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Abstract 

Background:  Group B Streptococcus (GBS) remains a significant cause of neonatal infection, but the maternal risk 
factors for GBS colonization remain poorly defined. We hypothesized that there may be an association between 
antibiotic exposure during pregnancy and GBS colonization and/or the presence of inducible clindamycin resistance 
(iCLI-R) in GBS isolates from GBS-colonized pregnant women.

Methods:  A retrospective cohort study was performed at Louisiana State University Health Sciences Center – Shreve-
port including demographic and clinical data from 1513 pregnant women who were screened for GBS between July 
1, 2009 and December 31, 2010.

Results:  Among 526 (34.8%) women who screened positive for GBS, 124 (23.6%) carried GBS strains with iCLI-R 
(GBS-iCLI-R). While antibiotic exposure, race, sexually-transmitted infection (STI) in pregnancy, GBS colonization in 
prior pregnancy and BMI were identified as risk factors for GBS colonization in univariate analyses, the only independ-
ent risk factors for GBS colonization were African–American race (AOR = 2.142; 95% CI = 2.092–3.861) and STI during 
pregnancy (AOR = 1.309; 95% CI = 1.035–1.653). Independent risk factors for GBS-iCLI-R among women colonized 
with GBS were non-African–American race (AOR = 2.13; 95% CI = 1.20–3.78) and younger age (AOR = 0.94; 95% 
CI = 0.91–0.98). Among GBS-colonized women with an STI in the current pregnancy, the only independent risk factor 
for iCLI-R was Chlamydia trachomatis infection (AOR = 4.31; 95% CI = 1.78–10.41).

Conclusions:  This study identified novel associations for GBS colonization and colonization with GBS-iCLI-R. Prospec-
tive studies will improve our understanding of the epidemiology of GBS colonization during pregnancy and the role 
of antibiotic exposure in alterations of the maternal microbiome.
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Introduction
Streptococcus agalactiae (Group B Streptococcus (GBS)) 
is a dynamic colonizer of the gastrointestinal and geni-
tourinary tracts, frequently causing urinary tract infec-
tions, chorioamnionitis, postpartum endometritis, and 
bacteremia in pregnant women [1, 2]. GBS is also the 
most common cause of sepsis and meningitis in infants 
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younger than three months of age [3]. With the near-
elimination of Streptococcus pneumoniae and Haemophi-
lus influenzae meningitis due to vaccination, GBS is now 
the most frequent cause of meningitis in childhood [4, 
5]. Approximately 50% of infants born to GBS-colonized 
mothers acquire GBS in utero or during parturition, with 
1–2% of colonized infants developing GBS disease [3]. 
The implementation of universal screening for GBS in 
pregnancy and use of intrapartum antibiotic prophylaxis 
(IAP) reduced the incidence of early-onset GBS disease 
in the United States from 1.8 cases per 1000 live births 
to 0.26 cases per 1000 live births from the early 1990’s to 
2010 [6]. However, the incidence of late-onset GBS has 
remained unaffected, with ~ 0.26 cases per 1000 infants 
diagnosed annually [6]. As such, understanding the risk 
factors for maternal GBS colonization continues to be an 
important facet of the development of new strategies to 
improve maternal and neonatal outcomes.

We previously reported high rates of GBS coloniza-
tion and high rates of inducible clindamycin resistance 
(iCLI-R) among GBS isolates from women who received 
obstetric care at LSUHSC-Shreveport [7]. Because of the 
high rates of sexually-transmitted infections (STIs) in our 
population and the common resistance mechanisms for 
iCLI-R that have been described for GBS and Staphylo-
coccus aureus, we hypothesized that exposure to antibiot-
ics during pregnancy may be a risk factor for colonization 
with GBS and/or colonization with a GBS strain that 
displays an iCLI-R phenotype. To address this question 
we analyzed the clinical and demographic data from the 
medical records of the group of women on which our 
earlier report was based.

Methods
The LSUHSC-S Institutional Review Board for Human 
Subjects Research approved this study protocol prior to 
data collection.

Study design
We identified pregnant women who were screened at 
35–37  weeks gestation by vagino-rectal swab for GBS, 
at prenatal visits between 1 July 2009 and 31 December 
2010 [7]. Antimicrobial susceptibility testing, including 
tests for the presence of inducible resistance to clindamy-
cin, was performed on all GBS isolates from vagino-rec-
tal swabs received by the UH-S Microbiology laboratory 
personnel according to Clinical Laboratory Standards 
Institute (CLSI) guidelines. We analyzed a total of 1522 
medical records for pertinent clinical and demographic 
data. Subjects were excluded from the analyses if their 
records were not obtainable after more than four months 
of requests (n = 8) or if they were employees or spouses 
of employees involved in the study (n = 1) resulting in 

data on 1513 pregnant women available for analysis in 
the study population. The main outcomes of interest 
were: (1) GBS positivity and (2) iCLI-R among GBS posi-
tive women. We studied the relationship between each of 
our outcomes and antibiotic use in pregnancy (exclusive 
of intrapartum antimicrobial prophylaxis for GBS colo-
nization), considering both specific antibiotics and anti-
biotic class. We defined “sexually-transmitted infections 
(STI) during the current pregnancy” as C. trachomatis 
(CT), Neisseria gonorrheae (NG) or Trichomonas vagi-
nalis (TV), as confirmed by routine clinical testing at 
LSUHSC-S.

Statistical analyses
The chi-square test was used to identify categorical vari-
ables (e.g. antibiotic exposure by class and individually, 
STI during pregnancy (CT, NG and TV individually and 
as a composite variable) significantly associated with 
GBS colonization and those significantly associated with 
iCLI-R among GBS positive women. Each antibiotic and 
antibiotic class was considered separately for association 
with GBS colonization. The two-sample t-test was used 
to determine if continuous variables (e.g., age, body-
mass index (BMI), gravidity) are significantly associated 
with GBS colonization for all subjects and with iCLI-R 
among GBS positive women, as well as among GBS posi-
tive women with STI. Multiple logistic regression analy-
sis was used to determine independent risk factors for 
GBS colonization as well as risk factors for iCLI-R among 
GBS positive women and among GBS positive women 
with STI. Our strategy for the multiple logistic regres-
sion analysis was to use as independent predictors those 
found to be significantly associated with the outcome 
from univariate analysis. We likewise used it for our post 
hoc analysis to determine risk factors for GBS among 
women with STI.

Missing data were excluded from the statistical analy-
ses, as the percentage of missing data for the different 
observed variables accounted for only 0.1–6.2% of the 
records available for analysis, except for “GBS in prior 
pregnancy,” where 46.3% were appropriately “not appli-
cable” for primigravid mothers. Data on the number of 
missing information for each variable are reported in the 
tables.

Results
Demographic and clinical characteristics of the study 
population
The characteristics of subjects (n = 1513) whose records 
were included in these analyses are detailed in Table  1. 
A majority of subjects were African–American (AA) 
(74.7%) and had a term delivery (91.4%). Nearly 35% had 
GBS colonization, 37% had a history of STI, and 55.1% 
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received antibiotic treatment during pregnancy. The 
median age at the time of delivery was 23.0 years and that 
of the median BMI was 31.3 kg/m2. We tested the demo-
graphic and clinical factors listed in Table 1 for associa-
tion with GBS colonization in the current pregnancy.

Risk factors for GBS colonization in pregnancy
African–Americans, those with STI, antibiotic expo-
sure, and who were GBS positive in a prior pregnancy 
had significantly higher GBS colonization rates in the 
current pregnancy than those with no STI, no antibiotic 
exposure, non-AA race and no GBS in a prior pregnancy 
(Table  2a). Among continuous variables, only BMI had 
significant association with GBS colonization. GBS posi-
tive women had higher BMI than GBS negative women 
(33.7 ± 8.2 vs. 32.3 ± 7.8, p < 0.01). Age and gravidity were 
similar between GBS-positive and GBS-negative women. 
Although BMI was significantly associated with GBS in 
univariate analysis, we did not include it as a predictor 
variable in the multiple logistic regression model because 
of its significant association with AA race and because of 
the imprecision of BMI calculations that are not based 
on pre-pregnancy weights. AA women had higher BMI 
than non-AA women, but pre-pregnancy weights within 
one year prior to initiation of prenatal care were only 

available for a minority of subjects (data not shown). 
Independent risk factors for GBS colonization were STI 
during pregnancy and AA race as determined by multi-
variate analysis (Table 2b). The odds for GBS colonization 
among AA women was 2.142 times the odds of GBS colo-
nization for non-AA women, while the odds of GBS colo-
nization for women with STI were 1.309 times the odds 
for women without STI during pregnancy. Using the 
Pearson test for goodness-of-fit, the combination of AA 
race and STI yielded the highest p-value, suggesting this 
combination of factors provides the most accurate model 
of risk factors for GBS colonization. The characteristics 
of the 526 women with GBS colonization are summa-
rized in Table 3.

Risk factors for iCLI‑R among women with GBS strains
Only race and age were significantly associated with 
iCLR among the GBS colonized women in univariate 
analyses (Table 4a). Non-AA women had a higher rate of 
colonization with GBS-iCLR than AA women (33.3% vs. 
22.2%, p = 0.04). Women with GBS-iCLR were younger 
than those without GBS-iCLR (23.0 ± 5.1 vs. 24.4 ± 5.8, 
p = 0.01). Race and age were also the independent risk 
factors for iCLR among GBS positive women as deter-
mined by multivariate analysis (Table  4b). Adjusted for 

Table 1  Characteristics of Pregnant Women in Study (N = 1513)

a  Calculated from non-missing values
b  Among the 1513 pregnant women, 2 have missing values for GBS and these 2 women have STI. The STI of these 2 women cannot be correlated to their unknown 
GBS. For purposes correlating STI and GBS, they are among the 66 with missing values (Table 2)
c  Includes all antibiotic treatments for any infections diagnosed during the pregnancy, excluding IAP

Characteristic Number (%)a

Or mean ± SD, median, rangea
Number
Unknown/NA (%)

GBS colonization 526 (34.8) 2 (0.1)b

STI during this pregnancy 536 (37.0) 64 (4.2)

 C. trachomatis 332 (22.9) 64 (4.2)

 N. gonorrhea 117 (8.1) 64 (4.2)

 T. vaginalis 296 (20.4) 64 (4.2)

Antibiotic exposurec 786 (55.1) 87 (5.8)

HIV positive 14 (0.1) 54 (3.6)

Term delivery 1343 (91.4) 44 (2.9)

GBS in prior pregnancy 189 (23.2) 700 (46.3)—NA

Race 22 (1.5)

 African–American 1114 (74.7)

 White 201 (13.5)

 Hispanic 141 (9.5)

 Other 35 (2.3)

Age (years) 24.4 ± 5.8, 23.0, 13–49 18 (1.2)

Weight (lbs) 191.6 ± 49.8, 182.0, 96–408 69 (4.6)

Height (in) 64.0 ± 2.9, 64.0, 49–74 94 (6.2)

BMI 32.8 ± 7.9, 31.3, 18.8–70.1 94 (6.2)

Gravidity 2.7 ± 1.8, 2.0, 1–20 2 (0.1)
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age, the odds for colonization with GBS-iCLR for non-
AA women were 2.13 times the odds for AA women. For 
every year increase in age, the adjusted odds for GBS-
iCLR decreased by 0.06.

Forty-two percent of the GBS-iCLR cases (52 of 124) 
were seen in women with STI, so risk factors for iCLR 

were analyzed post hoc among the subgroup of GBS-
positive women who had STI in the current pregnancy 
(Table 5). Among the 220 women with STI, 62.3% were 
infected with C. trachomatis (CT) and 99.5% were 
treated with antibiotics. Among the 213 women treated 
with antibiotics, more than half (132 out of 213, 62%) 
received azithromycin (AZ). Categorical factors sig-
nificantly associated with GBS-iCLR colonization were 
CT infection and AZ treatment (Table  6a). GBS-iCLR 
rates were significantly higher in women with CT and 
those treated with AZ than those without CT and those 
treated with antibiotics other than AZ (32.8% and 
32.6% vs. 8.4% and 8.6%, respectively; p < 0.01). Among 
continuous variables, only age was significantly associ-
ated with GBS-iCLR colonization (Table  6a). Women 
with GBS-iCLR were significantly younger than those 
without GBS-iCLR (21.2 ± 3.7 years vs. 23.4 ± 5.2 years, 
p < 0.01). Thus, factors significantly associated with 
iCLI-R by univariate analysis were CT infection, AZ 
treatment and younger age. The only independent risk 
factor for colonization with GBS-iCLR among GBS-
positive women with STI was CT infection (Table 6b). 
Adjusted for age and AZ treatment (factors associ-
ated with GBS-iCLR by univariate analysis), the odds 

Table 2  Factors associated with GBS colonization (N = 1513). (a) Categorical factors and continuous variables associated 
with GBS by univariate analysis—number (%) or mean ± SD, range. (B) Independent risk factors for GBS by multivariate 
analysis—adjusted odds ratios

CI confidence interval
*  Significant association with GBS at 5% level of significance (p value < 0.05)
**  Significant association with GBS at 1% level of significance (p value < 0.01)

Characteristic GBS positive GBS negative p value # Missing/NA
(a)

Categorical variables

STI during pregnancy 219/494 (44.3) 315/953 (33.1)  < 0.01** 66

Antibiotic exposure 313/488 (64.1) 471/936 (50.3) < 0.01** 89

AA race 519/519 (86.7) 662/970 (68.2) < 0.01** 24

GBS in prior pregnancy 80/268 (29.9) 109/544 (20.0) < 0.01** 701

Continuous variables

Age 24.1 ± 5.6, 14–44
(n = 520)

24.6 ± 5.9, 13–49
(n = 973)

0.13 10

BMI 33.7 ± 8.2, 19.4–70.1
(n = 491)

32.3 ± 7.8, 19–69
(n = 928)

< 0.01** 94

Gravidity 2.7 ± 1.8, 1–12
(n = 519)

2.7 ± 1.9, 1–20
(n = 978)

0.97 16

Characteristic Adjusted OR 95% CI for AOR p value # Used
(b)

African–American race 2.142 2.092–3.861 < 0.01**

STI during pregnancy 1.309 1.035–1.653 0.02*

Goodness of fit (Pearson test) 0.45 1432

Table 3  Characteristics of GBS colonized women (N = 526)

a  Calculated on non-missing values

Characteristic Number (%)a

Or mean ± SD, median, 
rangea

Number
Unknown/NA (%)

iCLI-R 124 (23.6) –

STI during pregnancy 220 (44.5) 32 (6.1)

Antibiotic exposure 313 (64.1) 38 (7.2)

HIV positive 5 (1.0) 24 (4.6)

Term delivery 461 (90.0) 14 (2.7)

GBS in prior pregnancy 80 (29.8) 258 (49.0)—NA

AA race 450 (86.7) 7 (1.3)

IAP 384 (80.2) 47 (8.9)

Age (years) 24.1 ± 5.6, 23.0, 14–44 6 (1.1)

BMI 33.7 ± 8.2, 32.4, 19.4–70.1 35 (6.7)

Gravidity 2.7 ± 1.8, 2.0, 1–12 7 (1.3)
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for iCLR among women with CT were 4.31 (95% 
CI = 1.78–10.41) times the odds among those without 
CT. Although age and AZ treatment had significant 

associations with iCLR by univariate analysis, they 
dropped out as risk factors for iCLR in multivariate 
analysis because of their significant associations with 
CT infection (p < 0.01).

Table 4  Factors associated with  GBS-iCL-R among  GBS+ women (N = 526). (a) Categorical factors and  continuous 
variables associated with  GBS-iCL-R by  univariate analysis—number (%) or  mean ± SD, range. (b) Independent risk 
factors for iCL-R among GBS+ women by multivariate analysis

*  Significant Association with iCL-R at 5% level (0.01 < p value < 0.05)
**   Significant Association with iCL-R at 5% level (p value < 0.01)

Characteristic GBS-iCL-R Pos GBS-iCL-R Neg p value Missing/NA
(a)

Categorical variables

STI during pregnancy 52/113 (46.0) 168/381 (44.1) 0.72 32

Antibiotic exposure 68/111 (61.3) 245/377 (65.0 0.47 38

AA race 100/123 (81.3) 350/396 (88.4) 0.04* 7

IAP 86/109 (78.9) 298/370 (80.5) 0.71 47

Continuous variables

Age (years) 23.0 ± 5.1, 15–42
(n = 124)

24.4 ± 5.8, 14–44
(n = 396)

0.014* 4

BMI 34 ± 8.2, 19.4–66.1
(n = 115)

33.6 ± 8.3, 20–70.1
(n = 376)

0.67 35

Gravidity 2.6 ± 1.8, 1–9
(n = 122)

2.7 ± 1.8, 1–12
(n = 397)

0.33 7

Factor Adjusted OR 95% CI for AOR p value # Used
(b)

Non-AA race 2.131 1.201–3.782 < 0.01**

Age 0.943 0.905–0.982 < 0.01**

Goodness of fit (Pearson) 0.60 515

Table 5  Characteristics of GBS Positive Women with STI (N = 220)

a  Calculated from non-missing values

Characteristic Number (%)a

Or mean ± SD, median, rangea
Number
Missing/NA (%)

iCLI-R 52 (23.6) –

Chlamydia trachomatis (CT) 137 (62.3) –

Antibiotic exposure 213 (99.5) 6 (2.7)

AZ treatment 132 (62.0) 7 (3.2)

AA race 208 (94.6) –

Term delivery 198 (92.5) 6 (2.7)

IAP 171 (82.2) 12 (5.5)

HIV positive 0 (0) 10 (4.4)

GBS in prior pregnancy 36 (29.3) 97 (44.0)

Age (years) 22.9 ± 5.0, 22.0, 15–41 3 (1.4)

BMI 32.9 ± 8.0, 31.6, 19.4–62.3 12 (5.5)

Gravidity 2.6 ± 1.8, 2.0, 1–10 1 (0.5)
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Discussion
In this retrospective study, we correlated clinical and 
microbiologic data from a large population of pregnant 
women in order to identify risk factors for maternal col-
onization with GBS and GBS-iCLR. We hypothesized 
that antibiotic exposure in pregnancy, particularly mac-
rolide exposure, is associated with colonization with GBS 
strains with inducible resistance to clindamycin (GBS-
iCLR) due to selective pressure on the maternal flora. 
Our analyses revealed that GBS colonization in preg-
nant women was significantly associated with STI in the 
current pregnancy, a novel finding, as well as AA race, 
a previously known risk factor. The association of GBS-
iCLR with non-African–American race and younger age 
and the association of GBS-iCLR with CT infection and 
azithromycin exposure among women with an STI in 
the current pregnancy are unique findings that suggest 
numerous hypotheses to be tested in future, prospective 
studies.

Prior studies have identified numerous risk factors for 
GBS infection in infants, including pre-term delivery, 
prolonged rupture of membranes, maternal chorioam-
nionitis, maternal colonization with GBS during labor 
and delivery, multiparity, maternal GBS colonization in 
a previous pregnancy, low maternal levels of anti-GBS 
antibody, certain maternal sexual behaviors, African–
American race and GBS bacteriuria during pregnancy, 
many of which are also risk factors for maternal coloni-
zation during a subsequent pregnancy [8–14]. However, 
relatively few studies have explicitly focused on risk fac-
tors for maternal colonization with GBS or correlated 

microbiologic and clinical data for large cohorts of 
patients. The landmark VIP study from 1984 to 1989 did 
not find an association of GBS colonization with STIs, 
but the rates of GBS colonization and STIs were sig-
nificantly lower in that multi-center study and variable 
between the geographically distributed study sites [15]. 
Colonization with GBS in a prior pregnancy has been 
identified as a risk factor for GBS colonization in a subse-
quent pregnancy by several studies [9–11, 16]. African–
American race, age > 21  years and marijuana use within 
the past four months were identified as risk factors for 
rectal GBS colonization among non-pregnant women 
in a longitudinal study [17]. The same study found that 
recent vaginal intercourse, vaginal yeast or E. coli colo-
nization and abnormal vaginal flora (Nugent score ≥ 4), 
but not STI, hormonal contraception or specific sexual 
practices, were associated with vaginal GBS colonization 
among young adult women [17]. The study by Rocchetti 
and colleagues identified frequency of sexual intercourse, 
alterations in vaginal flora and prior miscarriage as risk 
factors for GBS colonization in pregnancy [18].

Studies comparing the vaginal flora of GBS+ and GBS− 
women in pregnancy have yielded conflicting results, 
leaving uncertainty about the importance of alterations 
of the vaginal microbiome as a contributing or protective 
factor in GBS colonization [19, 20]. Recent studies failed 
to detect an association between GBS and lactobacilli in 
pregnant Polish and Guatemalan women using culture-
based and molecular testing, respectively [20, 21]. A large 
study of the vaginal microbiome in non-pregnant women 
found strong positive and negative associations between 

Table 6  Factors associated with  GBS-iCL-R among  GBS positive women with  STI (N = 220). (a) Factors associated 
with  GBS-iCL-R among  GBS positive women with  STI by  univariate analysis—number (%) or  mean ± SD, range. (b) 
Independent risk factor for iCL-R among GBS+ women with STI by multivariate analysis—adjusted odds ratio

Characteristic GBS-iCL-R Pos GBS-iCL-R Neg p value Missing/NA
(a)

Categorical variables

CT infection 45/52 (86.5) 92/168 (54.8) < 0.01** –

AZ treatment 43/50 (86.0) 89/163 (54.5) < 0.01** 7

Continuous variables

Age 21.2 ± 3.7, 15–34
(n = 52)

23.4 ± 5.2, 15–41
(n = 165)

< 0.01** 3

BMI 31.3 ± 6.0, 19.4–45.4
(n = 48)

33.4 ± 8.5, 20–62.3
(n = 160)

0.06 12

Gravidity 2.5 ± 2.0, 1–9
(n = 52)

2.6 ± 1.7, 1–10
(n = 167)

0.85 1

Factor Adjusted OR 95% CI for AOR p value # Used
(b)

CT infection 4.31 1.78–10.41 < 0.01

Goodness of fit test 0.79 217
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GBS colonization and several bacterial taxa, but no 
association between GBS and Lactobacillus species was 
found, suggesting that vaginal microbiome community 
state type is not a reliable predictor of GBS colonization 
in non-pregnant women [22]. Longitudinal studies of 
pregnant women have begun to characterize the diversity 
and dynamics of the vaginal microbiome and identified 
unique community state types and, more recently, the 
relative abundance of various Lactobacilli as important 
correlates of premature delivery [23, 24]. These emerg-
ing studies and novel research modalities suggest the 
potential use of non-culture techniques to assess risk for 
adverse maternal and infant outcomes.

While all known GBS isolates retain susceptibil-
ity to penicillin in  vitro, GBS isolates with resistance to 
erythromycin and clindamycin have been increasingly 
reported worldwide, including at our institution [7, 
25–27]. Furthermore, GBS isolates with reduced peni-
cillin susceptibility have been identified at several sites 
around the world, highlighting the need for continued 
active surveillance for alterations in GBS susceptibility 
that may again alter the strategies for prevention of GBS 
disease [28, 29]. The identification of clinical factors asso-
ciated with changing antimicrobial susceptibility profiles, 
especially antibiotic exposures, is critical to understand-
ing the role of antimicrobial pharmacodynamics in the 
promotion of antibiotic resistance in commensal and 
opportunistic microbes that impact maternal and infant 
outcomes, especially for drugs like azithromycin that 
have long half-lives and are used in large doses for treat-
ment of C. trachomatis infection [30, 31]. Furthermore, 
the consideration of using wide-spread prophylactic dos-
ing of azithromycin for prevention of adverse maternal, 
neonatal and infant outcomes in underdeveloped coun-
tries portends a significant risk of promoting antibiotic 
resistance in areas of the world that are least-equipped to 
combat multi-drug resistant organisms [32, 33].

This study has several notable strengths, including the 
correlation of microbial and clinical data from a large 
study population, and the identification of novel clini-
cal variables associated with GBS and GBS-iCLR colo-
nization. The predominance of African–Americans in 
the study is also a strength, given that few studies have 
focused on this population previously. Weaknesses of this 
study include the lack of data on GBS serotypes, multi-
locus sequence types, and molecular characterization 
of resistance genes prevalent in the GBS isolates, all of 
which were not possible in the present study, but should 
be performed in future prospective studies. Additionally, 
the lack of information regarding maternal sexual, die-
tary, social and hygiene practices limits the comparability 
of these results to some prior studies and precludes the 
evaluation of some potentially confounding factors.

The association of GBS-iCLI-R with C. trachoma-
tis infection and azithromycin exposure supports the 
hypothesis that azithromycin exerts selective pressure 
on GBS, potentially through the erm genes that medi-
ate Macrolide–Lincosamide–Streptogramin resistance 
(MLSB resistance) in GBS and staphylococci [34, 35]. 
Erythromycin and clindamycin-resistant Gram-pos-
itive organisms often carry erythromycin ribosomal 
methylation (erm) genes accounting for constitutive 
(cMLSB-phenotype) and inducible (iMSLB-phenotype) 
resistance in GBS isolates [36]. Genes contributing to 
erythromycin resistance include ermA(TR), ermB, and 
mefA, which have been found among macrolide-resistant 
GBS isolates [25, 37–39]. In a large collection of GBS iso-
lates from numerous sites in Brazil, erythromycin resist-
ance was not associated with particular GBS serotypes, 
suggesting the independent acquisition of erythromy-
cin resistance genes [37]. Prospective molecular analy-
sis will be necessary to determine the precise genetic 
mechanism(s) that mediate iCLI-R in our population and 
the potential changes over time in resistance patterns. 
These data support a particular focus on antimicrobial 
stewardship and infection control practices in pregnancy 
and the need for prospective studies to characterize the 
impact of antibiotic exposures on the maternal microbi-
ome. Furthermore, they support the need for intensive 
education of patients and providers regarding preven-
tion of STIs in pregnancy, especially in communities with 
high rates of STIs.

Conclusion
In summary, this large retrospective study of clinical and 
microbiological data identified STI potential risk factor 
for GBS colonization in pregnancy in a population with 
high rates of STIs. Additionally, the receipt of azithromy-
cin during pregnancy was significantly associated with 
colonization due to a GBS strain with inducible clinda-
mycin resistance among women with STI in the current 
pregnancy. These findings have significant implications 
for the promotion of antimicrobial resistance, especially 
when public health interventions include widespread 
use of antibiotics. Prospective studies will be necessary 
to correlate molecular mechanisms of antibiotic resist-
ance, GBS serotypes and genotypes, clinical factors and 
changes in the maternal microbiome with maternal and 
neonatal outcomes and to determine the likelihood that 
antimicrobial resistance will persist in communities.
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