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Potential therapeutic target genes for systemic lupus erythematosus: 
a bioinformatics analysis
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ABSTRACT
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs. 
However, the underlying etiology and mechanisms remain unclear. This study was performed to 
identify potential therapeutic targets for SLE using bioinformatics methods. First, 584 differentially 
expressed genes were identified based on the GSE61635 dataset. Tissue-specific analyses, enrich
ment analyses, and Protein–Protein interaction network were successively conducted. 
Furthermore, ELISA was performed to confirm the expression levels of key genes in the control 
and SLE blood samples. The findings revealed that tissue-specific expression of markers of the 
hematological system (25.5%, 28/110) varied significantly. CCL2, MMP9, and RSAD2 expression was 
markedly increased in the SLE samples compared with controls. In conclusion, the identified key 
genes (CCL2, MMP9, and RSAD2) may act as possible therapeutic targets for the treatment of SLE.
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Highlights

● Tissue-specific expression of haematological sys
tem markers varies significantly.

● CCL2, MMP9, and RSAD2 have potential 
therapeutic value in the treatment of SLE.

● Seven signalling pathways are positively 
related to SLE.

Introduction

Systemic lupus erythematosus (SLE) is 
a polysystemic autoimmune disease involving mul
tiple organs [1]. Epidemiological studies have sug
gested that the 10-year survival rate of patients with 
SLE is 90%, and 25% of deaths are caused by throm
botic events or concurrent infections [2–4]. 
Decades of research have revealed that genetic, 
immune, and environmental factors participate in 
the pathogenesis of SLE [5–8]. However, the precise 
pathogenic mechanisms underlying SLE remain to 
be fully elucidated. Currently, there is no cure for 
SLE, and the treatment mostly relies on nonsteroi
dal anti-inflammatory drugs (NSAIDs) and immu
nosuppressants to relieve symptoms.

The Gene Expression Omnibus (GEO) database 
contains gene profiles generated predominantly 
using DNA microarray technology [9,10]. This 
study aimed to explore the potential hub genes 
and underlying mechanisms in SLE using bioin
formatics methods. Raw data from microarray 
analyses conducted on SLE samples and healthy 
controls were downloaded from the GEO database. 
According to the enrichment analysis, BioGPS, 
String database, and protein–protein interaction 
(PPI) network analysis were utilized to identify 
key genes. By verifying the selected key genes, 
the validation results provide a basis upon which 
novel insights regarding mechanisms underlying 
SLE and new approaches for SLE therapeutic 
intervention can be developed.

Materials & methods

Data source

Microarray dataset GSE61635 was available at the 
Gene Expression Omnibus (GEO) database (www. 

ncbi.nlm.nih.gov/geo/). It was based on the 
GPL570 platform (HG-U133_Plus_2), comprising 
99 SLE blood samples and 30 healthy control 
samples.

Data processing

Raw data were processed and analyzed using 
R (version 4.0.2). The median value of each sam
ple was normalized using the limma package 
between arrays for background correction. 
A robust multichip average (RMA) was then cre
ated, and perfect matches from the raw data were 
log-transformed. FDR <0.05 and |log2 fold change 
(FC)| >1 were considered for the differentially 
expressed genes (DEGs) [11]. DEGs were pro
cessed and plotted as volcano plots and 
a heatmap using ggplot2 and pheatmap 
R packages, respectively.

Tissue-specific gene expression analysis

Information regarding the function of a gene can be 
obtained from the relative tissue-specific genes. To 
screen out tissue-specific DEGs, the BioGPS data
base (http://biogps.org/#goto=welcome) was used 
[12]. Highly tissue-specific transcripts mapped to 
a single tissue were included if all of the following 
criteria were met: (a) median expression > 30 times 
the median expression of all other tissues; (b) the 
highest expression level was at least threefold higher 
than the second-highest expression.

Functional annotation and KEGG pathway 
analysis

GO [13] and KEGG [14] pathway analysis of 
DEGs were screened out by using DAVID 6.8 
(http://david.abcc.ncifcrf.gov/) online database 
[15]. Significant difference was set at P< 0.05.

Identification of key genes

STRING (https://string-db.org/) was used to con
struct the PPI network [16]. The confidence score 
was set at ≥0.4. Cytoscape v3.7.2 and the 
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CytoHubba plugin (version 0.1) were used to 
visualize and identify the PPI network. The top 
20 hub genes were obtained based on the filtering 
algorithm (closeness). A Venn diagram was then 
delineated to confirm the key genes between hub 
genes and tissue-specific genes.

ELISA

The experimental protocol was approved by the 
Ethics Committee of the Second Affiliated Hospital 
of Nanchang University in compliance with the 
Declaration of Helsinki. SLE and normal subjects 
were informed of the study content in oral form. 
Two milliliters of blood was collected and anticoa
gulated with EDTA. Serum samples were collected 
by centrifuging the blood samples at 2000 rpm for 
10 min at 4°C. All ELISA kits (CCL2, MMP9, 
GATA1, and RSAD2) were used according to the 
manufacturer’s instructions (MEIMIAN, Jiangsu 
Biological Industrial Co., Ltd., China).

Statistical analysis

A minimum of three replicates were performed 
for each experiment, and data are presented as 
the mean ± SD. Statistical analyses were per
formed using GraphPad Prism 8 (GraphPad 
Software, San Diego, USA). Comparisons 
between groups were performed using an 
unpaired t-test. Statistical significance was set 
at p< 0.05.

Results

In order to explore potential therapeutic targets of 
SLE, bioinformatics methods were used to identify 
DEGs. We next performed tissue-specific gene 
expression analysis and enrichment analysis and 
constructed a PPI network. Finally, the selected 
hub genes were verified using ELISA. Therefore, 
this study may significantly improve the targeted 
therapy of SLE and enrich our understanding of its 
pathogenesis.

Figure 1. Normalization of microarray dataset. (a) Before normalization of the GSE61635 dataset. (b) After normalization of the 
GSE61635 dataset.

Figure 2. Differentially expressed genes (DEGs) between systemic lupus erythematosus (SLE) and control groups. (a) Volcano plot of 
GSE61635; 19 significantly expressed genes were identified. Red, green, and black dots represent upregulated, downregulated, and 
unchanged genes, respectively. (b) Heatmap of the top 50 DEGs from GSE61635.
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Differential expression analysis

In total, 99 patients with SLE and 30 normal sub
jects were enrolled in this study. Microarray data 
of the GSE61635 dataset were standardized 
(Figure 1). After setting the cutoff at FDR <0.05, 
and |log2 (FC)| >1, 584 DEGs were identified 
(Figure 2). The 19 significantly expressed genes 
between the two groups were extracted using cut
offs at |log2 (FC)| >3 and FDR <0.005 
(Figure 2(a)).

Specificity of DEGs in tissue expression

Using BioGPS, we screened 110 DEGs that were 
preferentially expressed in specific tissues. Tissue- 
specific expression of the markers of the hemato
logical system (25.5%, 28/110) varied significantly, 
followed by the urinary/genital system (22.7%, 25/ 
110), neurologic and digestive system (18.2%, 20/ 
110), respiratory and skin/skeletal muscle system 
(10.9%, 12/110), immune system (9.1%, 10/110), 
endocrine system (7.3%, 8/110), and circulatory 
system (4.5%, 5/110) (Table 1).

Table 1. Tissue-specific genes identified by BioGPS.
System Genes

Hematological PARP9, KLF2, C15orf48, RSAD2, CYSLTR1, INHBA, 
AHSP, GYPB, CXCR4, LILRA5, 
NRBF2, GYPE, GAGE1, SPTA1, CEBPD, HSPA6, 
BACH2, UCHL1, TMEM140, ANXA3, CLIC2, FPR2, 
FFAR2, BPGM, PLOD2, HCAR3, FCRLA, EIF1AY

Immune FBXO7, EPSTI1, SLC14A1, LILRA4, CXCR4, 
PALM2AKAP2, CPA3, FCRLA, CD160, 
KDM5D

Neurologic ALDH5A1, RUNDC3A, SLC17A6, ERBB4, TSPAN7, 
PMP2, UCHL1, SOX11, NAP1L3, 
PEG3, TAC1, RPH3A, TSHB, GRM3, IFI27, OPCML, 
LIMCH1, TUBB2A, ECRG4, NRN1

Skin/Skeletal 
muscle

TNFAIP6, PRTG, G0S2, GATA1, EPB42, ANK1, HMBS, 
AHSP, GYPB, CA1, MMP8, MMP9

Respiratory FLACC1, ADM, FAT1, P4HA2, F3, ODAM, ANXA3, JUP, 
IFI27, TCN1, SLPI, CAV1

Digestive CTSE, GYPB, G0S2, SPTA1, GIPC2, GIPC2, PEG3, 
ANXA3, UGT2B28, DSP, CLCA1, MBL2, TSPAN8, 
TDO2, CA1, CLCA4, CAV1, HP, HPR, OLFM4, 
APOBEC3B

Circulatory G0S2, UCHL1, CCL2, PLOD2, CAV1
Urinary/ 

Genital
PDZK1IP1, SMIM24, TRIM6, KRT1, CXCR4, GAGE1, 

KCNJ16, RNASEH2A, TGM2, 
POTEM, DHX58, AHSP, GYPB, GMPR, FAP, ADM, 
TPTE, MEIS2, DSP, CCNA1, SLC26A8, TSPAN8, 
PAEP, CABS1, CD177

Endocrine KCNJ16, OPRPN, ECRG4, PLOD2, TCN1, SLPI, SMR3A, 
CRISP3

Table 2. GO analysis of significant DEGs in SLE.
Category Term Genes FDR

BP Type I interferon signaling 
pathway

IFITM3, RSAD2, STAT1, MX2, MX1, IFI6, ISG15, IFI35, IFIT1, IFIT3, IFIT2, OASL, IFI27, OAS1, 
OAS2, OAS3, IRF7, XAF1

1.20E-09

Defense response to virus IFITM3, RSAD2, STAT1, MX2, MX1, IFIT5, EIF2AK2, ISG15, IFIT1, DDX60, IFIT3, IFI44L, IFIT2, 
OASL, HERC5, CXCL10, PLSCR1, OAS1, OAS2, OAS3, DHX58, GBP1, TRIM22, APOBEC3B

6.20E-08

Response to virus IFITM3, RSAD2, DDX58, MX2, MX1, IFI44, EIF2AK2, IFIT1, DDX60, IFIT3, IFIT2, OASL, IFIH1, 
CCL8, OAS1, OAS2, OAS3, DHX58, IRF7, TRIM22

6.20E-08

Negative regulation of viral 
genome replication

IFITM3, TRIM6, PLSCR1, RSAD2, OAS1, SLPI, OAS3, MX1, EIF2AK2, ISG15, IFIT1, OASL 2.69E-06

Interferon-gamma-mediated 
signaling pathway

MT2A, OAS1, STAT1, OAS2, OAS3, IRF7, FCGR1A, FCGR1B, GBP1, TRIM22, OASL 0.007775401

Innate immune response CRISP3, IFIT5, LY96, DDX60, LILRA5, IFIH1, HERC5, DHX58, TAC1, MBL2, ZBP1, NLRP2B, 
DDX58, MX2, MX1, DEFB114, EIF2AK2, DEFB108B, MID2, CLEC4D, AIM2, VNN1, SLPI, IRF7, 
SERPING1, TLR5, FRK, APOBEC3B

0.013089362

CC Hemoglobin complex HBZ, HBM, AHSP, HBD, HBQ1 0.023035163
Cortical cytoskeleton TMOD1, DMTN, GYPC, EPB42, EPB41, SLC4A1 0.023035163
Extracellular space LGALS3BP, IL1RN, C2ORF40, TNFAIP6, CRISP3, LECT2, HP, ADM, PTPRG, TNFSF13B, SMR3B, 

ADAMTS3, ZNF649, TNFSF10, FAM3B, TSHB, MBL2, CPA3, KRT1, NOG, WNT5A, OLFM4, 
MMP8, MMP9, F3, OPRPN, SFRP2, OLFM3, SLPI, OAS3, SERPING1, HIST1H2BD, 
HIST1H2BC, SERPINB10, NLGN1, NRN1, SEMA3D, LRRC17, LY96, STC1, C9ORF72, FBLN5, 
PRTG, SELENBP1, APELA, CCL8, SPOCK3, CLCA1, CCL2, SLIT2, TAC1, LRRC4C, SNCA, 
ODAM, BMP5, CXCL10, CXCL11, LRG1, COL1A2, FAP, TCN1, LEP

0.004656585

MF Metalloendopeptidase 
activity

ADAMDEC1, ADAM32, MMP8, MMP9, ADAM18, ADAMTS3, KEL, MMP16, FAP, MMP26, 
CLCA1, TLL1, CLCA4

0.021510128

2�-5�-oligoadenylate 
synthetase activity

OAS1, OAS2, OAS3, OASL 0.021510128

Double-stranded RNA 
binding

IFIH1, OAS1, DDX58, OAS2, OAS3, DHX58, EIF2AK2, DDX60, OASL 0.037427071
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Enrichment analysis of DEGs

GO analysis was conducted using the DAVID 
software. Enriched GO terms were divided into 
three categories: BP, CC, and MF. As shown in 
Table 2 and Figure 3, the DEGs were mainly 
enriched in the ‘Type I interferon signalling 
pathway’ and ‘Defence response to virus’ in the 
BP group. CC analysis indicated that the DEGs 
were mainly enriched in ‘hemoglobin complex’ 
and ‘cortical cytoskeleton’. In terms of MF, 
DEGs were most enriched in ‘metalloendopep
tidase activity’ and ‘2�-5�-oligoadenylate 
synthetase activity’. Pathway enrichment analy
sis of DEGs using the KEGG. KEGG analysis of 
DEGs revealed that they were mainly enriched 
in ‘influenza A’, ‘measles’, and ‘porphyrin and 
chlorophyll metabolism’ (Table 3 and Figure 4).

PPI network construction and key genes 
identification

Using the STRING database and Cytoscape 
v3.7.2, a PPI network was constructed. Based 
on the closeness algorithm, the top 20 hub 

genes were identified using the Cytohubba plu
gin. Hub genes were extracted, and the top 20 
connected proteins were shown together with 

Figure 3. Distribution of differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE) for GO enrichment.

Table 3. KEGG pathway analysis of significant DEGs in SLE.
Pathway 
ID Name Genes P-Value

hsa05164 Influenza A RSAD2, DDX58, STAT1, 
HSPA6, MX1, EIF2AK2, 
NXT2, IFIH1, CXCL10, 
OAS1, OAS2, OAS3, 
TNFSF10, IRF7, CCL2

3.55E-04

hsa05162 Measles IFIH1, OAS1, DDX58, 
STAT1, OAS2, OAS3, 
MX1, HSPA6, IRF7, 
TNFSF10, EIF2AK2

0.004053153

hsa00860 Porphyrin and 
chlorophyll 
metabolism

ALAS2, HEPH, FECH, 
HMBS, BLVRB, UGT2B28

0.006044328

hsa05168 Herpes 
simplex 
infection

IFIH1, OAS1, DDX58, 
STAT1, OAS2, OAS3, 
IRF7, EIF2AK2, CCL2, 
FOS, IFIT1

0.033041831

hsa05160 Hepatitis C OAS1, DDX58, STAT1, 
OAS2, CLDN8, OAS3, 
IRF7, EIF2AK2, IFIT1

0.033050818

hsa04622 RIG-I-like 
receptor 
signaling 
pathway

IFIH1, CXCL10, DDX58, 
DHX58, IRF7, ISG15

0.046053009

hsa05144 Malaria GYPA, GYPC, GYPB, CCL2, 
ACKR1

0.047754191
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the rank of each hub gene, including STAT1, 
CXCL10, CCL2, IRF7, FOS, IFIT3, ISG15, MX1, 
IFIH1, MMP9, GATA1, IFIT1, DDX58, GBP1, 
OAS1, OAS2, RSAD2, OASL, OAS3, and IFI44L 
(Figure 5). Next, a Venn diagram was con
structed to confirm the key genes between hub 
genes and tissue-specific genes (Figure 6).

Validation of gene expression

Expression of four key genes (CCL2, MMP9, 
GATA1, and RSAD2) was verified using ELISA in 
control and SLE subjects. The ELISA results 
showed that the levels of CCL2, MMP9, and 
RSAD2 in the SLE group were significantly 
increased (Figure 7).

Figure 4. KEGG enrichment analysis of differentially expressed genes (DEGs). Strength of the color represents the p-value (from the 
lowest in green to the highest in red), and the bubble size represents the number of DEGs.

Figure 5. The PPI network of differentially expressed genes (DEGs). (a) Top 20 DEGs visualized based on the Closeness algorithm 
analysis in Cytoscape. (b) Top 20 DEGs based on Closeness score ranking.
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Discussion

Previously, a significant number of genes have 
been shown to correlate with SLE [17,18]. 
However, current therapies for SLE have limited 
efficacy and increased susceptibility to secondary 

outcomes [19]. In this study, 584 DEGs were 
obtained from the selected dataset GSE61635. 
Enrichment analysis of DEGs showed that they 
were primarily involved in the hemoglobin com
plex, immune response, and metalloendopeptidase 
activity. Compared with previous researches, we 
conducted a tissue-specific analysis of differential 
gene expression, which could potentially allow for 
the development of more effective and targeted 
therapeutics [20,21]. The results suggested that 
110 DEGs were involved in the hematological sys
tem, urinary/genital system, neurologic and diges
tive system, respiratory and skin/skeletal muscle 
system, immune system, endocrine system, and 
circulatory system. Furthermore, four key genes 
were revealed between hub genes and tissue- 
specific genes, including CCL2, MMP9, GATA1, 
and RSAD2. The statistical results validated by 
ELISA showed that the levels of CCL2, MMP9, 
and RSAD2 were significantly increased in the 
SLE group.

Chemokines are a family of small peptides that 
are involved in cell trafficking and inflammatory 
responses [22–24]. Currently, approximately 50 
different chemokines have been identified, most 
of which belong to the CC and CXC families 
[25]. Monocyte chemoattractant protein-1 (MCP- 
1 or CCL2), a prototype of the CC subfamily, plays 

Figure 6. Key genes between hub genes and tissue-specific 
genes.

Figure 7. Concentration of CCL2, MMP9, GATA1, and RSAD2 in the serum. (a–d) Concentration of CCL2, MMP9, GATA1, and RSAD2 in 
the serum. Data are presented as mean ± SD (n ≥ 15). * p < 0.05, **p < 0.01, *** p< 0.005 vs Control; NS, no statistical significance vs 
Control.
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a crucial role in inflammatory processes [26,27]. 
CCL2/MCP-1 is significantly correlated with SLE, 
and CCL2 levels are significantly reduced after 
treatment [28,29]. Moreover, it has been demon
strated that CCL2/MCP-1 is strongly associated 
with atherosclerosis and cardiovascular diseases 
(CVD) in patients with SLE [30,31].

Matrix metalloproteinases (MMPs), also known 
as matrixins, are extracellular matrix (ECM)- 
degrading enzymes [32]. MMP-9, an extracellular 
proteinase, is involved in various pathophysiologi
cal processes, such as ECM remodeling, inflamma
tory response, and immune response [33]. 
Multiple cytokines play crucial roles in upregulat
ing the expression of MMP-9 in response to 
inflammation [34]. However, MMP-9 appears pas
sively as a downstream product of the inflamma
tory response. Additionally, it plays a positive 
feedback role on many pro-inflammatory factors 
(IL-1β and IL-8), which are important ‘regulators’ 
of the inflammatory response [35]. Prior studies 
have shown that MMP-9 plays a significant role in 
chronic autoimmune diseases, such as SLE, by 
activating the inflammatory response [36,37]. 
MMP-9 degrades components of the vascular 
basement membrane that help inflammatory cells 
invade the vascular wall and induce inflammation 
associated with the pathogenesis of SLE, thus 
increasing endothelial cell permeability [38,39].

RSAD2, an interferon-inducible gene, is 
involved in the innate immune response against 
viruses [40,41]. RSAD2 activates the immune 
response and has been associated with multiple 
autoimmune diseases, such as RA, SLE, and AS 
[42,43]. Doedens et al. [44] found that patients 
with SLE have an important link with IFN dysre
gulation. A study performed by Sezin et al. [42] 
showed that RSAD2 is the hub gene in the patho
genesis of SLE.

There are several limitations to this study. First, 
it was performed at a single center in China; there
fore, the results warrant further validation in other 
populations. Second, only one dataset was utilized 
in this study, and future studies will be required to 
validate these findings in other datasets. Further 
large-scale validation studies and molecular 
mechanisms of SLE should be performed to 
explore the roles of these genes.

Conclusion

In conclusion, the present investigation demon
strates that CCL2, MMP9, and RSAD2 are linked 
to the initiation and development of SLE. These 
genes and the related pathways may serve as novel 
therapeutic targets for SLE. Large-scale, multi- 
center research is needed to further validate these 
findings.
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