups, of

which 188 were significantly upregulated and 528 were

downregulated genes.

Gene Ontology enrichment analysis and
Kyoto Encyclopedia of Genes and
Genomes pathway analysis of DEGs

We performed GO analysis of the 716 DEGs mutual to all

three groups and determined that the genes were mainly

associated with biological information transfer or cellular

function alteration, including chemical synaptic transmission,

neurotransmitter secretion, nervous system development,

regulation of exocytosis, glutamate secretion, cell junction,

synaptic vesicle membrane, axon, synapse, synaptic vesicle,

calcium ion binding, and calcium-dependent phospholipid

binding.

Furthermore, the results of KEGG analysis showed that the

mutual DEGs were mainly enriched in retrograde

endocannabinoid signaling, GABAergic synapse, morphine

addiction, calcium signaling pathway, and synaptic vesicle

cycle (Table 2).

PPI network construction and hub gene
identification

To construct the network of the PPI relationships of the

DEGs, we used the online tool STRING. We only retained the

PPI relationships that had a combined score > 0.4. Based on the

information obtained from the STRING database, we produced a

network diagram. There were 501 nodes and 3,030 edges in the

network. Cytoscape was used to evaluate the primary modules of

the PPI sub-network using the MCODE plug-in for molecular

complex detection (Figure 3). There were 42 genes in subnetwork

a, 39 genes in subnetwork b, 11 genes in subnetwork c, 13 genes

in subnetwork d, 6 genes in subnetwork e, and 14 genes in

subnetwork f. Based on the node degree, we calculated the top

10 hub genes among the 716 DGEs (Table 3) using CytoHubba in

Cytoscape. The top 10 genes were also constructed into a network

(Figure 4). The gene with the highest degree was DNA

topoisomerase II alpha (TOP2A; degree = 78), followed by

cyclin-dependent kinase 1 (CDK1; degree = 64), budding

uninhibited by benzimidazole 1 (BUB1; degree = 53), cell

division cycle protein 20 (CDC20; degree = 53), baculoviral

IAP repeat-containing 5 (BIRC5; degree = 53), maternal

embryonic leucine zipper kinase (MELK; degree = 53), kinesin

family member 4A (KIF4A; degree = 52), PDZ binding kinase

(PBK; degree = 52), NDC80 kinetochore complex component

(NDC80; degree = 51), and TTK protein kinase (TTK; degree =

51). All of them were upregulated genes.

Assessment of ten hub genes in TCGA and
Oncomine databases

To assess the roles of these 10 hub genes in GBM, gene

expression validations were performed. All of the 10 hub genes

were found to be upregulated in The Cancer Genome Atlas

(TCGA) and Oncomine databases (Figures 5, 6).

Survival analysis of ten hub genes

The GBM patients enrolled in the study were each treated by

members of the Chinese Glioma Genome Atlas (CGGA)

TABLE 1 Statistics of the three microarray databases.

Dataset ID GBM Normal Total number

GSE50161 34 13 47

GSE4290 77 23 100

GSE68848 228 28 256

FIGURE 2
Use the Venn diagram to obtain DEGs common to all three
GEO datasets. The red, blue, and green colors represent GSE4290,
GSE50161, and GSE68848, respectively; 716 DEGs were identified
as significantly differentially expressed among all three
groups. (A) 188 upregulated common genes were found in the
three datasets. (B) 528 downregulated genes were found in the
three datasets. DEGs: differentially expressed genes.
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group. Tumor tissue samples were collected at the time of each

patient’s surgery after informed consent. Neuropathologists

established the diagnosis and ensured the quality of the tissue

for molecular testing. Overall survival (OS) was calculated from

the date of diagnosis until death or the end of follow-up. The date

of death was defined by death certificates, which were obtained

from local hospitals and police stations. We assessed the

prognostic effect of the 10 hub genes. According to the

analysis, we found that only the downregulation of TOP2A,

CDK1, CDC20, BIRC5, MELK, and NDC80 was closely

associated with a decreased OS among patients with GBM

(Figure 7). The remaining four hub genes (BUB1, KIF4A,

PBK, and TTK) had no statistical significance between gene

expression and the clinical outcome of GBM (Figure 7).

NDC80 expression in human glioblastoma
cells is increased compared with normal
cells

NDC80 has an important role in other cancers, such as liver and

breast cancer, but it is rarely reported in GBM. Our study found that

NDC80 was highly expressed in GBM. Then, we further examined

the expression ofNDC80 in differentmalignant glioma cells.NDC80

mRNA levels were determined by quantitative real-time reverse

transcription-polymerase chain reaction (RT-PCR) between human

glioblastoma cells and normal control cells (Figure 8A). RT-PCR

showed that NDC80 was upregulated significantly (p < 0.001) in

human glioblastoma cells when compared with normal astrocytes

(HA 1800). In addition, we found that the translation level of

NDC80 (p < 0.001) was also significantly increased in malignant

glioma cells, as determined byWestern blotting analysis (Figure 8B).

In order to further substantiate these findings, we also observed the

protein expression of NDC80 in cells by immunofluorescence. The

results of immunofluorescence were consistent with the results of

RT-PCR andWestern blotting, as NDC80 protein was visualized by

immunofluorescence in cells. U251 and U-87MG cells displayed

higher red fluorescence than HA1800 cells (Figure 8C), suggesting

that NDC80 expression in malignant glioma cells is higher than in

normal cells.

TABLE 2 Top 5 significantly enriched GO terms and KEGG pathways of DEGs.

Category Term Gene function Count p-value

GO enrichment analysis

GOTERM_BP_DIRECT GO:0007268 Chemical synaptic transmission 52 1.43E-22

GOTERM_BP_DIRECT GO:0007269 Neurotransmitter secretion 16 2.24E-07

GOTERM_BP_DIRECT GO:0007399 Nervous system development 36 2.48E-07

GOTERM_BP_DIRECT GO:0017157 Regulation of exocytosis 12 7.72E-07

GOTERM_BP_DIRECT GO:0014047 Glutamate secretion 11 3.46E-05

GOTERM_CC_DIRECT GO:0030054 Cell junction 81 3.26E-30

GOTERM_CC_DIRECT GO:0030672 Synaptic vesicle membrane 22 1.55E-13

GOTERM_CC_DIRECT GO:0030424 Axon 39 7.77E-13

GOTERM_CC_DIRECT GO:0045202 Synapse 34 9.31E-12

GOTERM_CC_DIRECT GO:0008021 Synaptic vesicle 24 1.10E-10

GOTERM_MF_DIRECT GO:0005509 Calcium ion binding 60 1.05E-06

GOTERM_MF_DIRECT GO:0005544 Calcium-dependent phospholipid binding 13 8.79E-04

KEGG pathway analysis

KEGG_PATHWAY hsa04723 Retrograde endocannabinoid signaling 25 5.47E-11

KEGG_PATHWAY hsa04727 GABAergic synapse 22 1.00E-09

KEGG_PATHWAY hsa05032 Morphine addiction 22 4.23E-09

KEGG_PATHWAY hsa04020 Calcium signaling pathway 29 2.31E-08

KEGG_PATHWAY hsa04721 Synaptic vesicle cycle 17 3.78E-07

TABLE 3 Top ten hub genes with a higher degree of connectivity.

Rank Name Gene description Score

1 TOP2A DNA topoisomerase II alpha 78

2 CDK1 Cyclin-dependent kinase 1 64

3 BUB1 Budding uninhibited by benzimidazole 1 53

4 CDC20 Cell division cycle protein 20 53

5 BIRC5 Baculoviral IAP repeat-containing 5 53

6 MELK Maternal embryonic leucine zipper kinase 53

7 KIF4A Kinesin family member 4A 52

8 PBK PDZ binding kinase 52

9 NDC80 NDC80 kinetochore complex component 51

10 TTK TTK protein kinase 51
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NDC80 upregulates the proliferation and
invasion abilities of human glioblastoma
cells

Western blotting experiments confirmed that the

siNDC80 designed by us could knock down the expression of

NDC80 protein in cells (Figure 9). Additionally, the CCK-8 test

results showed that the proliferation ability of U251, U118, and

A172 cells after siNDC80 treatment was lower than that of the

control cells (p < 0.05). However, there was no significant

difference between the siNDC80-treated normal astrocytes

(HA 1800) and their control (p > 0.05), as shown in

Figure 10A. Collectively, the results demonstrated that the

proliferation ability of GBM cells was significantly affected by

the expression of NDC80 protein. In order to determine the role

of NDC80 in GBM migration, we first conducted a scratch test

and a transwell invasion test. As shown in the scratch test results

FIGURE 3
Top six primary modules of PPI sub-networks from the MCODE in Cytoscape software. (A)Module 1; (B)module 2; (C)module 3; (D)module 4;
(E) module 5; (F) module 6. PPI: protein–protein interaction; MCODE: Molecular Complex Detection.

FIGURE 4
PPI network of the top 10 hub genes. There are close
interrelationships among the 10 hub genes.
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FIGURE 5
Validation of the 10 hub gene expression levels between normal brain and GBM samples from TCGA and GTEx data in GEPIA. All of the 10 hub
genes were found to be upregulated. (A) TOP2A, (B) CDK1, (C) BUB1, (D) CDC20, (E) BIRC5, (F) MELK, (G) KIF4A, (H) PBK, (I) NDC80, and (J) TTK.
TCGA: The Cancer Genome Atlas. *p < 0.05.

FIGURE 6
Validation of the 10 hub gene expression levels between normal brain and GBM samples based onOncomine data. All of the 10 hub genes were
confirmed to be upregulated. (A) TOP2A, (B) CDK1, (C) BUB1, (D) CDC20, (E) BIRC5, (F)MELK, (G) KIF4A, (H) PBK, (I) NDC80, and (J) TTK. *p < 0.05.
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(Figure 10B), knockdown of NDC80 protein reduced the

migration ability of human glioblastoma cells (U251, U118,

and A172) when compared with negative control cells. As

shown in the results of the transwell invasion experiment in

Figure 10C, the number of invasive cells following

siNDC80 treatment of human glioblastoma cells (U251, U118,

FIGURE 7
The prognostic values of hub genes in GBM. High mRNA level of any one gene of TOP2A, CDK1, CDC20, BIRC5, MELK, and NDC80 was
associated with overall survival (OS) in all GBM patients p < 0.05. Four hub genes (BUB1, KIF4A, PBK and TTK) had no statistical significance between
gene expression and the clinical outcome of GBM.

FIGURE 8
Expression of NDC80 in human glioblastoma cells and normal cells. (A) Transcriptional levels of NDC80 in human glioblastoma cells and normal
cells. Statistical analysis was performed by using one-way ANOVAwith Bonferroni’s multiple comparison test; F3, 32 = 28.59. n = 3 tests on 3 samples
per group. (B) Translational levels of NDC80 in human glioblastoma cells and normal cells. Statistical analysis was performed by using an unpaired
t-test n = 3 samples per group. (C) Immunofluorescence of NDC80. (b), (e), (h) and (k) Cy3-immuno fluorescence (red) indicates NDC80 was
observed in cells. (a), (d), (g) and (j) DAPI (blue) indicates nuclear staining in cells. (c), (f), (i) and (l) merged image (magnification × 100). Data are
presented as mean ± SEM. **p < 0.01, ***p < 0.001, and ****p < 0.0001.

Frontiers in Genetics frontiersin.org09

Zeng et al. 10.3389/fgene.2022.928407

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.928407


and A172) was significantly lower than that of the control group,

indicating that downregulation of NDC80 protein significantly

inhibited the invasive ability of glioblastoma cells.

Discussion

Malignant brain tumors are among the most feared types

of cancer because of their poor prognosis, as well as the direct

repercussions on the quality of life and cognitive function

(Omuro and DeAngelis, 2013). Malignant glioma is the most

common type of primary malignant brain tumor, accounting

for 80% of brain tumor patients and an annual incidence of

5.26 per 100,000 population or 17,000 new cases diagnosed

per year (Dolecek et al., 2012). Glioblastoma, as a grade-Ⅳ
glioma, is the most common and most malignant tumor in

glioma. Because of the limited efficacy of conventional

treatments, such as surgery, chemotherapy, and

radiotherapy, there is an urgent need to identify a new and

effective treatment. Over the past decade, many studies have

made great progress elucidating the genetics and epigenetics

of GBM (Polivka et al., 2017). Identification of relevant

biomarkers for appropriate patient selection is essential for

the successful development of novel therapies. In this study,

we aimed to find potential biomarkers for predicting

progression and prognosis in GBM.

In the present study, we obtained 716 DEGs common to

three GMB gene expression datasets, which included

188 upregulated genes and 528 downregulated genes. These

DEGs were associated with GO gene functions involving

cellular protein modification, regulation of cell

communication, and regulation of signaling. Many studies

reported that glioma cells regulated cell communication and

influenced signaling pathways (da Fonseca et al., 2016). The cells

also formed networks, which allowed multicellular

communication through microtube-associated gap junctions

(Osswald et al., 2015). In addition, through KEGG pathway

analysis, we found that these DEGs were involved in

retrograde endocannabinoid and calcium signaling pathways

and that the endocannabinoid pathway acted retrogradely and

mediated synaptic modulation through the release of 2-

arachidonoylglycerol, which also mediated long-term

depression (Kano, 2014). Furthermore, many altered calcium-

binding proteins have been observed in glioblastomamultiforme,

which are implicated in the deregulation of calcium signaling and

homeostasis in GBM (Polisetty et al., 2012). Glioblastoma can

cause patients to have symptoms resembling epilepsy. Glioma

cells have been shown to release pathological concentrations of

glutamate, which are thought to play a role in tumor progression

and the development of epilepsy (MacKenzie et al., 2016).

Furthermore, the synaptic vesicle cycle involves important

extracellular and endocytic processes, as well as protein

complex formation and degradation processes, and has been

reported to be associated with GBM (Gupta et al., 2014; Li and

Kavalali, 2017).

We constructed a PPI network to investigate the

interrelationship of the DEGs. Ten hub genes were identified,

including TOP2A, CDK1, BUB1, CDC20, BIRC5, MELK, KIF4A,

PBK, NDC80, and TTK. All of them were upregulated genes.

Their gene expression was also validated via the TCGA and

Oncomine databases. We conducted a survival analysis using

patient data from the CGGA and the 10 hub genes. In our study,

only six genes showed significant results: TOP2A, CDK1, CDC20,

BIRC5, MELK, and NDC80. This finding implied that the

prognosis of patients with glioblastoma could be predicted by

detecting the expression level of these six genes. Furthermore, the

results of this study provided potential biomarkers and target

genes, which may be applied in the diagnosis and treatment of

patients with glioblastoma for accurate therapy.

Interestingly, TOP2A, CDK1, CDC20, MELK, and NDC80

genes were all associated with the cell cycle. The cell cycle

involves multiple molecular pathways that appear to be the

essential mechanism of the indefinite proliferation of

malignant glioma. If the genes that regulate the cell cycle

progression of malignant glioma are deregulated, the

development of glioma will be promoted (Ouyang et al.,

2016). Most of the genes identified here were reported as

essential factors involved in cell division and proliferation. In

mammals, TOP2A has an important role in altering DNA

topology, and it is expressed in proliferating cells in the late S

phase, with peak expression in the G2/M phases, which suggests

that it has potential as a proliferation marker (Stiles and Rowitch,

2008). Compared with lower-grade astrocytomas and normal

brain tissue, TOP2A transcription levels in GBM patients

increased significantly, which is a useful prognostic indicator

and may guide temozolomide chemotherapy (Arivazhagan et al.,

2012). Cyclin-dependent kinase 1 (CDK1), located on 10q21.2, is

one of the cyclin-dependent kinase genes that are important

regulators of the cell cycle (Bertoni, 2018). CDK1 has an

FIGURE 9
Si-NDC80 can inhibit the protein translation level of human
glioblastoma cells and normal astrocytes NDC80. Western
blotting detected NDC80 knockdown, NDC80 protein expression
levels in human glioblastoma U251, U118, and A172 cell lines,
and normal astrocyte cell line HA1800 were significantly
downregulated.
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FIGURE 10
Compare the cell viability (OD value) and invasion ability of human glioblastoma cells with normal astrocytes in each group. (A) CCK-8 test
suggests that Si-NDC can downregulate the cell viability of human glioblastoma cells; n = 5 samples per group; unpaired t-test. (B) Scratch assay
showed that the migration ability of human glioblastoma cells (U251, U118, and A172) in the Si-NDC80 group was significantly lower than that of
normal astrocytes; n= 4 tests per group; unpaired t-test. (C)Number of invasive cells in the Si-NDC80 group of transwell invading experimental
human glioblastoma cells (U251, U118, and A172) was significantly lower than that of the control; n = 5 tests per group; unpaired t-test. Data are
presented as mean ± SEM. *p < 0.05, **p < 0.01, and ***p< 0.001.
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important role in G1/S and G2/M phase transitions and

promotes the M-phase process. In addition to glioma-related

cell cycle regulators, there are many other cancer-related

regulators, such as those found in lung adenocarcinoma and

oral squamous cell carcinoma (Malumbres and Barbacid, 2009;

Chen et al., 2015; Shi et al., 2016; Song et al., 2017). CDC20, a

central regulator of the cell cycle in numerous cancers, was

shown to have an essential role in the regulation of

glioblastoma tumor-initiating cell proliferation, self-renewal,

and survival (Xie et al., 2015a). CDC20 knockdown by

transduction with shCDC20 caused loss of tumor-initiating

cells in the S, M, and G2 cell cycle phases and accumulation

in the G1 phase (Xie et al., 2015b). In addition, silencing CDC20

expression in tumor-initiating cells accelerated a significant

increase in apoptotic cell death (Xie et al., 2015b). BIRC5

(survivin) is associated with proliferation markers and

histological malignancy grade, and its expression is inversely

associated with prognosis (Varughese and Torp, 2016; Conde

et al., 2017). Recent comprehensive studies have shown that

knockdown of survivin in immortalized as well as in primary

glioma cells leads to immense cellular polyploidy, with cells

having a DNA content up to 32n, poly-merotelic kinetochore-

microtubule connections, DNA damage, and the initiation of a

DNA damage response (Hendruschk et al., 2011; Wiedemuth

et al., 2014; Varughese et al., 2017). Knocking down BIRC5 in

GBM cells led to a transient G1 cell cycle arrest which was not

able to halt the endoreplication of DNA (Conde et al., 2017).

MELK is a member of a subfamily that activates serine/threonine

protein kinases, and its expression increases with an increasing

degree of malignancy in astrocytomas (Marie et al., 2008). Kig C

showed that siRNA-mediated loss of MELK expression in

glioblastoma cells caused a G1/S phase cell cycle arrest

accompanied by cell death or a senescence-like phenotype,

which implied that MELK inhibitors hold great potential for

the treatment of glioblastomas alone or in combination with

DNA-damaging therapies (Kig et al., 2017).

As one of the key elements of the outer kinetochore,

NDC80, which has a molecular weight of 74 kDa, forms a

heterotetrameric protein complex that plays an important

role in cell mitosis (Suzuki et al., 2016). Abnormal

expression of NDC80 protein causes chromosomal

abnormalities, leading to instability of the genome, which is

also a major factor in all tumorigenesis (Ju et al., 2017).

Numerous studies have found that the components of the

NDC80 complex are highly expressed in tumors, which can

be used as a diagnostic marker for certain tumors and may even

be an indicator for evaluating prognosis (Bieche et al., 2011).

Therefore, the role of the NDC80 complex in the development

of tumorigenesis has received increasing attention. However,

NDC80 and its proteins have rarely been reported in GBM. Our

results showed that the expression of NDC80 was upregulated

in the GBM cell lines when compared to normal cells.

Interestingly, the expression level of NDC80 in glioma cells

(U251, U-87MG, and A172) was significantly higher than that

in normal astrocytes (HA 1800). Moreover, its expression level

is positively correlated with the degree of malignancy. These

results also suggest that NDC80 plays a role in the pathogenesis

and progression of GBM.

Conclusion

In summary, the six genes identified here may be utilized to

form a panel of disease progression and predictive biomarkers for

GBM for clinical purposes. NDC80, one of the six genes, was

discovered to have a potentially important role in GBM, a finding

that needs to be further studied.
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