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ABSTRACT

Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical
and/or biological processes. This process often results in the formation of microplastics (MPs), the most
prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems,
necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can
degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoau-
totrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on
their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise
light and CO, to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing
their multifaceted environmental benefits. We address key scientific questions surrounding the uti-
lisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing
potential engineering strategies for enhanced efficacy. Our review highlights the significance of alter-
native biomaterials and the exploration of strains expressing enzymes, such as polyethylene tere-
phthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms.
Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the
coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial
consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the
synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phos-
phorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state
of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for
continued investigation into the engineering of these microorganisms and the development of innova-
tive approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In today's society, the fundamental reliance on a wide variety of
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production and use have increased exponentially over the last 40
years. However, the large manufacture of these long-chain poly-
mers in many different and diverse applications (e.g., food pack-
aging, agriculture, clothes, and construction) has converted them
into an environmental concern due to their dispersal in all eco-
systems. This quickly became a significant ecological issue, espe-
cially once waste management technologies could not follow the
same pace as the plastic production consumption rate [1—4]. The
dispersion mechanisms of polymers across diverse ecosystems are
a complex topic that has been studied by several researchers. One
study by Kane and Clare [5] comprehensively reviewed the
dispersion, accumulation, and fate of microplastics (MPs) in deep-
marine environments. The authors harnessed existing knowledge
of seafloor microplastic distribution and integrated this with
process-based sedimentological models of particle transport,
providing new insights and identifying future research challenges
[5]. The integration of process-based sedimentological and strati-
graphic knowledge with insights from modern sedimentary sys-
tems, including biological activity within them, will provide
essential constraints on MPs transfer to deep-marine environ-
ments, their distribution and fate, and the implications that these
have for the wider ecosystem [5]. Prabhu et al. [6] conducted a
literature survey on the presence of MPs in sediments, water, and
biota samples across the globe. The survey found that MPs pervade
the global seafloor, from abyssal plains to submarine canyons and
deep-sea trenches.

Furthermore, the recent emergence of the COVID-19 crisis raised
significant implications at multiple levels, including economic,
health, and social affairs [7]. This has also caused environmental
consequences connected to the increased use of safety items (e.g.,
protective masks, gloves, and COVID tests) based on different
plastic polymers that will not be recycled soon [7—9]. Peng et al.
[10] showed that since the beginning of the pandemic, an estimated
8.4 million tons of plastic waste has been generated from 193
countries. The same study also revealed that approximately 25,000
tons of plastic COVID waste, consisting of personal protective
equipment (PPE) such as masks and gloves, has leaked into the
ocean. Pandemic epicentres, in particular, have faced challenges in
managing waste [11]. Hospital waste represents 73% of the bulk of
global discharge, and 72% of the global discharge is from Asia,
which indicates the need for better management of medical waste
in developing countries [10].

Most of the daily objects are made from conventional plastic
polymers (e.g., (i) low- and high-density polyethylene (LDPE and
HDPE), (ii) polystyrene (PS), (iii) polypropylene (PP), (iv) poly-
ethylene terephthalate (PET), and (v) polyamides (PA)), requiring
several decades or centuries to be degraded in the environment
[1,12]. The current procedures for global waste plastic management
include (i) recycling (around 9% of globally produced plastics), (ii)
incineration for energy production (12—19%), and (iii) landfilling
and mismanagement (71-79%). Landfilling is the most used
method because of the lower cost and the impossibility of recycling
all plastics [1,12—14]. The issue of plastic pollution demands either a
different approach to traditional mitigation measures or the
development of new home-compostable polymers that are biode-
gradable and disintegrable in the environment [2,3,15,16]. The
ecotoxicological implications of some ‘compostable’ bioplastics are
not well studied in some cases or have been reported to have low
environmental degradation under realistic conditions and similar
toxicity to conventional plastics [15,17]. In addition, many of these
may be blends or contain chemical additives, resulting in difficulty
or impossibility of recycling [2,3,12]. Various countries are adopting
various waste management plans, strategies, and methods [18].
However, various challenges are associated with waste manage-
ment in different geographical contexts. Limited resources,
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including infrastructure and funding, intersect with sociocultural
complexities like public awareness, diverse practices, and
communication gaps, further exacerbated by geographical and
technological constraints [18,19]. These challenges can be
addressed by implementing effective strategies tailored to the
specific needs. Furthermore, the lack of proper waste management
infrastructure and recycling facilities during the COVID-19
pandemic emergency has increased pollution with more plastic
[20]. Governments and other stakeholders should work together to
develop and implement sustainable practices that are environ-
mentally friendly and economically viable. In Europe, one of the
major challenges in waste management is the lack of coordination
between generators, collectors, and disposal facilities [21]. In
developing countries, waste management is a critical issue due to
rapid population growth, inadequate funding, and lack of aware-
ness [22].

In the past few decades, research on plastic waste pollution has
focused on identifying its sources, its impact on the environment
and human health, and developing effective waste management
strategies [23]. However, the current challenges of plastic waste
pollution are more complex and require a more comprehensive
approach. The main emerging information accompanying this sci-
entific field, especially concerning biotechnology and microbiology,
has been summarised in Fig. 1.

Over the past decade, biotechnology and microbiology research
has shifted significantly towards three key areas: (i) identification
of plastic-specific biofilm/plastisphere [24—28]; (ii) enrichment of
pathogenic bacteria, especially the members of the genus Vibrio,
linked to a vector function of MPs [29,30]; (iii) microbial and
enzymatic degradation of plastic debris from terrestrial and aquatic
environments [31—37]. Once in the environment, plastic materials
generally undergo degradation when exposed to physicochemical
and/or biological factors (e.g., ultraviolet (UV) radiation, mechanical
abrasion, temperature, and microbial degradation), as schemati-
cally summarised in Fig. 2. The environmental factors generate
abrasion, shear (compressive, tensile, and flexural), and torsional
impact [38—41]. Several manuscripts have reviewed the biotic and
abiotic treatment of MPs [41—47]. Chen et al. [48] summarised the
current technologies used to eliminate MPs from the environment,
highlighting two key aspects towards this goal: (i) catalytic
degradation of MPs into carbon dioxide (CO,) and water and (ii)
catalytic recycling and upcycling plastic wastes into fuels and
valorised chemicals.

The abiotic methods rely on mechanical disruption, advanced
oxidation, and photo-degradation [41,49,50]. Biodegradation is
mainly accomplished by the activities of microorganisms, resulting
in biodeterioration, depolymerization, digestion, and mineralisation
[51]. Photodegradation is the most significant process that starts
plastic decomposition in aquatic and terrestrial environments in
direct sunlight; this method is abiotic [52]. Plastic degradation
usually results in tiny particles of irregular shapes and sizes
(<1 mm), defined as MPs, which are the main form of plastic debris
found in the environment impacting aquatic and terrestrial eco-
systems [53,54]. These can easily be disrupted and dispersed by
wind and water erosion, consequently entering the food chain,
which increases the potential to affect several ecosystem functions
at several levels. Different factors influencing the degradation have
been identified, especially in the aquatic environments [41,55,56]. It
is worth noting that both abiotic and biotic processes have their
advantages and disadvantages. The choice of method depends on
the type of plastic waste, the environmental setting, and the desired
outcome [52]. Regarding applicability, abiotic methods are more
suitable for large-scale plastic waste management, while biotic
methods are generally more suitable for small-scale [52,57]. Also,
abiotic ones are more appropriate for degrading hard plastics [52].



The presence of
epiplastic microalgae
within the biofilm has
been documented by
Carpenter & Smith
(1972).

Oil biodegradation
potential of coastal
microorganisms to
metabolise paraffine
crude oil and
hydrocarbon mixture
(Ronald et al., 1972).
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Biotechnological and microbiological research in this field has been focused on three main areas:
(1) Establishment of plastic-specific biofilms (plastisphere);
(2) Enrichment of pathogenic bacteria coupled to a vector function of microplastics;

(3) Microbial and enzymatic degradation of plastic waste from different environments.

The US Department of
Commerce summarised

the different degradation
rates of plastics observed
in the open air and marine

environments with an
NOAA Technical
Memorandum.

1990

Global production of
plastics amounted to

1.5 million tons in 1950.

Investigations have
been started on the
behaviour of plastics
in the presence of
moulds and bacteria
(Summer et al., 1964).

Filip et al. (1978)
showed the
degradation of
polyurethanes with
microbial mixtures
from natural sources.

The environmental
context (temperature,
nutrient concentration,
and salinity) influences
the development of
periphyton architectural
structures and their
taxonomic-diversity
function (Villeneuve et
al., 2010).

Intestinal uptake of
30-100 nm polystyrene
nanoparticles in mussels
has been demonstrated
(Ward et al., 2009).

Annual global plastic
production increased
from 2 Mt in 1950 to
380 Mt in 2013, totally
generating 6300 Mt of
waste plastic (Suziki
etal., 2022).

Increasing concern
has been raised
about the potential

hazard of microplastics

associated with
microbial
communities.

More and more research is
available: 71,223 research
articles focussed on plastic
degradation have been
published in the last years
(2021-2023, ScienceDirect).

Plastic pollution in the marine
environment is recognised as
a severe anthropologic issue,
further exacerbated by the
COVID-19 pandemic, which
poses economic, social,

and health threats worldwide.

Discussions are emerging over
the use of plastic particles as
stressors for microalgae
production of functional
products.

The additives in
plastics have been
shown to leach out
during the life cycle of
the product.

Sajiki et al. (1999)
investigated the
leaching of bisphenol A
from polycarbonate

plastic, and the
associated toxicity to
aquatic life was
demonstrated.

Significant increase in
scientific knowledge
on the microbial
composition of
biofilms associated
with microplastics.

Comparative analysis
revealed that plastic
composition is not

a significant factor
in determining
microplastic
-associated biofilms.

Scientific definitions of the stages for the
process of biodegradation of synthetic polymers.

Fig. 1. Significant achievements in the scientific field of plastics and their degradation, especially with enzymes and/or microorganisms. The chronological succession of the related
events in approximately 70 years is shown. Especially since 1980, an increasing number of theories and evidence regarding marine basins polluted by plastics have started to
circulate. Several scientific definitions of processional stages for the biodegradation of synthetic polymers were formulated between 2008 and 2018. Studies focussing on the
interactions between microplastics (MPs), nanoplastics (NPs), and microorganisms have increased in number during the last decade. NOAA: National Oceanic and Atmospheric

Administration.

The environmental conditions and polymer chemistry signifi-
cantly influence plastic degradation processes [12,13,53,58,59]. In
principle, due to the release of toxic additives and metallic and
organic compounds from their surfaces, MPs threaten the lives of
several creatures: their harmful effects on marine organisms,
especially the primary producers of the food chains, can influence
food web consumers such as fish, aquatic birds, and even humans
[60,61]. Microalgae and cyanobacteria in aquatic ecosystems could
suffer from this contamination, but at the current environmental
concentrations, this seems to have limited effects on parameters
such as chlorophyll content, photosynthesis activity, and reactive
oxygen species (ROS) [62]. The antibiotic adsorption on MPs and,
therefore, the enrichment of potentially pathogenic plus antibiotic-
resistant bacteria and antibiotic-resistance genes through hori-
zontal gene transfer are other related concerns [61]. Because of all

these factors, the bioremediation of related MPs-contaminated
habitats is of fundamental importance. Differently, new (bio-)
degradable plastics are usually made with natural raw materials
which, after the action of different living microorganisms (e.g.,
heterotrophic and photoautotrophic bacteria, algae, microalgae,
and fungi), could be metabolised and subsequently converted into
biomass and/or secondary metabolites. Hydrobiodegradable poly-
mers, including polyesters and thermoplastic starch, undergo
degradation through abiotic and biotic hydrolysis processes [63]. In
contrast, polyolefins, characterised by their hydrophobic nature as
hydrocarbon polymers, exhibit resistance to hydrolysis, rendering
them non-hydrobiodegradable.

The various cross-linked chemicals or the disparate hydropho-
bicity of the plastic debris can limit the potential of living cells to
both colonise and degrade the material [41]. The degradation of
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Fig. 2. Schematic overview of the biological and abiotic degradation of MPs in marine
and freshwater environments (left) and in soil (right). The abiotic methods usually rely
on mechanical disruption, advanced oxidation, and photo-degradation. The biofilms on
the surface of different plastics are characterised by the presence of microalgae and/or
cyanobacteria only if light is available. The interactions with plastics and photosyn-
thetic microorganisms are schematised, showing the potential impacts on the cellular
level for gene expression, protein level, and metabolism. A: photodegradation. B:
biofilm with photosynthetic microorganisms. C: mechanical degradation. D: microbial
degradation.

plastics is challenging due to their highly stable chemical structure,
which makes them resistant to most types of natural degradation
[64,65]. Additives (e.g., catalysts, agents for vulcanisation, curing,
blowing, pigments, dyes, plasticiser, flame retardants, heat stabil-
isers, photostabilisers, antioxidants, and biocide) are utilised to
produce the polymer for the attainment of certain physical prop-
erties of the product, such as molecular weight, molar volume,
density, degree of polymerisation, the crystallinity of material, etc.
[66,67]. Nonrenewable petrochemical plastics are generally highly
engineered materials with precise physical properties: the prop-
erties that make plastics so versatile for humans have also caused
their degradation to be challenging [64].

Plastic microbial degradation often involves using waste mate-
rial as a carbon source. These metabolic processes result in an
overall beneficial impact on some ecosystem's functions
[12,15,17,68,69]. Such a metabolic option is an environmentally
friendly and sustainable solution [9,13,58,68,70—72]. Regarding
bioreactors for the bioremediation of water bodies using microor-
ganisms and to reach some estimation for big-scale applications,
the airlift bioreactor is often utilised due to its advantages over
bubble column and stirred bioreactors (e.g., reduction in cell
damage and greater mass transfer capacity) [73—76].

An increasing number of studies are showing wildtype
[26,77—79] or engineered [80—84] strains able to degrade plastic
fragments, also elucidating the related enzymatic mechanisms
[85—90]. Since some of the prokaryotes and eukaryotes from the
environment could be unculturable in the laboratory, culture-
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independent methods are often utilised to select plastic-
decomposing microorganisms: the metagenome analysis and in
silico mining led to a deeper investigation towards the finding of
efficient enzymes for MPs bioremediation [61]. The main wildtype
and engineered microorganism able to degrade plastic debris, re-
ported in literature, are shown in Table 1. Further, applying
photosynthetic bacteria and unicellular eukaryotic algae, especially
with engineered strains, may represent a possible option for plastic
degradation in terrestrial and aquatic ecosystems [72,90—92].
Independently from the growth in open ponds or enclosed bio-
reactors, their main requirements are the availability of light, water,
COy, and elementary nutrients. Numerous species of green algae
are Generally Recognized as Safe (GRAS) for consumption by
humans and animals [93]. This group offers high metabolic di-
versity, besides more than 8000 species, and some strains can grow
in darkness with a reduced carbon source — heterotrophically [94].
Furthermore, microalgae possess the most-used type of alternative
biomass in current wastewater treatment applications: these can
grow and even flourish in different conditions, including a wide
variety of wastewater [95,96]. The wide diversity of functional
groups in their cell wall allows the binding of pollutants to the
membrane surface through the biosorption phenomenon [97,98].
Other chemicals are taken up and biodegraded by living cells [96].

In this review, we summarise various photosynthetic microor-
ganisms that have been proven capable of colonising the surfaces of
different types of plastic. Using the available literature, the answers
to the following scientific questions were sought: what is the
specific role of photosynthetic microorganisms in water and soil for
plastic biodegradation? How can they be utilised for the MPs and
NPs bioremediation? How can these be engineered for this pur-
pose? Several of these still need to be answered with further lab-
oratory experiments, and it is not yet possible to have valid
explanations. We outline various hydrolases and metabolic path-
ways reported in the literature, likely exploitable with engineered
microalgal and/or cyanobacterial strains. Thanks to developments
in the engineering of these cells in recent decades, the tools are
available for expressing heterologous enzymes with hydrolysis
activity against fragments of PET and other types. Through this
review, the aim is also to encourage further research towards
obtaining more engineered photosynthetic strains and the dis-
covery of those natively able to potentially degrade plastic debris in
polluted ecosystems. The potential of photo-biocatalytic ap-
proaches related to the degradation of plastic debris is highlighted.
Furthermore, the role of microalgal-bacterial consortia for
biotechnological applications against MP pollution is also included.

2. Candidates of microalgae and cyanobacteria for plastic
biodegradation in terrestrial or aquatic ecosystems

Once plastic debris reaches terrestrial and aquatic ecosystems,
different processes start to interact with them [64,102]. Typically,
abiotic degradation pathways (UV and thermal degradation, hy-
drolysis, and oxidation processes) are the first to appear and are
often chronologically connected with microbial degradation. The
structure of the polymer influences the material's degradation, and
the conventional polymers (polyethylene (PE), PP, PS, polyvinyl
chloride (PVC), PET and polyurethane (PU)) can be divided ac-
cording to their chemistry and degradation pathways [64,102,103].
Briefly, polymers with a carbon-carbon backbone in their main
chain (PE, PP, PS, and PVC) have high molecular weight and lack
functional groups susceptible to degradation (oxygen, hydroxyl,
and carboxylic acid). Therefore, abiotic processes have a primary
role in their degradation since they are needed to initiate the
insertion of favourable functional groups. For instance, photolysis
and photo-oxidation lead to oxygen group insertion within the
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Table 1
Exemplary wildtype and engineered micro (organisms) reported in the literature are able to degrade plastic debris.
Organism Polymer Experimental conditions Outcome Reference
Wildtype
Ideonella sakaiensis PET Isolation from field samples Degraded amorphous PET at ambient temperature and assimilation of its [77]
degradation monomers due to PET hydrolase (IsPETase)
Moraxella sp. Strain PET Isolation from the Antarctica environment PET degradation at ambient temperatures (25 °C) [99]
and Oleispira
antarctica
Pseudomonas and  PET Isolated from petroleum-polluted soils PET degradation [100]
Bacillus
consortium
Klebsiella sp. PVC Larva's gut microbiota from Spodoptera Depolymerization and utilisation of PVC as sole energy source [78]
frugiperda
Enterobacter PHB Mesophilic conditions Methane production from PHB [79]
Cupriavidus Thermophilic conditions
Moorella PHB, Methane production from PLA
Tepidimicrobium PLA
Clostridium TPS Mesophilic conditions Methane production from TPS
Rhodanobacter sp. PE Inoculation on soil suspensions Under co-culture, the ability for polyethylene mulching film degradation [26]
Rs, Bacillus
aryabhattai
Pseudomonas PBAT  Incubation Proteomic screening allowed the identify a new esterase, PpEst, that is [101]
pseudoalcaligenes involved in PBAT degradation.
Engineered
Phaeodactylum PET Microalgae transformation Expression and secretion of PETase in the algal system under (mesophilic [80]
tricornutum marine) growth conditions
Chlamydomonas PET Microalgae transformation PET hydrolyzation. TPA, a fully degraded form of PET, was detected. [81]
reinhardtii
Ideonella sakaiensis PET Gene disruption system PETase and MHETase are essential enzymes for PET digestion. [83]
Improvement of the thermostability of leaf- Improved PETase can reach up to 90% of PET degradation. [86]
branch compost cutinase
Pseudomonas putida PBAT,  Modified M9 minimal medium. Plastic biodegradation assays with the best PET hydrolase expression [84]

PET Electrocompetent cells were prepared by a
modified standard protocol

constructs are genomically integrated into our monomer metabolism. This
resulted in various degrees of plastic depolymerization. The surface display of

the PET hydrolase and the secretion were successfully achieved.

PBAT: Polybutylene adipate co-terephthalate. PE: Polyethylene. PET: Polyethylene terephthalate. PHB: Polyhydroxybutyrate. PLA: Poly(lactic acid). PVC: Polyvinyl chloride.

TPA: Terephthalic acid. TPS: thermoplastic starch.

material backbone. The carbon-rich backbone is reduced to smaller
and lower molecular weight fragments, which are more susceptible
to biotic degradation [102].

Sometimes, different objects made of plastic have additives like
antioxidants and stabilisers to inhibit or reduce polymer degrada-
tion. In other cases, pro-oxidants (such as oxygen and starch) in-
crease their biodegradability by microbial enzymes [102]. The
richness in oxygen groups characterising bio-based hydrophobic
polymers is the main driver towards their degradation in natural
environments and industrial composting facilities. In this respect,
polymers with heteroatom in their main chains can be vulnerable
to hydrolysis, photo- and biodegradation by microorganisms
[64,102,104]. PS is the most resistant polymer in the environment
and less susceptible to biodegradation due to its very high weight
total fraction of carbon—carbon (C—C) backbone, while PU is
instead the most prone to biodegradation due to their complex
structure plus a relatively high abundance of O and N in the main
chain [102,105]. Abiotic and biotic processes can also work in tan-
dem, with an abiotic factor producing smaller particles which
might be easily degradable by microorganisms via the mineralisa-
tion of oligomers. These processes may take a long time, several
decades or centuries, even with pro-oxidants as catalysers. The
existence of the bacteria on plastic surfaces is not always indicative
that degradation of the specific polymer occurs. Solano et al. [106]
observed that Actinobacteria and Proteobacteria were the most
abundant on the surface of plastics with different degrees of
biodegradability (white PE, oxo-degradable plastic, and polylactic
acid-based plastic (PLA)). Even after 31 weeks in a composting test,
none of the plastics showed any signs of degradation, like weight
loss or colour changes [106].

Despite these observations, some bacteria, fungi, and cyano-
bacteria showed the ability to degrade plastics in terrestrial eco-
systems. Sangale et al. [107] and Kumari et al. [108] reviewed the
capability of plastics biodegradation from bacterial and fungal
isolates of agricultural soils or anthropised areas (e.g., dumping and
recycling sites) [107]. Wide interest in microalgae and cyanobac-
teria as degraders of plastics arose from evidence of their ability in
bioremediation under environmentally friendly and low-cost ap-
proaches [31,103,108,109]. Within an aqueous environment,
depending upon the type of plastic fragment, the debris can either
float at the surface or sink to the bottom. Either way, these frag-
ments represent a new habitat for microbes, so much so that a
diverse community of heterotrophs, autotrophs, symbionts, and
predators usually start growing on their surfaces [110,111]. In most
cases, floating plastic communities are dominated by microalgal
cells, as these photosynthetic organisms are known to exude
polymers, which allow for their attachment and rapid growth. Most
other buoyant plastics tend to sink to the sediment after the
accumulation of microorganisms colonising the surface, resulting
in the biofouling process [112,113]. Although a good amount of data
is available for communities developing on plastic fragments
localised at the top of aqueous bodies (mainly the cyanobacteria
Phormidium and Rivularia), only limited information exists on the
composition of items with microbial communities sampled from
the seafloor [110,114—116]. When the subsurface plastisphere was
investigated, commonly observed taxa include Bacteroidetes (Fla-
vobacteriaceae) and Proteobacteria (Rhodobacteraceae and Alca-
nivoracaceae) [110,115,116].

As widely reported, the interaction between MPs and photo-
synthetic microorganisms likely affects aquatic environments at
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the ecosystem level. Indeed, due to the high surface area, avail-
ability of sunlight, and abundance of nitrogen and phosphorus
within the aquatic media, plastic debris provides a superb growth
matrix for microalgae. The optimal temperature for their growth
varies depending on the species, but generally, this corresponds to
values between 20 and 30 °C [117,118]. Temperatures exceeding the
optimal range negatively impact the growth rate [117]. Regarding
pH, these cells typically function optimally within the pH range of
6—9, facilitating their specific metabolic activities [119]. Resulting
from their growth, eutrophication may detrimentally influence the
aquatic ecosystems [111]. Cyanobacteria have been reported as the
most prevalent organisms for plastic Interactions in agricultural
fields and highly anthropised areas [109,120]. Microorganisms in a
consortium can potentially increase plastic degradation, more than
a single photoautotrophic or heterotrophic strain, due to metabolic
cross-feeding for co-metabolic degradation [109,121]. In this
respect, Jacksonvillea sp. ISTCYN1 was isolated from rice fields: the
biofilm formation was reported in the presence of LDPE, HDPE, and
PP as carbon sources, plus the ability to produce extracellular
polymeric substances (EPS) and enzymes (e.g., laccase, esterase,
lipase, and peroxidase) being involved in these processes [109].
These cells were grown in BG-11 medium adjusted to pH 74,
incubated for 15 days at 25 + 1 °C and light 12:12 h with an in-
tensity of 3500 L x [109]. The growth conditions utilised for Jack-
sonvillea sp. ISTCYN1 are frequently employed for various other
strains of cyanobacteria. This strain could be an effective option for
plastic degradation under natural growth conditions. Generally,
unless they are extremophiles, the temperature range to maintain
alive photoautotrophic microorganisms on the surface of different
types of plastic waste could assume values between 15 and 32 °C
(pH 7—-9 in aquatic environments). This is a wide range, which also
contains suboptimal temperatures. While Mishra et al. [109]
observed biofilm formation of Jacksonvillea sp. ISTCYN1 on plastics,
the expression of the enzymes is not yet experimentally validated,
even if these are predicted from its genome. MacLean et al. [122]
found cyanobacteria (Tychonema CCAP 1459-11B and Nostoc sp.) to
dominate plastic debris as a growth substrate. They suggested that
cyanobacteria promote biocrust formation, increasing soil fertility
by contributing to positive net production. In addition, these au-
thors showed microbes growing in the cracks after UV-weathering
and then suggested that microbes may be degrading their samples
of plastics dumping sites in Germany. Finally, some phototrophic
bacteria from the phyla Actinobacteria (e.g., genera Actino-
mycetospora, Arthrobacter, Rhodococcus, Rubrobacter, and Cellulosi-
micobium) and Proteobacteria have been indicated with the ability
to grow on plastic surface collected from microbial communities in
field dumping sites [122].

Samples dominated by these cells contained a mix of plastic
debris with a dark organic matrix, with Nostocales being the most
abundant. Other species from Arthrospira, Calothrix, Hydrocoleum,
Lyngbya, Phormidium, Oscillatoria, or Spirulina genera have been
identified for potential plastic degradation [109,120,122,123]. This
suggests that cyanobacteria may be vital in ecological succession as
colonisers. Similar results highlight that microalgae can colonise,
grow, and degrade PE through ligninolytic and exopolysaccharide
enzymes in aquatic and terrestrial ecosystems [103,108,124]. To
facilitate their attachment to the plastic surface, microalgae and
cyanobacteria generally produce exopolysaccharides around and
outside their cells or filaments; this could provide an appropriate
environment for polymer degradation [125]. Besides, soil-water
diatoms (Navicula dicephala, Navicula minuta, Nitzschia intermedia,
Synedra tabulate) have been identified from plastic bags from
dumping sites with the ability to grow on LDPE surface [120],
although more research is needed. Additionally, when biodegrad-
able PLA and conventional PE film were incubated under different
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temperatures, these microorganisms were the most abundant on
plastic surfaces [126].

When the potential of microalgae to colonise MPs of LDPE,
HDPE, PET, or a mix of these was investigated at different sites, the
cells successfully colonised this debris regardless of the condition
examined. Sarmah and Rout indicated that some species (Chlorella
sp., Scenedesmus quadricauda, or Stigeoclonium tenue) can grow on
rubbish bags isolated from domestic dumping sites [120,123]. In
studies by Sarmah and Rout [127] focused on the colonisation of
Oscillatoria on submerged polyethene in domestic sewage water of
Silchar town in India, the temperature of domestic sewage water
(pH varying from 5.8 + 0.10 to 8.1 + 0.23) ranged between 28 and
34°C.Nava et al.[111] assessed the factors affecting the distribution
of different photosynthetic microorganisms, identifying the
cyanobacterium Aphanocapsa incerta. Besides this species, other
frequent microalgae included Cocconeis placentula Ehr., Peri-
diniopsis elpatiewskyi (Ostenf.) Bourrelly, Achnanthidium minutissi-
mum (Kiitz.) Czarnecki, Cocconeis pediculus Ehr., and Planktolyngbya
limnetica [111].

In addition to the abovementioned reports on the growth of
microorganisms on the plastic surface and plastic degradation,
some authors [13,128—131] indicated that PVC, LDPE or PLA weight
loss due to potential degradation could also be related to degraded
plasticisers by photosynthetic microorganisms since they could use
these as a source of carbon and energy. This concept has been
highlighted by Ru et al. [13] for PVC since materials based on this
polymer have the highest proportion of plasticisers (up to 50%), and
they are more susceptible to microbial attack. According to these
authors, plastic weight loss is more related to plasticised PVC-
degrading microorganisms than those capable of degrading PVC.
Therefore, more analysis is needed to verify the potential plastic
degradation since weight loss analysis, CO, evolution, and gas
chromatography cannot accurately assess this circumstance.
Wright et al. [132] performed a detailed proteogenomic and
metabolomic analysis on two marines selected strains from plastic
debris (Halomonas sp. ATBC28 and Mycobacterium sp. DBP42),
allowing the identification of the enzymes and the pathways
involved in the biodegradation of three plasticisers (dibutyl
phthalate (DBP), bis(2-ethylhexyl)phthalate (DEHP), and acetyl-
tributylcitrate (ATBC)): this integrated multi-OMIC study also
revealed the mechanisms used for ester side-chain removal (es-
terases and enzymes involved in the B-oxidation pathway) as well
as the molecular response to deal with toxic intermediates like
phthalate. Furthermore, this study demonstrated the metabolic
potential in the biofilms colonising plastics to effectively biode-
grade related additives and flag the importance of microbes in
reducing environmental plastic toxicity [132].

3. Hydrolases with activities against PET for photosynthetic
microorganisms

Microalgae show promise in biodegradation processes, pos-
sessing the capability to produce a variety of enzymes, including
hydrolases. The degradation of plastics by these cells offers a po-
tential eco-friendly and sustainable solution to plastic contamina-
tion [133]. One of the main issues with plastics is the wide variety in
use and how they are an integral part of our everyday lives. PET is a
material denser than water and a major ocean polluter; therefore,
microbial remediation of PET polymers has been traditionally
focused on these polymers, as highlighted in Table 1. According to a
systematic review published in 2022, the most prevalent wild-type
PET-degrading microorganisms were bacteria (56.3%, 36 genera),
fungi (32.4%, 30 genera), microalgae (1.4%, the genus of Spirulina
sp.), and invertebrate associated microbiota (2.8%) [134]. Among
fungi and bacteria, the most prevalent genera were Aspergillus sp.
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And Bacillus sp. Among the publications analysed by Benavides
Fernandez et al. [134], 51.8% (71 articles) applied wild microor-
ganisms, and 32.8% (45 articles) exploited genetically modified
microorganisms. Regarding the percentage of PET degradation,
Ideonella sakaiensis still corresponds to the most efficient wild-type
microorganism to degrade PET [134].

Many current techniques for dealing with these major plastic
polluters (PE and PET) require large amounts of energy. For this
reason, and others outlined by the United Nation's Sustainable
Development Goals (SDGs), additional, less intensive, and
economical processing methods are in desperate need. An impor-
tant factor to consider when looking for appropriate enzymatic
methods for plastic breakdown is the conditions in which they
operate; otherwise, the same energy input issues will be encoun-
tered. Hydrolases are a wide group of enzymes that catalyse bond
cleavages by reaction with water. This class of enzymes catalyses
biochemical reactions between different functional groups,
including peptide or carbon-halide bonds, thioesters, and ureas.
The action of these enzymes results in the addition of —H or —OH
groups (from H,0) to the plastic chains on the substrate's surface
[135]. From the late 1970s, commercial lipases and even an esterase
have been reported to hydrolyze polyester materials effectively: the
discovery of specific PET hydrolases supported the interest in PET
degradation by microorganisms. It stimulated the characterisation,
enhancement, and identification of further analogous enzymes
[136]. Most microbes able to secrete PET hydrolases are not ideal for
industrial processes due to their complex genetic backgrounds and
genetic modifications. If they are applied to industrial environ-
ments, ethical implications and regulatory frameworks would need
to be addressed. Unfortunately, native microorganisms exhibit low
expression rates of PET hydrolases, limiting their efficiency in
plastic degradation. Therefore, enhancing expression levels is a
crucial avenue to explore, particularly if microalgae are employed
as aviable platform for plastic breakdown [137]. Work conducted in
that area on Escherichia coli (E. coli) expression rates was limited by
temperature stability, and this would be the next obstacle for
microalgal species. Thus, genetic hosts such as Clostridium ther-
mocellum, a thermophilic microorganism, could be used as they
have proved to be a promising platform for lignocellulosic pro-
cesses [138]. Recently, there has been significant progress in spe-
cific PET hydrolases, such as lipases, cutinases, and esterases
derived from biological sources [139]. A great milestone was the
isolation of Ideonella sakaiensis 201-F6 from a waste PET recycling
station, which is capable of degrading both PET and the reaction
intermediate mono (2-hydroxyethyl) terephthalate (MHET), using a
PETase and an MHETase [77]. The discovery and modification of
PETase and MHETase have provided an important basis for the
degradation of PET at ambient temperature conditions. Since the
knowledge of the protein structure is fundamental for its engi-
neering, shortly after, several manuscripts focussing on the struc-
ture of Ideonella sakaiensis PETase (IsPETase, EC 3.1.1.101) were
published. This hydrolase possesses a strictly conserved active site
based on the Ser-His-Asp catalytic triad, containing an optimal
substrate binding site to hold four MHET moieties of PET. Usually,
wildtype PETase exhibits an optimum pH range of 7—9 and stability
around pH 6—10 [140]. When the purified PETase was applied to
PET film, pH 9.0 was identified as optimal and 30 °C as the optimum
temperature [141]. Furthermore, in contrast to cutinase, this
enzyme demonstrates lower activity on p-nitrophenol-linked
aliphatic esters and exhibits 5.5- to 120-fold higher activity towards
PET [141—143]. TfCa, a versatile carboxylesterase derived from
Thermobifida fusca, has exhibited an intriguing ability to hydrolyze
intermediates involved in the degradation of PET; furthermore, the
enzymatic structure of TfCa was recently determined, shedding
light on its functional characteristics [90]. Once more, artificial

Environmental Science and Ecotechnology 20 (2024) 100407

intelligence (Al) designing strategies have been used to optimise
PET hydrolytic activity. With recent advances in Al, microalgal
candidate hosts could be found for plastic processing, such as
thermophilic species from the genera Cyanidioschyzon, Galdieria,
and Thermochromatium. These have been studied for their ability to
perform photosynthesis and produce biomass at elevated temper-
atures if required. They already possess heat-resistant enzymes and
heat shock proteins that help them cope with thermal stress [144].
DuraPETase and FAST-PETase can significantly enhance PET
degradation efficiency at mild-temperature environments, opening
potentials for enzymatic plastic biodegradation at industrial-scale
applications [145,146]. The schematic representation of the break-
down mechanism of PET is summarised in Fig. 3, where the poly-
mer is proposed to degrade into CO, and water via several
intermediates by using different microorganisms (including
microalgae) as sources of hydrolases [147,148]. PET is converted
into TPA, MHET, and bis (2-hydroxyethyl) terephthalate (BHET).
Then, MHET is hydrolysed by MHETase to TPA and ethylene glycol.

TPA may then be metabolised to protocatechuic acid and 2-
pyrone-4,6-dicarboxylic acid before entering the Krebs or Citric
Acid Cycle. The degradation monomers can easily be recycled,
although, at this point, the monomers may become pyruvate,
oxalo-acetate, or eventually water and carbon dioxide molecules.
The green microalgal species Chlamydomonas reinhardtii (C. rein-
hardtii) was modified to synthesise PETase. When comparing two
strains of Chlamydomonas (C. reinhardtii CC-124 and CC-503), it was
observed that CC-124 expressed more enzymes at 30 °C for up to
four weeks [81]. After incubation, TPA was detected by high-
performance liquid chromatography, and via microscopy, holes
and dents were observed on the surface of the PET films. Inter-
estingly, C. reinhardtii is generally recognized as safe (GRAS) and,
therefore, suitable for biotechnological applications in natural
habitats [81].

Due to the molecular structure of PET, in vitro, enzymatic
degradation would be a logical step even if the purification plus
preparation process of PET hydrolases is still expensive and time-
consuming [137]. PET and similar plastics have high molecular
weight and robust crystalline polymers. For these reasons, various
thermal/chemical/mechanical pre-treatments of the plastics may
be employed. The successful isolation of PETase from I. sakaiensis
has opened the door for more studies into microbially-based
research for plastic degradation. Further work should be conduct-
ed on other major plastics like PE, PP, or PS with or without pre-
treatments. The marine diatom Phaeodactylum tricornutum with
heterologous expression of PETase has been studied [80]. However,
that strain did not grow as well as the green algae Chlamydomonas
and Chlorella [149,150]. So far, C. reinhardtii is a potential leader
microorganism for further research into PETase expression, being a
freshwater microalga cultivable on a large scale. The rapid advances
in cyanobacteria and prokaryotic cells for use as green cell factories
for directly producing chemicals from CO; and solar energy make
them the most interesting hosts as biocatalysts for the degradation
and use of waste plastics [91,151].

It is also important to mention the industrial status regarding
the biodegradation and biorecycling of plastic waste. Direct use of
cells expressing enzymes capable of degrading polymers, especially
when coupled with the ability to utilise energy from light via
photosynthesis as in photoautotrophic microorganisms, is at a state
closer to the laboratory than the industrial scale. The successful
implementation of this technology based on alive microorganisms
needs detailed knowledge of the polluted site of metabolism,
growth, and function of native microbial population: this could be
overcome with the utilisation of cell immobilisation, nano biore-
mediation, biosurfactant, metagenomics, chemotaxis, and prote-
omics [152,153]. Especially regarding PET, its recycling with
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Fig. 3. Breakdown mechanism of PET using an active form of PETase derived from microalgae. Microorganisms (Ideonella sakaiensis, Phaeodactylum tricurnutum, Thermobifida fusca,
and Chlamydomonas Reinhardtii) were used as sources of hydrolases, which were able to catalyse the bond cleavages by reaction with H,O. BHET: bis (2-hydroxyethyl) terephthalate.
CHA: 4-carboxy-2-hydroxymuconic acid. EG: ethylene glycol. MHET: mono-(2-hydroxyethyil) terephthalate. PCA: protocatechuic acid. PDA: 2-pyrone-4,6-dicarboxylic acid. PET:

poly (ethylene) terephthalate. TCA cycle: tricarboxylic acid cycle. TPA: terephthalic acid.

biocatalytic in vitro reactions based on engineered enzymes has
notably advanced in recent years. Scaling up bioremediation en-
zymes for industrial use is a complex process that requires careful
consideration of various factors such as the type of enzyme, the
nature of the contaminant or, more specifically, the type of polymer
in case of plastic waste degradation, the scale of the project, and the
economic feasibility [154—156]. Considering large-scale industrial
applications, the four best-performing enzymes for PET degrada-
tion were recently compared [156]. Interestingly, the next genera-
tion of LCC'“C enzyme will be utilised in the world's first PET
biorecycling plant commissioned in 2025 [157].

4. Photolysis, photocatalytic and photobiocatalytic
transformations as tools to remediate plastic debris pollution

Pyrolysis is a conventional technology used to mitigate MPs
pollution, even if this approach has shown some disadvantages:
high energy consumption, generation of secondary pollution, and
difficulty controlling [41,47,158]. Photolysis is another abiotic
approach to degrade MPs, which is based on the presence of light.
Most MPs are recorded on land or floating on the ocean surface,
being exposed to sunlight for extended periods [159,160]. Different
manuscripts focus on some aspects of this wide topic or MPs
photolysis [161—163]. Some MPs, such as polycarbonate, are
responsive to light due to the presence of photoactive groups in
their structures, namely chromophores [164,165]. Alkylphenol, ar-
omatic amines, and thiopropionate esters are frequently brought
into plastic manufacturing to tolerate oxidation, which has a low
effective photolysis [166,167]. Therefore, light plays a crucial role in
polymer degradation. Sunlight is known to be the natural energy

source that degrades plastic waste at a very slow rate. Mimicking
the role of sunlight, the photocatalytic degradation process could
significantly accelerate the rate thanks to the photocatalyst that
drastically facilitates the photochemical reactions involved in the
degradation process [168].

Photocatalysis has long been considered for approaches
regarding sustainability, such as micropollutant degradation, CO,
reduction, and H; evolution reaction [169—171]. The main differ-
ence between MPs photocatalytic degradation and photolysis
concerns the input of photocatalysts. For the photocatalytic
degradation process, the addition of photocatalysts enriches the
amount and type of ROS, stimulating depolymerization, degrada-
tion, and mineralisation in the aqueous environment [41]. Light is
used as a source of energy to degrade contaminants, mostly
exploiting the formation of ROS successfully [171,172]. The
increasing number of published studies has highlighted the
method of photocatalytic degradation as a tool to diminish MPs
pollution in marine and freshwater environments [161,173].
Ouyang et al. [174] and Wang et al. [175] suggest that the use of
photocatalytic technology represents a highly promising approach
to transforming plastic wastes into value-added products through
green and mild methods. The photocatalytic plastic waste upcy-
cling reaction routes can be modulated by regulating experimental
conditions (e.g., solvents and atmosphere), thus resulting in
controllable product selectivity [175]. There are relatively few
studies on photocatalytic degradation of plastic fragments. In the
typical experiments, TiO;|Pt, CdS/CdO, and CN,|NiyP photocatalysts
are exploited [174]. However, TiO,|Pt can only absorb UV light
(approximately 4% of the total energy of sunlight) and are relatively
expensive, and the CdS/CdO, quantum dots are toxic [174]. To know
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the details of case studies or real-world examples and investigated
types of polymers, showing the practical applications of these
photocatalysts, the review published by Ouyang et al. [ 174] contains
specific information. For example, using CdS/CdOy against
50 mg mL~! PLA, 25 mg mL™! PET, and 25 mg mL™! polyurethane
(PUR), the following experimental conditions were applied: in a
sealed photoreactor having the solution volume of 2 mL for 10 M
sodium hydroxide (NaOH), 0.5 mM quantum dots were irradiated
for 4 h at 25 °C with simulated solar light (AM 1.5G, 100 mW cm~?2)
[174,176]. Aiming for sustainability, it is necessary to design non-
toxic photocatalysts driven by visible light to transform plastics
into Hy fuel and various organic chemicals. Still, the progress in the
synthesis and modification methods of photocatalysts, coupled
with a more in-depth understanding of photodegradation mecha-
nisms, will enable the achievement of higher activities than those
currently obtained [174,175,177].

Applying enzymes from several microorganisms and the parallel
exploitation of the energy from light can correspond to a more
effective degradation [178]. MPs and NPs are potentially decom-
posable with photocatalysis, headed for smaller molecules or
additionally mineralised to CO,. Valuable compounds may be
formed due to photocatalytic CO, reduction [41,179], and those
with smaller molecular weight could be assimilated into the
anabolic pathways of different microorganisms and give rise to
complete carbon cycles [180].

Photosynthesis is a biological process that utilises light energy
to convert inorganic carbon into organic matter: photoautotrophic
microorganisms generally have high photosynthetic and metabolic
capacities and can produce a variety of valuable metabolites, such
as lipids, carbohydrates, pigments, and proteins [181—183]. By
exploiting the coupling with the energy obtained using available
light via photosynthesis, the capability to fix CO,, and the ability of
selected enzymes to produce desired molecules, microalgae and
cyanobacteria may prove to be more advantageous and sustainable
as hosts for the photobiocatalytic reactions by removing the need
for the external addition of co-factors. Generally, pH and temper-
ature for these approaches have values for the optimal activity of
the heterologous enzyme (e.g., pH 7—9 and 30 °C for PETase) and
for the optimal function of specific intracellular metabolic path-
ways (e.g., pH 7.0—7.6 and generally between 20 and 30 °C for
model cyanobacteria and microalgae) of the used photosynthetic
microorganisms (e.g., energy in form of adenosine triphosphate
(ATP) and nicotinamide adenine dinucleotide phosphate (NADPH)
from photosynthesis). The methods available for their engineering
allow the expression of different heterologous enzymes: the gene
expressions can be tuned by either exploiting self-replicative
plasmids or integrative vectors under different synthetic and
native promoters of varying strength [184—188]. The ability of
cyanobacteria to recycle NADPH, using light-driven water oxidation
to supply electrons, makes them attractive as photobiocatalysts for
different uses [189—197]. Particularly, their capacity to utilise light
for the biotransformation of specific substrates into the desired
products is a unique advantage compared to heterotrophic bacteria.
Some studies also found the reductive ability of in vivo bio-
transformations using terpenes, hydrocortisone, chalcones, and
oxophosphonates [198,199]. Studies of photobiocatalysis were also
performed using microalgae like C. reinhardtii [200]. The de-
velopments in recombinant cyanobacterial and microalgal appli-
cations may facilitate the remediation of plastic pollution,
expressing selected enzymes able to degrade these polymers and
exploiting light. Especially when employing engineered strains by
genetic modification or evolved adaptation, NPs might be consid-
ered as substrates for photobiocatalytic reactions: the potential
application of light-driven biotransformations, converting nano-
scopic plastics particles into valuable products with photosynthetic
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microorganisms, could lead to an innovative scientific topic of
applied biotechnology.

5. Beneficial interactions between heterotrophic bacteria and
photosynthetic microorganisms in mixed-species biofilms

Most microorganisms naturally occur in mixed-species com-
munities. This allows them to interact like mutual biofilm devel-
opment [201,202]. The already mentioned plastispheres, which
globally develop on plastics, rely on various interaction mecha-
nisms involving bacteria and microalgae: this was confirmed in
plastispheres of the Mediterranean, where such interactions were
shown to frequently occur [203]. Sun et al. [202] recently published
a detailed review focussing on biofilm for the bioremediation of
MPs in contaminated freshwater environments. In the conclusion
of their work, these authors mentioned that the method of
degrading MPs using biofilms is feasible, even if their degradation is
currently not sufficiently significant: previous studies have found
that the highest degradation that can occur is approximately 20%
[202]. The main reasons are (i) the structural stability of MPs, (ii)
the biodegradation process of MPs is carried out in multiple steps
which are not simultaneously feasible, and (iii) the fact that it is a
slow process which requires a long time to be entirely completed.
Future research on biofilm applied towards the degradation of MPs
should consider (i) improving the speed and quality of its forma-
tion, (ii) better efficiency of its utilisation, and (iii) screening and
effectively isolating different functional strains plus culturing them
[202].

Future bioremediation approaches using either wild-type or
recombinant microalgae and/or cyanobacteria will likely benefit
from introducing beneficial bacteria, fungi or archaea in mixed-
species biofilms. In this regard, various heterotrophic bacteria can
substantially improve the growth and fitness of photosynthetic
microorganisms’ populations by providing vitamin Bq,, phytohor-
mones, minerals, and other important micro-compounds
[204—206]. Such beneficial interactions were verified in labora-
tory conditions, where substantial increases in biomass production
were observed when certain microalgae were co-cultivated with
specific bacteria [207]. For the biotechnologically relevant algae
Scenedesmus vacuolatus and Haematococcus lacustris, up to 14-fold
increases in biomass production were observed [207].

Methylobacteria that elicited the growth promotion were sub-
jected to genomic analyses and found to harbour genes involved in
the synthesis of vitamins, siderophores, and plant hormones [207].
Although the response process to the widespread phytohormone
indole-3-acetic acid (IAA) differs between algae and land plants,
this can lead to increased growth in both [208]. Implementing
these observations for plastic degradation will require targeted
approaches in the next years, evaluating viable applications outside
of controlled bioreactors, where inoculation can be precisely
regulated to achieve and maintain specific characteristics like
certain cell density. Although the exploitable interactions between
fungi and microalgae have a relation to plastics bioremediation, the
approaches have not yet been extensively investigated. However,
recent studies have highlighted the industrial potential of their co-
applications for other purposes [209—211]. Indications for species-
specific co-occurrence of microalgae and fungi were also found in
environmental studies [211], although most have remained un-
verified.

Applying microbial communities, Niu et al. [212] and Narciso-
Ortiz et al. [76] showed promising achievements towards
degraded plastic debris. In detail, Niu et al. [212] recently provided
new insights on the natural degradation potential of MPs by mi-
crobial communities in rivers. Potential PE/PP degrading bacterial
communities were enriched and screened by outdoor and indoor
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culture experiments for 1150 days in this study. Furthermore,
Narciso-Ortiz et al. [76] showed results from the bioprospection of a
bacterial consortium composed of four bacteria (Xanthomonas,
Acinetobacter bouvetii, Shewanella, and Aquamicrobium lusatiense)
for hydrocarbon biodegradation in an airlift bioreactor: testing for
ten days, this consortium was able to successfully degrade the
maximum diesel concentration at 20 g L~. This consortium began
consuming the substrate from the initial time point, accelerating its
consumption before the biomass lag phase finished (0—4 days).
Hexadecane was removed by the pure cultures of Acinetobacter
bouvetii (72 + 4%), Xanthomonas sp. (46 + 4%) and Defluvibacter.
Lusatiensis (40 + 6%) [213]. Mixed cultures showed an enhanced
hexadecane removal, particularly with the whole consortium
(79 + 3%) and the combination of Xanthomonas sp. And Acineto-
bacter bouvetii (74 + 7%). The role of A. bouveti coincided with that
of one of the biosurfactant producers [213]. Furthermore, different
strains were isolated from the soil samples, and three of the five
isolated colonies could degrade PET: Bacillus muralis, Brevibacte-
rium, and Serratia proteamaculans. PET debris was incubated with
each strain for three days. These authors also reported the first
visual evidence of PET degradation by an isolated forest-native
bacterial strain, showing that Bacillus muralis is the most efficient
degrader [76]. Changes in PET surfaces were observed by scanning
electron microscopy (SEM), and the treated and control samples of
PET were examined using Fourier transform infrared (FTIR) spec-
troscopy: a difference in transmittance percentage in the carboxylic
group was observed between the samples, probably because this
corresponds to the site of action for hydrocarbon-degrading en-
zymes [76]. No sufficient specific enzymatic or other activity values
have been reported to compare it with other microorganisms
capable of degrading PET. According to the systematic review by
Benavides Fernandez et al. [134] Bacillus cereus and Bacillus got-
theilii are two species belonging to the genus Bacillus that can
degrade PET more efficiently than other microorganisms. Still
within this genus, A recent study published in 2023 reports the
biodegradation of PET by Bacillus safensis YX8 [214]. A review
published in 2021 reports the biodegradation of PET by PETase
produced by genetically modified microorganisms such as E. coli
[143]. Comparing their activities between each other, taking into
account the difficulty in doing so considering that the applied
conditions are different between these studies, the modified strains
expressing engineered PETase by site-directed mutagenesis (often
introducing modifications to the amino acid chain to enhance
thermal stability, helping in maintaining activity for a longer time)
show increased enzymatic activity compared to the wildtype form
[142,143].

6. Conclusions

In conclusion, photosynthetic prokaryotic and eukaryotic mi-
croorganisms emerge as promising candidates for addressing
plastic pollution in terrestrial and aquatic ecosystems. Their
inherent advantages, including low cost, scalability, and amena-
bility to genetic modification through mutagenesis, breeding, or
transformation, position them as versatile tools for sustainable
environmental remediation. Microalgae and cyanobacteria, in
particular, exhibit proficiency in reducing nitrogen, phosphate, and
other hazardous compounds in wastewater and serve as crucial
biomanufacturing platforms for producing several biochemicals.
Leveraging sunlight as their primary energy source, these micro-
organisms present an eco-friendly alternative to traditional sys-
tems, significantly reducing the carbon footprint associated with
the overall process.
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The diverse functional groups within the cell walls of these cells
enable effective biosorption of pollutants, showcasing their po-
tential in mitigating plastic pollution. Notably, the process of
binding pollutants to their surface can occur independently of their
viability, while other aggregates may be actively taken up and
biodegraded by living cells. Exploring microorganisms inhabiting
plastic-polluted areas worldwide holds great promise for identi-
fying strains capable of facilitating plastic interactions and pro-
moting biodegradation. Towards future scientific studies, targeted
research is imperative to unravel the full potential of genetically
modified microorganisms, such as cyanobacteria and microalgae,
engineered to produce enzymes like PETase and MHETase. ure-
thanase, and alkane hydroxylase. These enzymes could serve as the
foundation for transforming MPs and NPs into valuable biomass or
specific bioactive compounds, thus closing the loop on plastic
waste.

The use of genetically modified organisms (GMOs) in environ-
mental applications has been debated for decades. While GMOs can
potentially provide significant benefits, ethical and regulatory
concerns must be considered. From an ethical standpoint, the
population is generally worried about the potential risks of
releasing GMOs into the environment, creating new species that
could harm different ecosystems. Additionally, there is a concern
that GMOs could have unintended consequences, such as creating
new allergens or toxins. From a regulatory standpoint, several
agencies oversee the use of GMOs in environmental applications
(e.g., in the United States, the Environmental Protection Agency
(EPA); in the European Union, the European Food Safety Authority
(EFSA)). The direct use of genetically modified cyanobacteria and/or
microalgae in natural environments contaminated by MPs and NPs
does not satisfy the ethical and regulatory points.

Despite recent strides, the field of microorganism-mediated
plastic remediation remains in its infancy, presenting different
possibilities for expansion and exciting discoveries. While their
efficacy in treating plastic pollutants in terrestrial ecosystems,
marine environments, and freshwater basins is not yet fully un-
derstood, their demonstrated ability to interact as consortia or in
isolation on various plastic waste surfaces underscores the need for
broader scientific exploration. Regardless of the promising role of
photosynthetic prokaryotic and eukaryotic microorganisms in
addressing plastic pollution, some limitations and potential biases
need to be considered. For instance, the effectiveness of these mi-
croorganisms in breaking down plastics depends on various factors
such as the type of plastic, the environmental conditions, and the
microbial community. Additionally, using these microorganisms
may not be a complete solution to plastic pollution but rather a
complementary approach that can be used in conjunction with
other strategies. While using GMOs in environmental applications
can provide significant benefits, it is important to carefully consider
their ethical and regulatory implications. In this direction, the
biotechnologies based on modified cyanobacteria and microalgae
(e.g., in vivo bioremediation, photobiocatalysis, and in combination
with in vitro approaches based on photocatalysts) should be
ensured to be utilised safely and responsibly (e.g., bioremediation
via bioreactors, where GMOs can degrade and assimilate plastic
waste taken from contaminated environments, avoiding environ-
mental issues due to the introduction of new microorganisms in the
natural ecosystems).

In the years ahead, widening the scientific niche for the envi-
ronmental treatment of plastic waste through comprehensive
studies on the engineering, interactions, and potential applications
of photosynthetic microorganisms promises to unlock novel solu-
tions to the global plastic pollution crisis.
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