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Abstract. A GPI-anchored 80-kD protein was found to 
be the major component of detergent-insoluble com- 
plexes, prepared from fetal porcine small intestine, con- 
stituting about 25 % of the total amount of protein. An 
antibody was raised to the 80-kD protein, and by immu- 
nogold electron microscopy of ultracryosections of mu- 
cosal tissue, the protein was localized to the apical sur- 
face of the enterocytes, whereas it was absent from the 
basolateral plasma membrane. Interestingly, it was 
mainly found in patches of flat or invaginated apical 
membrane domains rather than at the surface of mi- 
crovilli. Caveolae were not found in association with 
these labeled microdomains. In addition, the 80-kD 
protein was seen in apical endocytic vacuoles and in tu- 

bulo-vesicular structures, suggesting that the apical mi- 
crodomains are involved in endocytosis of the 80.-kD 
protein. By its NH2-terminal amino acid sequence, 
iron-binding capacity and partial immunological cross- 
reactivity with serum transferrin, the 80-kD protein was 
shown to belong to the transferrin family, and it is 
probably homologous to melanotransferrin, a human 
melanoma-associated antigen. The 80-kD iron-binding 
protein was fully detergent-soluble immediately after 
synthesis and only became insoluble after gaining resis- 
tance to endo H, supporting a mechanism for exocytic 
delivery to the apical cell surface by way of detergent- 
insoluble glycolipid "rafts" that fuse with the plasma- 
lemma at restricted sites devoid of microvilli. 

ETERGENT-insoluble complexes are operationally de- 
fined as the fraction of membranes that, due to 
their high content of glycosphingolipids, resist sol- 

ubilization at low temperature by detergents with a low 
critical micellar concentration, such as Triton X-100 (van 
Meer and Burger, 1992). They are thought to reflect the ex- 
istence of glycolipid microdomains or rafts in the ectoplasmic 
leaflet of the lipid bilayer and this property of glycolipids 
has been proposed to be the underlying mechanism re- 
sponsible for the clustering and sorting in the trans-Golgi 
network of GPI-anchored membrane proteins, destined 
for targeting to the apical surface of epithelial cells (Brown, 
1992; Hannan et al., 1993; Zurzolo et al., 1994). The pres- 
ence of caveolin in detergent-insoluble complexes has as- 
sociated them with caveolae at the cell surface (Rothberg et 
al., 1992; Kurzchalia et al., 1992; Dupree et al., 1993), and a 
large number of proteins with a variety of functions have 
subsequently been localized to these complexes in different 
cell types (Sargiacomo et al., 1993; Chang et al., 1994; Stahl 
and Mueller, 1995). However, the general identification of 
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caveolae with detergent-insoluble complexes has recently 
been questioned (Gorodinsky et al., 1995; Mayor and 
Maxfield, 1995; Kurzchalia et al., 1995). 

The brush border membrane of the small intestinal en- 
terocyte is a highly specialized digestive/absorptive surface 
that ensures an efficient internalization of dietary nutri- 
ents (Trier, 1987). We have recently shown that several of 
the brush border hydrolases, including the transmembrane 
peptidases and glycosidases, are partially localized in de- 
tergent-insoluble complexes of which the small intestine is 
a rich source despite the fact that few, if any, caveolae are 
present (Danielsen, 1995). The observation that newly syn- 
thesized brush border enzymes cluster in detergent-insolu- 
ble complexes already during their intracellular transport 
lead us to propose that association with glycolipid "rafts" 
functions as a sorting step in the enterocyte for transmem- 
brane as well as GPI-anchored proteins, targeted to the 
apical cell surface. 

The apical cell surface of the enterocyte gradually devel- 
ops into a brush border during embryogenesis, but it lacks 
the glycosidases which are not expressed until around the 
time of birth or after weaning, and the peptidases, notably 
aminopeptidase N, are present in only comparatively small 
amounts (Kedinger et al., 1980; Henning, 1987). Morpho- 
logically, the fetal and neonatal enterocyte is typified by 
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the development of apical endocytic and vacuolar struc- 
tures which enables the newborn to absorb and digest milk 
protein and to acquire passive immunity by transcytosis of 
maternal immunoglobulins (Kraehenbuhl et al., 1969; 
Rodewald, 1970; Trier and Moxey, 1979; Wilson et al., 
1991). We have recently shown that aminopeptidase N 
(EC 3.4.11.2) in fetal enterocytes of the pig after synthesis 
and transport to the brush border is internalized into vacu- 
olar structures where a significant proportion of the steady- 
state amounts of the enzyme is localized (Danielsen et al., 
1995). 

In the present work, a 80-kD protein was found to be 
the predominant polypeptide component of detergent-insol- 
uble complexes, prepared from fetal small intestine. By im- 
munogold electron microscopy, the 80-kD protein was lo- 
calized mainly to noncaveolar microdomains devoid of 
microvilli at the apical cell surface and to apical tubulove- 
sicular structures and vacuoles. The 80-kD protein was 
characterized as a transferrin-like, GPI-anchored iron-bind- 
ing protein, probably equivalent to the previously described 
melanoma-associated antigen p97 or melanotransferrin 
(Woodbury et al., 1980). 

Materials and Methods 

Materials 
Equipment for performing organ culture, including Trowell's T-8 me- 
dium, culture dishes with grids, and [35S]methionine (specific radioactivity 
>1,000 Ci/mmol) was obtained as previously described (Danielsen et al., 
1982). Protein A-gold was purchased from Amersham (Bucks., U.K.), 
peroxidase-conjugated swine immunoglobulins to rabbit immunoglobu- 
lins were from DAKO (Glostrup, Denmark), and phosphatidylinositol- 
specific phospholipase C (from Bacillus cereus) was a product of Sigma 
Chemical Co. (St. Louis, MO). Anti-cross reacting determinant, which 
specifically recognizes phospholipase-cleaved GPI-anchors, was obtained 
from Oxford Glycosystems (Abingdon, U.K.), and endo-13-N-acetyl-glu- 
cosaminidase H (endo H, from Streptomyces plicatus) from Boehringer 
Mannheim GmbH (Mannheim, Germany). 

Pig fetuses were kindly provided by De Forenede Andelsslagterier 
(Ringsted, Denmark). Small intestine from neonatal pigs were kindly 
given by Dr. Per Sangild (Royal Veterinary and Agricultural University, 
Copenhagen, Denmark). 

Preparation of Detergent-insoluble Complexes 
Flotation of detergent-insoluble complexes by sucrose gradient centrifu- 
gation was performed essentially as described by Brown and Rose (1992). 
Briefly, 2 ml of labeled explant extract, or, in some experiments, Mg 2+- 
precipitated -or microvillar membranes in 25 mM Hepes, 150 mM NaCI, 
pH 7.0, 1% Triton X-100 was mixed in a centrifugation tube with an equal 
volume of 40% sucrose, made up in the same buffer, and 8 ml of a 5-30% 
linear sucrose gradient was layered on top of the extract. After centrifuga- 
tion in a Beckman SW40 Ti rotor (Beckman Instruments, Palo Alto, CA) 
at 35,000 rpm (gma~ = 217,000) for 20-22 h at 3°C, the resulting floating 
light-scattering band was carefully collected by use of a pipette, mixed 
with 5 vol of 25 mM Hepes, 150 mM NaCl, pH 7.0, and centrifuged at 
48000 g for I h to obtain a pellet of detergent-insoluble membranes. 

Preparation of Antiserum 
Detergent-insoluble complexes were prepared from a microvillar fraction 
of the small intestine of fetuses with a crown-rump length of 14 cm. 150 ~l 
samples of complexes (~1 mg protein/ml) in 25 mM Hepes, 150 mM 
NaC1, pH 7.0, were mixed with equal volumes of Freund's incomplete ad- 
juvant and injected intracutaneously into a rabbit at two week intervals. 
One week after the fourth immunization, the rabbit was bled for 50 ml, 
and booster injections were subsequently given every sixth week, followed 
by new bleedings. The antisera from the bleedings were either used di- 

rectly for immunoelectrophoresis or the IgG fraction purified by protein 
A-Sepharose chromatography. This antibody recognized aminopeptidase 
N and the 80-kD protein in Western blotting and immunoelectrophoresis. 
To obtain an antibody specific to the 80-kD protein for use in immu- 
nogold electron microscopy, reactivity against aminopepfidase N was re- 
moved from the IgG fraction by chromatography on a column of Triton 
X-100-solubilized microvillar membranes from the small intestine of an 
adult animal, coupled to Sepharose. The removal of aminopeptidase N re- 
activity was monitored by Western blotting and rocket immunoelectro- 
phoresis, and after two passages through the column, the IgG fraction 
only exhibited detectable reactivity against the 80-kD iron-binding protein. 

Electron Microscopy 
Small pieces of fetal intestine were fixed in 2% formaldehyde and 0.1% 
glutaraldehyde in 0.1 M phosphate buffer, pH 7.3, cryoprotected and fro- 
zen (Hansen et al., 1993). Ultracryosections were cut and labeled with 
anti-80-kD protein followed by protein A conjugated to either 5 or 10 nm 
gold particles. Pellets of Triton X-100-insoluble complexes, prepared 
from fetal intestine, were fixed, cryoprotected and frozen, and ultracryo- 
sections labeled as described above. 

Organ Culture of Mucosal Explants 
Pig fetuses were removed from the womb of the sow immediately after it 
was disemboweled, and their small intestines excised and placed in ice- 
cold Hanks'  buffered salt solution. 0.5-1 cm sections of intestine were cut 
open, placed on grids in culture dishes and cultured for periods up to 6 h 
as previously described for mucosal explants from adult animals (Danielsen 
et al., 1982). After culture, the tissue was quickly frozen and kept at 
-20°C until further processing. 

Subcellular Fractionation 
Fetal small intestine was homogenized, fractionated by the divalent cation 
precipitation method (Schmitz el al., 1973; Booth and Kenny, 1974) into 
Mg2+-precipitated and microvillar membranes and solubilized by Triton 
X-100 as previously described (Danielsen, 1982). 

Electrophoretic Methods 
Quantitative rocket immunoelectrophoresis and crossed immunoelectro- 
phoresis in 1% agarose gels was performed essentially as described by 
Weeke (1973). In some experiments, aminopeptidase N-precipitates were 
visualized by histochemical staining, using alanyl-13-napthylamide as sub- 
strate, as previously described (Danielsen et al., 1977). SDS-PAGE in 
10% gels under reducing conditions was performed according to Laemmli 
(1970) and fluorography as described by Bonnet and Laskey (1974). Gel 
tracks were scanned in an Ultroscan XL densitometer (Pharmacia LKB, 
Bromma, Sweden). For Western blotting, proteins separated by SDS- 
PAGE were electrotransferred onto Immobilon PVDF membranes (Mil- 
lipore Corp., Bedford, MA), and visualized by the procedure of Bjerrum 
el al. (1983). 

NH2-terminal Amino Acid Sequence Determination 
Samples (~100 ~Lg of protein) of detergent-insoluble complexes prepared 
from a microvillar fraction of fetal small intestine were subjected to SDS- 
PAGE, followed by electrotransfer onto Immobilon PVDF membranes 
and staining with Coomassie brilliant blue. Membrane areas containing 
the 80-kD protein were excised and subjected to sequencing as described 
by Ploug et al. (1989), using a sequencer (model 477A; Applied Biosys- 
tems, Foster City, CA), equipped with on-line PTH-amino acid analyzer 
(model 120A) using the "Normal-l" program supplied by the manufac- 
turer. 

Solubilization with Phosphatidylinositol-specific 
Phospholipase C 
50 ml samples of detergent-insoluble complexes (~2 mg protein/ml) in 25 
mM Hepes, 150 mM NaC1, 5 mM EDTA, 10 txg/ml aprotinin, pH 7.0, were 
incubated in the presence or absence (control) of 1 U of phosphatidylinosi- 
tol-specific phospholipase C for 1 h at 37°C. After incubation, the samples 
were centrifuged at 20,000 g, 30 min. The supernatants (= phospholipase 
solubilized fraction) were analyzed by crossed immunoelectrophoresis. 
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The pellets were resuspended in 50 p.l of the above buffer and solubilized 
by 1% Triton X-100 for 10 rain at 37°C before centrifugation at 20,000 g, 
l0 min. The supernatants (= phospholipase-insoluble fraction) were col- 
lected and analyzed by crossed immunoelectrophoresis. 

Digestion with Endo H 

Labeled explants were homogenized in 0.5 ml of 25 mM Hepes, 150 mM 
NaCl, pH 7.0, and centrifuged at 20,000 g, 15 min. The pellet was resus- 
pended in 0.5 ml of the above buffer, containing 10 txg/ml of aprotinin, 
and solubilized by 1% Triton X-100 for 10 min at 37°C. After centrifuga- 
tion at 20,000 g, 5 min, the supernatant was collected and the 80-kD pro- 
tein and aminopeptidase N immunoprecipitated by addition of 200 pA an- 
tibody raised against detergent-insoluble complexes. After incubation 
overnight at 4°C, the immunoprecipitates were pelleted by centrifugation 
at 5000 g, 5 rain, washed once in the above buffer and finally resuspended 
and boiled for 3 min in 50 txl of 100 mM sodium citrate, 0.1% SDS, pH 5.5. 
50 m U ' o f  endo H was then added, and the samples incubated at 37°C 
overnight before analysis by SDS-PAGE. Control samples without the ad- 
dition of endo H were incubated in parallel. 

Results 

A 80-kD Protein Is the Major Component 
of Detergent-insoluble Complexes from Fetal 
Small Intestine 

Fig. 1 (upper panel) shows the polypeptide composition of 
detergent-insoluble complexes prepared from the Mg 2+- 
precipitated fraction and the microvillar fraction of fetal 
small intestine. The two profiles looked essentially similar 
with a band of about 80 kD as the most abundant compo- 
nent; by densitometric scanning of the gel tracks, this 
polypeptide was calculated to represent approx. 25% of 
the total amount of protein of microvillar-derived com- 
plexes and about 15% of the complexes isolated from the 
Mg2+-precipitated fraction. The 166-kD band, represent- 
ing aminopeptidase N, constituted 7-8% of the protein of 
the complexes; the minor peaks of lower molecular weight 
represent actin (43 kD) and unidentified polypeptides of 
37-35 and 32 kD that are also found in detergent-insoluble 
complexes prepared from the small intestine of adult ani- 
mals (Danielsen, 1995). 

A polyclonal antibody against detergent-insoluble com- 
plexes prepared from fetal small intestine was raised in 
rabbits. This antibody reacted with the 166-kD band and, 
more strongly, with 80-kD band in Western blotting and 
was able to precipitate both components (Fig. 1, lower 
panel). In crossed immunoelectrophoresis the antibody 
gave rise to two detectable precipitates of which the mi- 
nor, faster migrating one was shown by enzyme staining to 
correspond to aminopeptidase N (Figs. 6 and 7). The anti- 
body reactivity towards the latter was removed by chro- 
matography on a column of solubilized microvillar mem- 
branes from adult pig intestine, coupled to Sepharose. 
After this absorption, the antibody only recognized the 80- 
kD protein in Western blotting (Fig. 1, lower panel) and in 
immunoelectrophoresis (Fig. 10). 

The 80-kD Protein Is Localized in Noncaveolar Apical 
Membrane Microdomains and Endocytic Structures 

In general, the differentiating brush border of the fetal en- 
terocytes was found to be sparsely populated with short 
microvilli which often appeared in small bundles sepa- 

Figure 1. (Upper panel) 
Mg2+-precipitated (Mr +) 
and mierovillar (Mic) mem- 
branes were prepared from 
fetal small intestine and solu- 
bilized by 1% Triton X-100 
at 0°C. Detergent-insoluble 
complexes (DIC) were pre- 
pared from each of these 
fractions by sucrose density 
gradient centrifugation and 
samples (~100 ~g protein) 
analyzed by SDS-PAGE. Af- 
ter eleetrophoresis, the gel 
was stained with Coomassie 
brilliant blue, and the gel 
tracks of the detergent-insolu- 
ble complexes were densito- 
metrically scanned. Molecu- 
lar mass values (kD) are 
indicated. (Lower panel) 

Western blotting, using as primary antibody either the "crude" 
antiserum to detergent-insoluble complexes (lanes 1 and 2) or 
the antibody specific to the 80-kD protein (lane 3). (Lane I) 200 
~1 of detergent-insoluble complexes, solubilized by 1% Triton 
X-100 at 37°C, and immunoprecipitated by overnight incubation 
with 100 Ixl of antiserum to detergent-insoluble complexes. The 
immunoprecipitate was pelleted by centrifugation at 5,000 g, 3 
min. (Unspecific staining of a 50-kD band, representing the pre- 
cipitating antibody, is visible). (Lanes 2 and 3) 100 p~l of deter- 
gent-insoluble complexes. Molecular mass values (kD) are indi- 
cated. 

rated by patches of flat membrane surfaces, in particular 
close to the intercellular spaces (Fig. 2) (Louvard et al., 
1992). Caveolae (i.e., small regularly shaped invaginations 
of about 50--60 nm in diameter) were not observed. Tight 
junctions and desmosomes between neighboring cells were 
well developed (not shown). Immunogold labeling on ul- 
tracryosections of fetal intestine with the anti-80-kD pro- 
tein antibody revealed the 80-kD protein to be present in 
large amounts at the apical surface of the enterocytes; no 
labeling at the basolateral plasma membrane was ob- 
served. Most interestingly, the protein was found mainly in 
patches of variable density in the flattened or slightly in- 
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Figure 2. Electron micrograph of an ultracryosection showing typical features of the apical surface of the developing fetal enterocyte 
and the localization of the 80-kD protein. The section was incubated with anti-80-kD protein followed by protein A conjugated to 10 nm 
gold (PAG 10 nm). Note the irregular, poorly developed brush border, and the bundles of actin filaments (A f). The 80-kD protein is 
confined to the apical membrane, but is only rarely present at the microvilli (arrowheads); the intercellular space (Is) is unlabeled. A ve- 
sicular invagination is indicated by an asterisk and a vacuolar profile, which could represent a cross-sectioned surface invagination, is 
also seen (open arrow). Bar, 0.25 ~m. 

ward-bulging apical membrane domains between the tufts 
of microvilli while only little or scattered labeling was 
found at the microvillar membrane itself (Figs. 2 and 3). 
Vesicular pits or invaginations (70-250 nm in diameter) 
were often found to be associated with the 80-kD protein- 
labeled apical membrane domains. At least some of these 
invaginations must be involved in endocytosis of the 80- 
kD protein since the protein was localized in apical, large 
endosome-like vacuoles (Fig. 4), structures previously re- 
ported to be engaged in endocytosis (Wilson et al., 1991; 
K6mt~ves and Heath, 1992; Danielsen et al., 1995). More- 
over, characteristic tubulo-vesicular structures in the api- 
cal cytoplasm were labeled by the anti-80-kD protein anti- 
body (Fig. 4). Such structures have been proposed to be 
active in membrane recycling in enterocytes of neonatal 
piglets (KOm0ves and Heath, 1992). Labeling of distinct 
Golgi stacks was not observed, but the TGN was often la- 
beled (not shown). 

Electron microscopy of ultracryosections of the deter- 
gent-insoluble complexes revealed frequent membrane- 
rich structures including numerous vesicular profiles with 
a diameter range of 50-150 nm. These structures labeled 
distinctly with the anti-80-kD protein antibody (Fig. 5). 

The 80-kD Protein Is a Transferrin-like 
Iron-binding Protein 

The finding of the 80-kD protein being the most promi- 
nent polypeptide component of detergent-insoluble com- 
plexes from fetal small intestine prompted a further char- 
acterization of this protein. By microsequence analysis, the 
following NH2-terminal amino acid sequence of the 80-kD 
protein was obtained: Gly-Met-Glu-Val-Arg-Trp-Xxx-Thr- 
Ile-Ser-Asp-Pro-Glu-Gln-Gln. In database searches, this 
sequence was found to share the highest homology with 
proteins of the transferrin family of iron-binding proteins; 
thus it was 47% homologous with positions 3-17 of mature 
porcine transferrin (Baldwin and Weinstock, 1988), 40% 
homologous with positions 22-36 of porcine pre-lactofer- 
rin (Lydon et al., 1992) and 73% homologous with posi- 
tions 20-34 of human pre-melanotransferrin (Rose et al., 
1986). The antibody raised against the detergent-insoluble 
complexes reacted in Western blotting with a 80-kD pro- 
tein present in porcine serum but could not precipitate it, 
suggesting a resemblance, but not an identity with, serum 
transferrin (data not shown). Finally, the iron-binding ability 
of the 80-kD protein from small intestinal detergent-insol- 
uble complexes was directly visualized by crossed immu- 
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Figure 3. This figure shows more details of the characteristic apical localization of the 80-kD protein in the fetal enterocyte. The cryo- 
sections were labeled with anti-80-kD protein, followed by PAG 10 nm (A-C) or PAG 5 nm (D-E). The 80-kD protein is mainly local- 
ized to nonmicroviUar microdomains at the apical surface (dashed lines). Largely unlabeled microvilli are indicated by arrowheads. Two 
apical membrane invaginations are indicated with asterisks in A and B. Bars, 0.25 ixm. 

noelectrophoresis in the presence of  59Fe3+. As shown in 
Fig. 6 A, the slower migrating of the two precipitates was 
labeled by the radioactive iron. In a parallel experiment 
with porcine serum electrophoresed against rabbit anti- 
porcine serum IgG, an immunoprecipitate with a relative 
mobility corresponding to serum transferrin was specifi- 
cally labeled by the radioactive iron (Fig. 6 B). It can 
therefore be concluded that the 80-kD protein from fetal 
small intestinal detergent-insoluble complexes is an iron- 
binding protein that belongs to the transferrin family. 

The 80-kD Iron-binding Protein Is a GPI-Hnked 
Integral Membrane  Protein 

More than 90% of the 80-kD iron-binding protein in a fe- 
tal mucosal homogenate  could be pelleted by centrifuga- 
tion for 15 min at 20,000 g, indicating that the bulk mass of 
the protein is membrane-associated, and this association 
resisted carbonate extraction at pH 11, showing that the 
80-kD protein is an integral membrane protein (data not 
shown). The overall detergent-insolubility at low tempera- 
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Figure 4. A shows apical tubulo-vesicular structures containing the 80-kD protein, and B shows an endocytic vacuole (Ev) labeled for 
the protein. A is labeled with PAG 10 nm, B with PAG 5 nm. Bars, 0.25 p,m. 

ture of the 80-kD protein was determined by quantitative 
rocket immunoelectrophoresis against the antibody de- 
scribed above. As shown in Fig. 7, the main portion (67% 
in a series of three experiments) of this protein in a whole 
tissue homogenate was indeed insoluble in Triton X-100 at 
0°C (but soluble at 37°C). By comparison, aminopeptidase 
N was found to be 55% insoluble at low temperature, a 
value close to that previously reported for this enzyme 

from adult tissue (Danielsen, 1995). Fig. 8 A shows that 
the 80-kD protein could be solubilized from the detergent- 
insoluble complexes by digestion with phosphatidylinosi- 
tol-specific phospholipase C, indicating that it is linked to 
the membrane via a GPI anchor. Notice that the electro- 
phoretic mobility of the 80-kD iron-binding protein was 
significantly increased after incubation with the phosphoti- 
pase. As a control, the transmembrane aminopeptidase N 

Figure 5. Ultracryosections of the Triton X-100-insoluble complexes, labeled with ant i-80-kD protein followed by P A G  10 nm. In the 
preparation, many vesicular profiles are seen, around 100 nm in diameter. Bar, 100 nm. 
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Figure 6. (A) 20 ml (~1 mg protein/ml) of fetal detergent-insoluble complexes were solubilized by 1% Triton X-100 at 37°C, mixed with 
0.5 ixCi of 59FEC13 and analyzed by crossed immunoelectrophoresis. (B) 2 Ixl of swine serum, diluted with 10 txl of 25 mM Hepes, 150 mM 
NaC1, pH 7.0, was mixed with 0.5 ~Ci of 59FEC13 and analyzed by crossed immunoelectrophoresis. After electrophoresis, immunoprecip- 
itates were stained with Coomassie brilliant blue (CBB), and visualized by autoradiography (59Fe). (1) 80-kDa protein; (2) aminopepti- 
dase N. (The arrow indicates the position of the iron-binding precipitate representing serum transferrin). 

was not solubilized and its mobility was unaffected by the 
treatment. Finally, the presence of a GPI anchor on the 
80-kD iron-binding protein was directly demonstrated by 
its reaction in Western blotting with anti-cross reacting 
determinant which specifically recognizes phospholipase- 
cleaved GPI-anchors (Cardoso de Almeida and Turner, 
1983; Zamze et al., 1988). As shown in Fig. 8 B, the 80-kD 
band reacted with this antibody only after lipolytic cleav- 
age which exposes the inositol 1, 2-cyclic monophosphate 
epitope. The transmembrane aminopeptidase N did not 
react with this antibody. It can therefore be concluded that 

the 80-kD iron-binding protein is an integral membrane 
protein, linked to the lipid bilayer by a GPI anchor. 

Biosynthesis o f  the 80-kD Iron-binding Protein 

Fig. 9 A shows that immediately after a 30-min pulse of 
[35S]methionine in cultured fetal mucosal explants, both 
the 80-kD iron-binding protein and aminopeptidase N 
were fully soluble in Triton X-100, and that after 6 h of 
chase, a significant proportion of both labeled proteins had 
become detergent-insoluble. Furthermore, by 30 rain, the 

Danielsen and van Deurs An Iron-binding Protein in Apical Microdomains 945 



Figure 7. Quantitative rocket immu- 
noelectrophoresis of detergent-sol- 
uble (S) and detergent-insoluble (/) 
fractions of a crude membrane prep- 
aration of fetal mucosa. Approxi- 
mately 0.2 g of small intestine was 
homogenized in 2 m125 mM Hepes, 
150 mM NaCI, pH 7.0, and centri- 
fuged at 500 g, 2 min. The superna- 
tant was centrifuged at 20,000 g, 30 
min and the resulting pellet resus- 
pended in 250 Ixl of the above 
buffer and solubilized by 1% Triton 
X-100 at 0°C. After centrifugation 
at 20,000 g, 30 min, the supernatant 
of detergent-soluble proteins was 
collected. The pellet was resus- 
pended as above and solubilized by 
1% Triton X-100 at 37°C. After cen- 
trifugation at 5,000 g, 10 min, the 
supernatant of (solubilized) deter- 
gent-insoluble protein was collected. 
(Top) 20 Ixl of both fractions was 
applied. After electrophoresis, the 
precipitates were stained with Coo- 
massie brilliant blue. (Bottom) 30 
txl of both fractions was applied. Af- 
ter electrophoresis, the aminopepti- 
dase N-precipitates were visualized 
by enzyme staining. 

80-kD iron-binding pro te in  was fully sensitive to endo H 
(as was the 140-kD form of aminopept idase  N) (Fig. 9 B). 
Af te r  6 h, endo H t rea tment  resul ted in a b lurred band,  in- 
dicating a part ial  resistance to the glycosidase. The 170-kD 
mature  form of aminopept idase  N appea red  similarly 
b lurred after endo H t reatment ,  indicating that  the Golgi-  
associated tr imming and a t tachment  of  "complex"  carbo-  
hydrate  is not  fully deve loped  in the fetal enterocyte.  
These results thus show that association of the 80-kD iron- 
binding prote in  with detergent- insoluble  complexes only 
occurs post t ranslat ional ly  at a t ime when the prote in  has 
acquired (part ial)  endo H resistance. 

Figure 8. (A) 50 tzl samples (~2 mg protein/ml) of fetal deter- 
gent-insoluble complexes in 25 mM Hepes, 150 mM NaC1, 5 mM 
EDTA, 10 txg/ml aprotinin, pH 7.0, were incubated in the ab- 
sence (Control) or presence (+PI-PLC) of i U phosphatidylino- 
sitol-specific phospholipase C for 1 h at 37°C. After incubation, 
the samples were centrifuged at 20,000 g, 30 min, and the super- 
natants (Sol) collected and analyzed by crossed immunoelectro- 
phoresis. The pellets were resuspended in 50 I~l of the above 
buffer and solubilized with 1% Triton X-100 at 37°C, followed by 
centrifugation at 20,000 g, 10 min. The resulting supernatants of 
detergent-solubilized membranes (Mem) were analyzed by crossed 

immunoelectrophoresis. After electrophoresis, immunoprecipi- 
tates of aminopeptidase N were identified by histochemical stain- 
ing, followed by staining with Coomassie brilliant blue. (1) 80-kD 
protein. (2) aminopeptidase N. (B) Western blot of detergent- 
insoluble complexes, incubated in the presence (+) or absence 
( - )  of PI-PLC as described above and subjected to SDS-PAGE. 
The primary antibody was either anti-cross reacting determinant, 
which specifically recognizes phospholipase-cleaved GPI-anchors 
(lanes 1--6), or anti-detergent-insoluble complexes (lanes 7 and 
8). Samples of 25 Ixl (lanes I and 2 , 7  and 8), 10 Ixl (lanes 3 and 4), 
and 5 ~1 (lanes 5 and 6) were applied to the gel. Molecular mass 
values (kD) are indicated. 
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Figure 9. Fetal mucosal explants in organ culture were labeled 
for 30 min with 400 ~Ci/ml of [35S]methionine, followed by a 
chase of 0 or 6 h. (A) After culture, the 80-kD iron-binding pro- 
tein and aminopeptidase N were immunopurified from the deter- 
gent-soluble (S) -and detergent-insoluble (I) membrane fractions 
of the explants by immuno-electrophoresis as described in the 
legend to Fig. 7. After electrophoresis, the immunoprecipitates 
were excised from the agarose gel and analyzed by SDS-PAGE. 
(B) After culture, the 80-kD iron-binding protein and aminopep- 
tidase N were immunopurified and incubated in the presence (+) 
or absence ( - )  of endo H as described in Materials and Methods. 

1 2 3 4 5 6 7 

Figure 10. Pieces of fetal, neonatal and adult small intestine 
(200-400 mg wet weight) were extracted in 400 ~1 of 25 mM 
Hepes, 150 mM NaC1, 5% Triton X-100, 10 p.g/ml aprotinin, pH 
7.0, for 10 min at 37°C. After centrifugation at 5,000 g, 5 min, the 
cleared tissue extracts were diluted fourfold with the above 
buffer and analyzed by quantitative rocket immunoelectrophore- 
sis against antibodies specific to the 80-kD iron-binding protein 
(A) or antibodies to detergent-insoluble complexes (B). Samples 
of 8-13 p.l (each containing 1 mg of tissue extract) were applied 
to each well: I and 2, fetuses with a crown-rump length of I4 cm 
or 25 cm, respectively; 3, newborn piglet, delivered 7 d before 
term; 4, newborn piglet delivered at term; 5, 7-d-old piglet; 6, 4.5- 
wk-old piglet, postweaned for 5 d; 7, 3-mo-old pig. (A) The im- 
munoprecipitates of the 80-kD iron-binding protein were stained 
with Coomassie brilliant blue. (B) The immunoprecipitates of 
aminopeptidase N were visualized by histochemical staining. 

Expression of  the 80-kD Iron-binding Protein 
during Development 

Fig, 10 shows a determinat ion by quantitative rocket im- 
munoelectrophoresis of the overall amounts  of the 80-kD 
iron-binding protein present in fetal, neonatal,  postweaned, 
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and adult intestine. The protein is present early in the fetal 
development (a crown-rump length of 14 cm corresponds 
to a gestational age of about 70 d), but reaches a maximum 
around the time of birth. It is still present in relatively high 
amounts in the intestine of the 7-d-old piglet, but is not de- 
tectable by this assay in mucosal extracts from the 4.5-wk- 
old piglet (postweaned for 5 d) or the 3-mo-old animal, 
showing that the expression declines sharply shortly after 
weaning. Like the 80-kD iron-binding protein, aminopep- 
tidase N is present already in the fetal intestine, but in con- 
trast to the former, expression of the peptidase persists af- 
ter weaning (Fig. 10). 

Discussion 

Glycolipids are essential components of detergent-insolu- 
ble complexes (van Meer and Berger, 1992), and in the mi- 
crovillar membrane of porcine enterocytes, they constitute 
more than 30% of the total membrane lipid. The main 
components are dihexosylceramides containing galactose 
and pentohexosylceramides composed of fucose, galac- 
tose, glucose and hexosamines (Christiansen and Carlsen, 
1981). The preparation of detergent-insoluble complexes 
from fetal intestine, involving extraction with Triton X-100 
at low temperature followed by a density gradient centrif- 
ugation as the essential steps, lead to a remarkably high 
enrichment of a 80-kD protein, not seen in similar prepa- 
rations from the small intestine of adult animals (Danielsen, 
1995). Morphologically, the detergent-insoluble complexes 
resembled similar complexes previously isolated from 
MDCK cells by the same procedure (Brown and Rose, 
1992), and subcellularly they must derive from the two lo- 
cations where the 80-kD protein was principally found: the 
non-microvillar patches of the apical plasma membrane 
and the tubulo-vesicular structures and vacuoles in the 
apical cytoplasm. 

It is likely that at least some of the microdomains at the 
apical cell surface, labeled by the anti-80-kD protein anti- 
body, must represent target sites of the exocytic mem- 
brane traffic. In support of this interpretation, it has previ- 
ously been shown by lateral mobility analysis that apically 
targeted GPI-anchored proteins in MDCK cells transiently 
reside in clusters before they achieve an even steady-state 
distribution (Hannan et al., 1993). 

The apical tubulo-vesicular structures and vacuoles la- 
beled by the anti-80-kD antibody are characteristic en- 
docytic compartments of the fetal and neonatal entero- 
cytes (Wilson et al., 1991; K6m~ves and Heath, 1992; 
Danielsen et al., 1995). This, taken together with the fre- 
quently observed noncaveolar plasma membrane invagi- 
nations labeled by the anti-80-kD protein antibody sug- 
gests to us that some of these patches may represent 
restricted areas of the apical membrane involved in en- 
docytosis. Until recently, detergent-insoluble complexes 
were commonly thought to be derived from caveolae 
which are not usually associated with endocytosis; accord- 
ing to the potocytic mechanism of internalization, gener- 
ally ascribed to caveolae, the membrane invaginations 
never pinch off from the cell surface to form endocytic 
vesicles (Anderson et al., 1992; van Deurs et al., 1993). In 
spite of this, caveolae have nevertheless been reported to 
undergo regulated internalization (Parton et al., 1994). 

However, we consistently failed to detect any caveolae at 
the 80-kD protein-containing microdomains of the apical 
cell surface. A similar lack of correlation between deter- 
gent insolubility and caveolae has been reported for a 
GPI-anchored protein, Thy-1, at the surface of lympho- 
cytes; this cell type lacks caveolae and does not express ca- 
veolin either at the protein, nor the mRNA level (Fra et 
al., 1994). Along these lines, detergent-insoluble complexes 
isolated from a mouse neuroblastoma cell line were recently 
observed to contain GPI-anchored proteins as well as het- 
erotrimeric G proteins and tyrosine kinases, despite a lack 
of morphologically identifiable caveolae and caveolin ex- 
pression (Gorodinsky et al., 1995). Mayor and Maxfield 
(1995), studying the cell surface localization of GPI- 
anchored proteins, observed that these redistribute after 
detergent-treatment and cautioned that their association 
with caveolae and signalling proteins must be critically re- 
examined. A likely conclusion to draw from this is that gly- 
colipid microdomains are a more general and widespread 
phenomenon than previously thought. 

The transmembrane-anchored aminopeptidase N was 
also significantly enriched in the detergent-insoluble com- 
plexes although overall, it was found to be markedly less 
insoluble than the 80-kD protein. In fetal enterocytes, 
aminopeptidase N is also internalized and can be co-local- 
ized with cationized ferritin in plasma membrane invagi- 
nations and seen as well in the apical tubulo-vesicular 
structures and vacuoles (Danielsen et al., 1995). Unlike 
the 80-kD protein, however, aminopeptidase N was found 
evenly distributed over the entire apical cell surface in- 
cluding the microvilli. This difference probably reflects a 
lower affinity of a transmembrane-anchored protein for 
the glycolipid-rich microdomains. 

The NH2-terminal amino acid sequence, iron-binding 
capacity, partial immunological cross-reactivity with serum 
transferrin and molecular weight of the 80-kD protein 
showed it to belong to the transferrin family of iron-bind- 
ing proteins. Within this family, it shared the highest se- 
quence homology with human melanotransferrin, also 
known as the melanoma-associated antigen p97 (Woodbury 
et al., 1980). Based on its mRNA sequence, this protein 
was originally predicted to be anchored to the membrane 
by a stretch of 25 predominantly uncharged and hydro- 
phobic residues near the COOH terminus (Rose et al., 
1986). Recently, however, melanotransferrin was pro- 
posed to be GPI-anchored, rather than by a transmem- 
brane amino acid sequence, based on its solubilization 
with phosphatidylinositol-specific phospholipase C, bio- 
synthetic labeling with radioactive ethanolamine and par- 
titioning in Triton X-114 (Food et al., 1994). The resistance 
of the 80-kD iron-binding protein to carbonate extraction 
at pH 11 and its solubilization by phospholipase likewise 
bears the hallmarks of a GPI-anchored integral membrane 
protein, and - since melanotransferrin is the only known 
member of the transferrin family bearing a glycolipid an- 
chor, we take the porcine small intestinal 80-kD iron-binding 
protein described in this work to be homologous to human 
melanotransferrin. Like serum transferrin, melanotrans- 
ferrin is composed of two homologous NH2- and COOH- 
terminal domains (46% amino acid sequence homology) 
which have evolved by gene duplication, but unlike the 
other members of the transferrin family, only its NH2-ter- 
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minal domain harbors a functional iron-binding site (Baker 
et al., 1992). Its overall sequence homology to other mem- 
bers of the transferrin family (human serum transferrin, 
human lactoferrin and chicken ovotransferrin) is only 37- 
39%, suggesting that phylogenetically melanotransferrin 
diverged from serum transferrin some 390 million years 
ago, before the divergence of the mammalian and avian 
lineages (Baldwin, 1993). 

A functional role as translocator of iron was proposed 
for melanotransferrin when its structural resemblance with 
transferrin was first discovered (Brown et al., 1982). Apart 
from neoplastic tissues, however, most normal adult tis- 
sues only express low amounts of melanotransferrin; sig- 
nificant levels of the protein were only reported in a few 
fetal organs, in particular in the colon, but also in the um- 
bilical cord and the heart (Brown et al., 1981). The finding 
of the present work that the 80-kD iron-binding protein is 
abundantly expressed in the small intestine particularly 
around the time of birth raises the possibility that it might 
be involved in the neonate's uptake of iron from mothers 
milk. Although a great deal is known about factors affect- 
ing dietary iron absorption and iron metabolism in gen- 
eral, the exact molecular mechanism(s) responsible for 
iron transport across the intestinal epithelium is not well 
understood (Conrad, 1987). Whatever the basic mecha- 
nism of iron uptake might be, the 80-kD iron-binding pro- 
tein seems well suited to act as an enhancer of the neo- 
nate's absorption of iron from mother's milk which only 
contains low concentrations of iron (Iyer and L6nnerdal, 
1993): it is stragetically located in abundant amounts in mi- 
crodomains at the apical surface of the enterocyte, and its 
significant presence in the apical vacuoles testifies to an 
ongoing internalization. 
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