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Abstract. A high molecular weight polypeptide, 
identified as an ATPase subunit by direct ultraviolet 
photoaffinity labeling, has been shown to be a compo- 
nent of nuclear envelope-enriched fractions prepared 
from a variety of higher eukaryotes (Berrios, M., G. 
Blobel, and P. A. Fisher, 1983, J. Biol. Chem., 
258:4548-4555). In rat liver as well as Drosophila 
melanogaster embryos, this polypeptide appears to be 
a form of myosin heavy chain. This conclusion is 
based on both immunochemical and immunocytochem- 
ical data, as well as on the results of CNBr and 
chymotryptic peptide map analyses. In Drosophila, the 
identification of this myosin heavy chain-like polypep- 

tide as a nuclear envelope component has been cor- 
roborated in situ by indirect immunofluorescence anal- 
yses using permeabilized whole cells, mechanically 
extruded nuclei, and cryosections obtained from a 
number of larval tissues. Localization appears to be 
restricted to the nuclear periphery in a manner similar 
to that observed for the nuclear lamins and the pore 
complex glycoprotein. Antibodies directed against the 
Drosophila nuclear envelope ATPase have also been 
shown to decorate mammalian and higher plant cell 
nuclei in situ. Implications for intracellular nuclear 
mobility and for nucleocytoplasmic exchange of mac- 
romolecules in vivo are discussed. 

T 
hE histochemical identification of an ATPase activity 
apparently associated with the nuclear pore complex 
of higher eukaryotes (Klein and Afzelius, 1966; 

Yasuztuni and Tsubo, 1966; Yasuzumi et al., 1967, 1968; 
Chardonnet and Dales, 1972) has led to considerable interest 
regarding the possible role(s) of this activity in providing the 
energy presumed necessary for nucleocytoplasmic exchange 
of macromolecules. Although subsequent histochemical 
analyses have demonstrated the presence of ATPase activi- 
ties in other regions of the nucleus as well (Sikstrom et al., 
1976; Vorbrodt and Maul, 1980; Fox et al., 1981), most bio- 
chemical studies have focused on attempts to identify and 
characterize ATPase activities specifically associated with 
the nuclear envelope (see Agutter and Richardson, 1980 for 
a review of these studies). These studies have been severely 
limited by the inability to solubilize the ATPase protein(s) in 
active form from the supramacromolecular structures with 
which they are apparently associated. It has been impossible, 
as a result, to purify and/or positively identify the enzyme 
polypeptide(s), or to attempt immunochemical or immuno- 
cytochemical analyses. 

Studies from this laboratory have focused on an ATPase 
found associated with nuclear envelope-enriched fractions 
from both Drosophila melanogaster embryos, and a variety 
of vertebrate cell types (Berrios et al., 1983a, b). Through 
direct ultraviolet (UV) photoaflinity labeling experiments 
performed in conjunction with enzymologic analyses, we 
have been able to correlate the major ATPase activity of the 

Drosophila nuclear matrix-pore complex-lamina (NMPCL) 1 
fraction with a single major polypeptide of ~188 kD (Berrios 
et al., 1983a). 2 A polypeptide of nearly identical molecular 
mass has been identified in similar photocross-linking ex- 
periments performed with nuclear envelope preparations ob- 
tained from the livers of chickens, guinea pigs, opposums, 
and rats. In each of these systems, including Drosophila, the 
photolabeled ATPase co-migrates on SDS polyacrylamide 
gels with an abundant glycoprotein also associated with 
higher eukaryotic nuclear structural protein subfractions 
(Berrios et al., 1983b). Through the use of chromatographic, 
immunochemical, and enzymologic techniques, we have 
1. Abbreviations used in this paper: MSM, modified Shields' medium; 
NMPCL fraction, nuclear matrix-pore complex-lamina fraction; NPCL 
fraction, nuclear pore complex-lamina fraction. 
2. In our initial SDS PAGE analyses and UV photolabeling studies of the 
Drosophila NMPCL fraction (Fisher et al., 1982; Berrios et al., 1983a, b), 
a molecular weight of 174,000 was assigned both to the NMPCL ATPase 
and to the putative nuclear pore complex glycoprotein. Recent work on the 
pore complex glycoprotein has resulted in a revision of this molecular 
weight estimate to 188,000 (Filson et al., 1985). A similarly revised estimate 
has now been made for the NMPCL ATPase. This revision has been made 
with explicit regard to the molecular weight of 190,000 reported for the rat 
liver nuclear pore complex glycoprotein (Gerace et al., 1982). It should be 
noted that this molecular weight is at the low end of the range of values com- 
monly quoted for vertebrate skeletal muscle myosin heavy chains. Of 
significance in the present context is that skeletal muscle myosin heavy 
chain, the NMPCL ATPase, and the nuclear pore complex glycoprotein co- 
migrate on SDS polyacrylamide gels. Their apparent molecular weights 
should therefore be regarded as identical, regardless of the numerical value 
assigned. 
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been able to demonstrate that the ATPase polypeptide 
identified by UV photolabeling is distinct from this glyco- 
protein of nearly identical molecular mass (Berrios et al., 
1983b; Filson et al., 1985). (This glycoprotein has been 
shown by immunoelectron microscopy to be a specific poly- 
peptide component of the rat liver nuclear pore complex 
[Gerace et al., 1982]; immunocytology at the light micro- 
scopic level has confirmed localization of this glycoprotein 
to the nuclear envelope in Drosophila [Filson et al., 1985].) 

The ability to specifically label the active site-containing 
polypeptide of the major NMPCL ATPase with ct[32P]ATP 
has allowed us to solubilize and purify it under harshly 
denaturing conditions and to obtain specific antibodies 
directed against the purified protein (Berrios et al., 1983b). 
In the present study, we have used these antibodies for im- 
munocbemical and immunocytochemical analyses. The re- 
sults obtained demonstrate that this ATPase polypeptide is 
apparently a form of myosin heavy chain, and that it is local- 
ized to the nuclear envelope in situ. 

Materials and Methods 

Radiolabeled nucleotides and Triton X-100 were from New England Nuclear 
(Boston, MA). Specific IgG fractions were from Cappel Laboratories 
(Cochranville, PA). Monoclonal antibodies AGP-26 and AGP-78, directed 
against the putative nuclear pore complex glycoprotein obtained from Dro- 
sophila embryos, were ammonium sulfate purified from hybridoma tissue 
culture supernatants (Filson et al., 1985). DNAse I, p-toluenesulfonyl fluo- 
ride, phenylmethylsulfonyl fluoride, N-ethylmaleimide, 1-l-tosylamide-2- 
phenylethylchioromethyl ketone (TPCK), p-phenylenediamine, cyanogen 
bromide, DL-dithiothreitol, 2-mercaptoethanol, polyoxyethylene sorbitan 
monolaureate (Tween 20), octylphenoxypolyethoxyethanol (Nonidet P-40), 
Fraction V-bovine serum albumin (BSA), chymotrypsin, and calf alkaline 
phosphatase were from Sigma Chemical Co. (St. Louis, MO). Protein 
A-Sepharose CL-4B was from Pharmacia Fine Chemicals (Piscataway, NJ). 
Hydroxylapatite Bio-Gel HTP was from Bio-Rad Laboratories (Richmond, 
CA). 5-Bromo-4-chloro-3-indolyl phosphate, p-toluidine salt, and p-nitro 
blue tetrazolium chloride were from United States Biochemical Corp. 
(Cleveland, OH). RNAse A (RAF grade) was from Worthington Biochemi- 
cal Corp. (Freehold, N J). Nitrocellulose was from Schleicher & Schuell, 
Inc. (Keene, NH). Paraformaldehyde, formic acid, and methylene bisacryl- 
amide were from Fisher Scientific Co. (Springfield, NJ). Embedding 
medium for cryosectioning was from Lipshaw Mfg. Co. (Detroit, MI). SDS 
was from British Drug House (Poole, England). Acrylamide, X-Omat XAR 
x-ray film, Ektachrome ASA 400, and Tri-X pan ASA 400 films were from 
Eastman Kodak Co. (Rochester, NY). All other chemicals were obtained 
commercially, were of reagent grade, and were used without further 
purification. 

Most of the methods have been previously described in detail (Fisher et 
al., 1982; Berrios et al., 1983a, b; Smith and Fisher, 1984). Drosophila me- 
lanogaster (Oregon R, P2 strain) were grown in mass culture and embryos 
were collected according to Allis et al. (1977). SDS PAGE according to 
Laemmli (1970), protein transfer from SDS gels onto nitrocellulose sheets 
(Western blots), and preparation of specific antisera were as previously de- 
scribed (Fisher et al., 1982). Blots were probed with antisera or specific IgG 
fractions, and bands of antibody reactivity were visualized according to 
Smith and Fisher (1984). Affinity purification of antibodies using antigens 
immobilized on nitrocellulose blots was also as described previously (Smith 
and Fisher, 1984). Immunoprecipitation was performed according to Chang 
et al. (1979). UV photoaffinity labeling of the Drosophila NMPCL ATPase 
was according to Berrios et al. (1983a). 

Peptide Mapping of SDS-denatured Proteins 
Cyanogen bromide digestion of SDS-denatured polypeptides was essentially 
according to Nikodem and Fresco (1979). Protein samples were denatured 
by boiling for 2-4 rain in 2 % (wt/vol) SDS, 20 mM dithiothreitol. They 
were then chilled briefly on ice and protein was precipitated by the addition 
of trichforoacetic acid ('['CA) to a final concentration of 10% (wt/vol). The 
TCA precipitates were resolubilized in 80 p.l of 88% (wt/wt) formic acid, 
and 100 ~tl of 20 mg/ml CNBr dissolved in 70% formic acid was added to 

each sample. Digestions were performed at 23°C for the times indicated in 
the various figures. CNBr digestions were stopped by the addition of l0 vol 
of cold water, followed by the addition of TCA to a final concentration of 
10%. Protein precipitates were collected by centrifugation, resolubilized, 
and processed for SDS PAGE and Western blot analysis in the standard man- 
ner (Fisher et al., 1982; Smith and Fisher, 1984). 

Chymotryptic mapping of SDS-denatured proteins was performed simi- 
larly and was essentially according to Cleveland et al. (1977). After TCA 
precipitation, samples were resolubilized at a final protein concentration of 
"~0.5 mg/mi in 100 mM Tris-HCl, pH 6.8, 0.5% SDS; boiled, cooled to 
37°C, and digested with chymotrypsin at a final concentration of 40 p,g per 
ml for the times indicated in the legend to Fig. 6. Chymotryptic incubations 
were terminated by the addition of an equal volume of 2% SDS, followed 
irmnediately by immersion in a boiling water bath. SDS PAGE and Western 
blot analyses were performed as above. 

Indirect Immunofluorescence 
Indirect immunofluorescence analyses were performed with permeabilized 
whole cells, extruded nuclei, cryosections, and permeabilized intact muscle 
fibers from Drosophila melanogaster third instar larvae, as well as with per- 
meabilized COS-7 (SV40-transformed simian CV-I) tissue culture cells 
(Gluzman, 1981), and with mechanically disrupted onion cells. To obtain 
whole Drosophila cells, third instar larval salivary glands were dissected 
under a stereo microscope in modified Shields' Medium (MSM) (Shields 
et al., 1975) containing 18 mM MgSO4, 5.0 mM CaCl~, 40 mM KCI, 24 
mM NaCl, 4.8 mM NaH2PO4, 4.3 mM NaHCO3, 0.5% (vol/vol) Triton 
X-100, and 0.5 % (vol/vol) Nonidet P-40. The glands were gently squashed 
between a clean microscope slide and a siliconized coverslip to spread the 
individual cells. To obtain fully extruded salivary gland nuclei, relatively 
more pressure was applied during the squashing procedure. Muscle fibers 
were dissected from the buccal apparatus of the larvae and squashed under 
similar conditions. After squashing, the coverslip was removed and the 
preparation fixed for 1-3 rain in a freshly prepared mixture of 3% (wt/vol) 
paraformaldehyde in MSM. The slide was washed briefly in MSM and the 
first antibody, diluted in MSM as indicated in the individual figure legends, 
was applied to the specimen. First antibody incubations were for 30 rain 
at 37°C in a humidified chamber. After incubation, the slide was washed 
for 10 min with three changes of fresh MSM. The second antibody, 
fluorochrome-conjugated goat anti-rabbit or goat anti-mouse IgG, was 
similarly diluted in MSM and incubated on the slide under the same condi- 
tions as those described for the first antibody at concentrations as reported 
previously (Fisher et al., 1982; Smith and Fisher, 1984). The slide was 
washed for 5-10 rain with three changes of 560 mM NaCl, 10 mM KPO4, 
pH 7.5, 0.1% (vol/vol) Triton X-100, 0.02% (wt/vol) SDS as previously de- 
scribed (Fisher et al., 1982). Fixed and permeabilized COS-7 cells were 
probed with antibodies and washed similarly, as were mechanically dis- 
rupted onion cells. Cryosections of Drosophila third instar larvae were pre- 
pared and stored at -70°C as described previously (Smith and Fisher, 
1984). Upon removal from the freezer, they were thawed directly into fixa- 
tive and then incubated for 10 rain in MSM. Cryosections were probed with 
antibodies as described for whole cells and extruded nuclei. Before exami- 
nation, a coverslip was mounted on each slide with a drop of 0.1% (wt/vol) 
p-phenylenediamine (Johnson and Araujo, 1981) in MSM without deter- 
gents; specimens were examined and photographed with a Leitz Ortholux 
II epifluorescence microscope equipped with an Orthomat W camera. 

Extraction and Purification of Skeletal Muscle Myosin 
Myosin was extracted from rat skeletal muscle according to LeStourgeon 
et al. (1975). Drosophila muscle myosin was extracted from adult flies and 
purified essentially according to the same procedure. (It is assumed that the 
bulk of myosin extracted in this way from adult flies is derived from striated 
muscle tissue in the legs and thoracic flight muscle.) Approximately 3 to 
4 ml of packed adult flies were used for a standard preparation. The live 
flies were immobilized by chilling and were washed several times in 50 vol 
of ice cold buffer containing 120 mM NaCl, 0.1% Triton X-100. All subse- 
quent procedures were performed at 4°C. The washed flies were collected 
by centrifugation at 1,000 g for 5 min and resuspended in ,x,10 vol of ex- 
traction buffer containing 1 M KCI, 20 mM Tris-HCl, pH 7.4, 2 mM 
N-ethylmaleimide, 1 mM phenylmethylsulfonyl fluoride, 1 mM TPCK. The 
flies were homogenized with 10 strokes (tight pestle) in a Dounce homoge- 
nizer. The homogenate was filtered through a 120-I, tm Nitex screen and the 
filtrate was clarified by centrifugation, twice for 20 min at 20000 g. The 
resulting supernatant was dialyzed overnight against two changes of 40 vol 
each, of buffer containing 50 mM KCl, 20 mM 2-mercaptoethanol, 20 mM 
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Tris-HCl, pH 7.4, and 10 mM EDTA. The actomyosin precipitate formed 
during dialysis was collected by centrifugation at 2,000 g for 10 rain and 
the precipitate was resolubilized in 25 vol of I M KCI, 20 mM 2-mercapto- 
ethanol, 20 mM Tris-HCl, pH Z4. The dialysis step with precipitation and 
resolubilization was repeated twice and the final actomyasin pellet was ei- 
ther resolubilized and stored at -20°C in 600 mM KC1, 20 mM Tris-HCl, 
pH 6.8, 50% (vol/vol) glycerol, or was solubilized directly into 10% (wt/vol) 
SDS, 20 mM dithiothreitol. 

Re s u l t s  

Antiserum Prepared against the Gel-purified 
188-kD Drosophila NMPCL Polypeptides 
Is Specific for  the 188-kD ATPase Identified 
by UV Photolabeling 

One-dimensional SDS PAGE analyses of the Drosophila 
NMPCL fraction demonstrated the presence of  a major band 
of  protein at the 188-kD position (Fisher et al., 1982). An 

antiserum was prepared by excising the 188-kD region from 
the SDS gel, emulsifying the protein species along with the 
polyacrylamide in complete Freund's adjuvant, and injecting 
the emulsion into rabbits. The specificity of  this antiserum 
was initially demonstrated by Western blot analyses and by 
immunoprecipitation. Western blot analyses of  the eluate 
fractions obtained from SDS hydroxylapatite chromatogra- 
phy of  the Drosophila N M P C L  fraction demonstrated that 
the antiserum raised was specific for the 188-kD ATPase 
polypeptide (Fig. 1 A), identified as such in parallel experi- 
ments in which the NMPCL fraction was photolabeled with 
ct[32p]ATP before chromatography (Berrios et al., 1983b). 
The blot shown in Fig. 1 A was probed with 20 times the se- 
rum concentration typically used for optimal detection of  
the ATPase polypeptide on Western blots. This antiserum 
showed no detectable reactivity with the 188-kD nuclear pore 
complex glycoprotein, identified on a parallel blot probed 
with radiolabeled concanavalin A (Fig. 1 B) as previously 

Figure I. Antiserum prepared against the major 188-kD NMPCL gel band recognizes the 188-kD NMPCL ATPase. The Drosophila 
NMPCL fraction was boiled in SD~ and chromatographed on an SDS hydroxylapatite column. (A) Aliquots of eluate fractions from the 
column as indicated above each lane were electrophoresed, blot transferred to nitrocellulose, and the blot was probed with antiserum raised 
against the 188-kD gel band at a final serum concentration of 1:50. Detection was with radiolabeled goat anti-rabbit IgG as previously 
described (Fisher et al., 1982). Fluorographic exposure was for 4 h at -70°C using preflashed Kodak XAR X-ray film. (B) An identical 
blot, prepared in parallel with that shown in A, was probed with radiolabeled concanavalin A to detect glycoprotein, also as previously 
described. Fluorography was for 20 h as in A. (Under conditions used, antibody staining is ,~50-100-fold more sensitive than radiolabeled 
concanavalin A binding.) (C) Specific immunoprecipitation of the UV photolabeled Drosophila NMPCL ATPase polypeptide. The Dro- 
sophila NMPCL ATPase was photolabeled in the intact NMPCL fraction with ct[32p]ATP, solubilized by boiling in SDS, and further 
purified by SDS hydroxylapatite chromatography (Berrios et al., 1983b). The peak of antibody reactivity shown in A was exactly coincident 
with the peak of 32p-labeled ATPase identified in this parallel experiment (Berrios et al., 1983b). Peak fractions were pooled and aliquots 
incubated with ammonium sulfate-purified IgG fractions obtained either from preimmune rabbits (PI) or from a rabbit immunized with 
188-kD polypeptides SDS gel purified from the Drosophila NMPCL fraction (Immune). Amounts of IgG used are as indicated (lxg) in 
the lane headings. Immunoprecipitation, SDS PAGE analysis, and fluorography of the gel were as described in Materials and Methods. 
The exposure shown was for 60 h as in A. 
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described (Fisher et al., 1982; Berrios et al., 1983b). The 
anti-ATPase antiserum was also effective at immunoprecipi- 
tating the photolabeled ATPase polypeptide (Fig. 1 C). 

The 188-kD Drosophila NMPCL ATPase 
Is Immunochemically Homologous to Myosin 
Heavy Chain 
It was noted in the course of our preliminary analyses that 
the photolabeled Drosophila NMPCL ATPase was nearly 
identical in one-dimensional SDS PAGE mobility with rat 
skeletal muscle myosin heavy chain, and was in fact, indis- 
tinguishable in SDS PAGE mobility from Drosophila muscle 
myosin heavy chain purified from adult flies (Fig. 2 A). 
Western blot analyses showed essentially complete immuno- 
chemical cross-reactivity between the Drosophila NMPCL 
ATPase and Drosophila muscle myosin heavy chain as well 
as limited cross-reactivity with rat muscle myosin heavy 
chain (Fig. 2 B). The immunochemical cross-reactivity ob- 
served with unfractionated antiserum (Fig. 2 B) was con- 
firmed with IgG fractions that were affinity purified using 
either SDS hydroxylapatite-purified Drosophila NMPCL 
ATPase (Fig. 2 C) or SDS hydroxylapatite-purified Dro- 
sophila muscle myosin heavy chain (Fig. 2 D) as attinity 
ligands immobilized by blot transfer to nitrocellulose after 
SDS PAGE. 

One-dimensional SDS PAGE Peptide Map 
Comparisons between the Drosophila NMPCL 
ATPase and Muscle Myosin Heavy Chain 
Our investigation of immunochemical cross-reactivity be- 
tween the Drosophila NMPCL ATPase and muscle myosin 
heavy chain was extended to include CNBr and chymotryptic 
peptide map analyses. Initially, Drosophila muscle myosin 
heavy chain was partially digested with CNBr and the digest 
was analyzed by SDS PAGE on polyacrylamide gradient 
gels. Coomassie Blue staining showed a complex pattern of 
fragments generated during the digestion; Western blot anal- 
ysis of these same CNBr fragments with the anti-Drosophila 
NMPCL ATPase antiserum showed strong reactivity with 
the majority of these muscle myosin heavy chain fragments 
(data not shown). All fragments greater than or equal to ap- 
proximately 15 kD were recognized. 

A CNBr peptide map of the Drosophila NMPCL ATPase 
was generated under identical conditions and compared 
directly with the CNBr map of the Drosophila muscle myo- 
sin heavy chain. Coomassie Blue staining demonstrated that 
the two polypeptides were similar, but not identical in their 
CNBr maps (Fig. 3). A temporal analysis of CNBr treatment 
of the ATPase polypeptide is shown as indicated in the first 
five lanes of Fig. 3. The right lane of Fig. 3 shows a compos- 
ite of the comparable time points used to generate the CNBr 

Figure 2. Immunochemical cross- 
reactivity between the Drosoph- 
ila NMPCL ATPase and muscle 
myosin heavy chain. SDS hy- 
droxylapatite-purified Drosoph- 
ila NMPCL ATPase, Drosophila 
muscle myosin, and rat skeletal 
muscle myosin were electropho- 
resed in parallel lanes on an SDS 
7% polyacrylamide gel. Approxi- 
mately 2-3 I~g of each protein 
fraction was loaded per lane. 
Lanes I were loaded with Dro- 
sophila NMPCL ATPase; lanes 2 
were loaded with Drosophila 
muscle myosin; lanes 3 were 
loaded with rat skeletal muscle 
myosin. (A) Coomassie Blue- 
stained gel segment. (B) Western 
blot from a segment prepared in 
parallel with that shown in A 
and probed with unfractionated 
anti-188-kD Drosophila NMPCL 
polypeptides antiserum diluted 
1:1,000. (C) Parallel Western blot 
probed with an equivalent 
amount of specific IgG affinity 
purified using SDS hydroxylapa- 
rite, SDS PAGE-purified Dro- 
sophila NMPCL ATPase as the 
affinity ligand. (D) Parallel West- 

ern blot probed with an equivalent amount of specific IgG affinity purified using SDS hydmxylapatite-purified, SDS PAGE-purified Dro- 
sophila muscle myosin heavy chain as the affinity ligand. Alkaline phosphatase staining of Western blots was for 5 min at room temperature. 
In addition to the major band in each lane at the 188-190-kD position, a complex pattern of apparent proteolytic breakdown products is 
observed. This has been confirmed using immunoaffinity-purified antibodies prepared from each of the major fragments (data not shown). 
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map of muscle myosin heavy chain. The similarity in CNBr 
maps between the NMPCL ATPase and muscle myosin 
heavy chain, as well as the broad immunocross-reactivity of 
the anti-ATPase antiserum was also demonstrated by West- 
ern blot analysis using the anti-Drosophila NMPCL ATPase 
antiserum as shown in Fig. 4. (The blot shown was made 
from an identical gel run in parallel to that shown in Fig. 3.) 
Here, too, the patterns are similar but non-identical. Most 
of the major fragments identified are common to both the 
ATPase and the muscle myosin heavy chain maps. 

CNBr peptide map comparison of Drosophila muscle my- 
osin heavy chain and NMPCL ATPase with the rat skeletal 

muscle myosin heavy chain is shown in Fig. 5. Lanes I and 
2 show the highly similar but non-identical maps of the two 
different Drosophila polypeptides; lane 3 shows the largely 
dissimilar pattern obtained with rat muscle myosin heavy 
chain. The Drosophila muscle myosin heavy chain closely 
resembles the NMPCL ATPase from the same species, yet 
appears to have diverged considerably from the functionally 
homologous polypeptide obtained from a relatively distant 
organism. 

Additional peptide-mapping data were obtained using 
chymotrypsin. Although limited by the amount of protein 
available and the sensitivity of the analysis, Coomassie 
Blue-stained gels showed similar but non-identical one- 
dimensional chymotryptic maps for both the Drosophila 
NMPCL ATPase and Drosophila muscle myosin heavy 
chain; comparable maps of rat skeletal muscle myosin heavy 
chain were distinctly different (data not shown). Western blot 
analyses of chymotryptic maps are shown in Fig. 6. Results 
shown in A were obtained with SDS hydroxylapatite-purified 
polypeptide fractions; results in B were obtained with un- 

Figure 3. SDS PAGE analysis of the CNBr peptide map comparison 
between the Drosophila NMPCL ATPase and the Drosophila mus- 
cle myosin heavy chain. SDS hydroxylapatite-purified Drosophila 
NMPCL ATPase was digested with CN-Br, and the CNBr fragments 
were electrophoresed on an SDS 7-15 % polyacrylamide gradient 
gel (see Materials and Methods). The time of digestion of each ali- 
quot is indicated in min above each gel lane. Approximate amounts 
of Drosophila NMPCL ATPase protein loaded in each gel lane were 
as follows. Lane 0, 0.2 ~tg; lane 30, 2 ltg; lane 60, 2 p.g; lane 120, 
4 I.tg; lane 240, 11 lag. The lane headings indicate the time of diges- 
tion in min. For purposes of direct comparison, a single lane, desig- 
nated Comp., was loaded with a pool of the CNBr fragments from 
the digestion of Drosophila muscle myosin. This pool contained 
1 ~tg of the uncut heavy chain (0 time); 3 ~tg from the 30-rain time 
point; 5 ~tg from the 120-rain time point; and 11 gg from the 240- 
min time point, of a comparable digestion to that shown for the 
NMPCL ATPase (protein from the 60-rain time point was not in- 
cluded in the composite pool). The gel was stained with Coomassie 
Blue, destained, and photographed. 

Figure 4. Western blot analysis of the CNBr peptide map compari- 
son between the Drosophila NMPCL ATPase and Drosophila mus- 
cle myosin heavy chain. A parallel gel, loaded and run identically 
to that shown in Fig. 3, was blot transferred to nitrocellulose and 
the Western blot probed with anti-Drosophila NMPCL ATPase an- 
tiserum at 1:1,000. The blot was processed in the standard manner 
and was developed in the phosphatase stain reagents for 30 min at 
room temperature. Arrowheads between lanes 240 and Comp. 
designate some of the more prominent differences, either qualita- 
tive or quantitative, in the patterns obtained for the NMPCL ATP- 
ase and muscle myosin heavy chain. 
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Figure 5. CNBr peptide map 
comparison of Drosophila 
muscle myosin heavy chain, 
Drosophila NMPCL ATP- 
ase, and rat muscle myosin 
heavy chain. SDS gradient 
PAGE analysis was as fol- 
lows. Lane 1 was loaded 
with a composite fraction of 
CNBr fragments of Drosoph- 
ila muscle myosin heavy 
chain exactly as in lane 
Comp. of Figs. 3 and 4. 
Lane 2 was loaded with a 
similar composite fraction 
generated by pooling frag- 
ments from the various times 
points of digestion of the 
Drosophila NMPCL ATP- 
ase also shown in Figs. 3 and 
4. Only 0.2 gg of the uncut 
ATPase was used in order to 
conserve material. Lane 3 
was loaded with a similar 
composite fraction gener- 
ated by CNBr treatment of 
rat muscle myosin heavy 
chain exactly as was per- 
formed for the Drosophila 
muscle myosin heavy chain. 
The gel was stained with 
Coomassie Blue, destained, 
and photographed. 

fractionated nuclei. All results shown pertain to Drosophila 
polypeptides. Fig. 6 A, lane 1, shows the purified NMPCL 
ATPase before digestion with chymotrypsin; lane 2 shows 
the same material after a 16-min digestion. Lane 3 shows 
muscle myosin heavy chain after a 16-min digestion; lane 4 
shows this material before digestion. Lanes 5 and 6 show 
NMPCL ATPase and muscle myosin heavy chain, respec- 
tively, digested for the same period of time at half the total 
protein concentration; half as much material was loaded on 
the gel. Fig. 6 B, lane 1, shows a crude nuclear fraction be- 
fore protease digestion; lane 2 shows the same material after 
an 8-min incubation with chymotrypsin at protein concentra- 
tions similar to those used in A, lanes 2 and 3. 

Overall, the chymotryptic maps for NMPCL ATPase and 
muscle myosin heavy chain, though complex, are quite simi- 
lar; two sorts of differences are observed. Because of the fact 
that chymotryptic maps are generated enzymatically, they 
are inherently more difficult to control than is chemical 
cleavage with CNBr; trivial differences in the protein con- 
centrations of the substrate polypeptides or in the amounts 
of minor contaminants can produce identifiable (and some- 
what distracting) differences in patterns observed for a single 
polypeptide species. Differences of this sort are readily ob- 
served by comparing lanes 2 and 5 from A and lane 2 from 
B. These maps were generated from the same polypeptide ei- 
ther at different protein concentrations (Fig. 6 A, lane 2 vs. 
lane 5) or with a different background of contaminating pro- 
teins (Fig. 6 A, lane 2 vs. Fig. 6 B, lane 2). 

Figure 6. Chymotryptic peptide map comparisons of Drosophila 
NMPCL ATPase and Drosophila muscle myosin heavy chain. SDS 
gradient PAGE and Western blot analyses: blots were probed with 
anti-ATPase antiserum at 1:1,000, processed in the standard man- 
ner, and developed foi- 10-20 rain in the phosphatase stain reagents. 
Arrows to the left of A and B designate the marker positions indi- 
cated with corresponding molecular masses to the left of A. (,4) 
Lane 1 was loaded with 0.5 gg of uncut Drosophila ATPase; lane 
2, 5 txg of ATPase, digested with 40 l~g/ml chymotrypsin for 16 min 
at 37°C at a final protein concentration of 500 ttg/ml; lane 3, 5 gg 
of Drosophila muscle myosin heavy chain, digested with chymo- 
trypsin exactly as in lane 2; lane 4, 0.5 ttg of uncut heavy chain; 
lane 5, 2.5 ttg of Drosophila NMPCL ATPase digested for 16 rain 
at 37°C/an final protein concentration of 250 ttg/ml with 40 ttg/ml 
chymotrypsin; lane 6, 2.5 ttg of muscle myosin heavy chain treated 
exactly as described for ATPase in lane 5. (B) Lane 1 was loaded 
with 100 gg of total nuclear protein, uncut; lane 2 was loaded with 
500 ltg of total nuclear protein, digested for 8 min at 37°C at a final 
protein concentration of 500 ttg/rul, with 40 ~tg/ml chymotrypsin. 
Identical results to those shown in A and B were obtained with a 
variety of affinity-purified anti-ATPase antibody fractions (not 
shown). 

In contrast with what appear to be technical artifacts, small 
but reproducible differences in the absolute mobility of a 
group of the major fragments common to both maps are con- 
sistently observed. This mobility shift is most apparent 
among the major fragments identifiable in the 50-80-kD 
portion of the map and may reflect either a small size differ- 
ence in the different polypeptides from which these frag- 
ments were generated that was not well resolved in the high 
molecular weight region of the gel, or alternatively, the 
absence or inaccessibility of a single chymotryptic site in 
the NMPCL ATPase, leading to a ladder of partial cleavage 
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products all containing a small additional polypeptide seg- 
ment. Differential phosphorylation has also been found to 
produce comparable mobility shifts in one-dimensional pep- 
tide maps for otherwise identical forms of the Drosophila la- 
mins (Smith, D. E., and P. A. Fisher, manuscript in prepa- 
ration). 

Specificity of  AJ~inity-purified 
Anti-Drosophila ATPase Antibodies 

Before their use for immunocytochemical studies, affinity- 
purified anti-ATPase antibodies were characterized for cross- 
reactivity, both against the Drosophila NMPCL glycopro- 
tein, and against crude organismal and whole n u c l e a r  

extracts. Data shown in Fig. 1 demonstrate that the unfrac- 
tionated anti-ATPase antiserum had no demonstrable reac- 
tivity with the nuclear pore complex glycoprotein; similar 
results were obtained with the afffinity-purified antibodies. 
On the other hand, data published previously showed that al- 
though the anti-ATPase antiserum apparently recognized 
only a single polypeptide in the Drosophila NMPCL frac- 
tion, cross-reactivity was observed with a major cytoplasmic 
contaminant of ~45 kD (Fisher et al., 1982). We therefore 
tested the specificity of our affinity-purified antibodies in the 
context of a cell fractionation experiment as shown in Fig. 
7. Equivalent amounts of crude homogenate (lanes 1), post- 
nuclear supernatant (lanes 2), first nuclear wash supernatant 
(lanes 3), second nuclear wash supernatant (lanes 4), and 

Figure 7. Specificity of affinity-purified anti-Drosophila NMPCL ATPase antibodies. Drosophila embryos were homogenized and nuclei 
purified according to standard procedures (Fisher et al., 1982), and aliquots of each fraction generated during the purification analyzed 
by SDS gradient PAGE. Equivalent amounts of each fraction, defined in terms of the total amount of embryo starting material, were elec- 
trophoresed in each lane. One unit is defined as the amount of material derived from 1 lal of packed embryos (,~40-50 organisms) as previ- 
ously reported (Fisher et al., 1982). Three parallel gel segments were loaded and electrophoresed identically; four units of respective frac- 
tions were loaded in each lane. Approximate amounts of protein are indicated as follows. Lanes 1, 400 Itg of filtered crude homogenate; 
lanes 2, 380 ~g of postnuclear supernatant; lanes 3, 10 gg of first nuclear wash supernatant; lanes 4, 2 txg of second nuclear wash superna- 
tant; lanes 5, 20 gg of purified nuclear protein. (A) Coomassie Blue-stained gel segment; (B) parallel segment blot transferred to nitrocellu- 
lose and probed with pre-immune serum at 1:1,000; (C) parallel segment blot transferred to nitrocellulose and probed with affinity-purified 
anti-Drosophila NMPCL ATPase IgG at a concentration of specific antibody equivalent to 1:100 anti-ATPase antiserum. Blots in B and 
C were processed routinely and developed in the phosphatase stain reagents for 30 min. Marker positions to the left of A apply to all three 
panels. 
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l~gure 8. Affufity-purified anti- 
Drosophila NMPCL ATPase 
antibodies stain striated mus- 
cle. Muscle fibers were dis- 
sected from Drosophila lar- 
vae, fixed, and permeabilized 
as described in Materials and 
Methods. Phase-contrast (A, 
C, and E) and fluorescence 
(B, D, and F) micrographs of 
samples probed with anti- 
ATPase antibodies affinity 
purified using either the 
NMPCL ATPase polypeptide 
(A and B) or Drosophila mus- 
cle myosin heavy chain (C and 
D) as the specific affinity 
ligand. Affinity-purified IgG 
was at a specific antibody con- 
centration equivalent to 1:100 
anti-ATPase antiserum (based 
on quantitative Western blot 
comparison). The IgG was 
affinity purified exactly as de- 
scribed in the legend for Fig. 
2. (E and F) Specimen was 
probed with preimmune se- 
rum at 1:1130. Bar, 25 ~tm. 

whole nuclear lysate (lanes 5) were electrophoresed on an 
SDS polyacrylamide gradient gel. One segment was stained 
with Coomassie Blue (A); two parallel segments were blotted 
to nitrocellulose. The blot shown in B was probed with 
preimmune serum; nonspecific bands seen in lanes 1 and 2 
were also seen in the absence of primary antibody (not 
shown). The blot shown in C with probed with affinity- 
purified anti-NMPCL ATPase IgG at an equivalent specific 
antibody concentration of 1:100 anti-ATPase antiserum (10 
times the optimal concentration typically used). The same 
nonspecific bands seen in B, lanes I and 2, are also observed 
in C, lanes 1 and 2. The only specific bands observed in B 
are at the expected mobility position for NMPCL ATPase/ 
myosin heavy chain, and minor proteolytic breakdown prod- 
ucts thereof. The fractionation of this species is as would be 
anticipated. The nuclei are significantly enriched for the ATP- 
ase band, but a majority of apparently non-nuclear antigen 
is found in the postnuclear supernatant. (Controls probed 
with anti-lamin and anti-pore complex glycoprotein demon- 
strated that the postnuclear supernatant was substantially 
free of these specific nuclear markers [not shown]. This con- 
trol has previously been published [Filson et al., 1985].) The 
major contaminating antibody species previously identified 
in the crude antiserum (Fisher et al., 1982) were quantita- 
tively absent from the affinity-purified anti-ATPase IgG. 3 

Antibodies Directed against the Drosophila NMPCL 
ATPase Recognize Muscle Myosin In Situ 
Indirect immunofluorescence analyses were used to further 

3. It should be noted that by using antibodies for immunocytochemistry that 
have been pre-selected based on Western blot reactivity, we exclude the pos- 
sibility, a priori, that one type of antibody is responsible for the reactivity 
seen on blots whereas a second type of antibody that does not react well 
on blots is, on the other hand, more reactive with the "native" form of the 
antigen seen in situ and accounts for our immunofluorescence results. 

corroborate the identification of the Drosophila NMPCL 
ATPase as a form of myosin heavy chain. Three different 
anti-NMPCL ATPase antibody preparations were used to 
probe striated muscle tissue dissected from the buccal ap- 
paratus of the third instar larvae and smooth muscle tissue 
identified in cryosections of the larval digestive tract; only 
results obtained with striated muscle are shown. Unfraction- 
ated anti-ATPase antiserum (not shown), as well as IgG frac- 
tions affinity purified using either the NMPCL ATPase poly- 
peptide (Fig. 8, A and B) or muscle myosin heavy chain (Fig. 
8, Cand D) as specific affinity ligands, were all found to stain 
both types of muscle specifically and intensely. The staining 
patterns obtained with the three different primary antibody 
fractions used were indistinguishable. In striated muscle 
specimens, the expected pattern of myosin thick filament (A 
band) staining of sarcomeres was observed (Warn et al., 
1979). A non-immune IgG control was negative (Fig. 8, E 
and F). 

Indirect Immunofluorescent Localization of the 
NMPCL ATPase in Drosophila Larval Nuclei 

The intensity of immunofluorescent staining of muscle sar- 
comeres with anti-NMPCL ATPase IgG made it impossible 
to evaluate the possibility that there might also be relatively 
low level staining of muscle cell nuclei. However, nuclear 
staining was readily demonstrable using isolated nuclei, per- 
meabilized whole cells, and cryosections obtained from 
nonmuscle tissues of Drosophila third instar larvae. These 
results are shown in Figs. 9-11. Initial results obtained with 
whole serum were confirmed with afffinity-purified IgG pre- 
pared using either the SDS hydroxylapatite-purified Dro- 
sophila NMPCL ATPase polypeptide or Drosophila muscle 
myosin heavy chain as specific affinity ligands. (Before their 
use as affinity ligands, analyses of the SDS hydroxylapa- 
tite-purified NMPCL ATPase polypeptide and Drosophila 
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Figure 9. Indirect immunofluorescent localization of the NMPCL ATPase in extruded nuclei from Drosophila third instar larval salivary 
gland cells. Phase-contrast (A and C) and fluorescence (B and D) micrographs of extruded nuclei from early (A and B) and late (C and 
D) third instar larval salivary gland cells probed with afffinity-purified anti-Drosophila NMPCL ATPase IgG at a titre of specific IgG equiva- 
lent to unfractionated antiserum at 1:100 (based on quantitative Western blot comparison). The IgG was affinity purified exactly as described 
in the legend for Fig. 2 C. Identical results were obtained with the unfractionated serum at 1:100, and with similarly calibrated, affinity- 
purified IgG prepared using muscle myosin heavy chain as the specific affinity ligand (prepared as in Fig. 2 D). Phase-contrast (E) and 
fluorescence (F) micrographs of extruded nuclei from early third instar larvae probed with monoclonal anti-nuclear pore complex glycopro- 
tein antibodies AGP-26 and AGP-78 at approximately equivalent IgG concentrations to those in A-D, and as reported previously (Filson 
et al., 1985). Bar, 25 ~tm. 

muscle myosin heavy chain with monoclonal antibodies 
AGP-26 and AGP-78 showed these protein fractions to be en- 
tirely free of contaminant 188-kD nuclear pore complex gly- 
coprotein [data not shown].) Results obtained with all three 
anti-ATPase antibody fractions were identical. Only results 
obtained with IgG fractions affinity purified against the 
NMPCL ATPase polypeptide are shown except as indicated 
otherwise. 

Staining of nuclei with anti-NMPCL ATPase IgG was 
most readily demonstrable with isolated nuclei manually ex- 
truded from Drosophila larval salivary gland cells (Fig. 9). 
A "rim" staining pattern was observed, consistent with 
specific localization of the NMPCL ATPase to the nuclear 
envelope. The staining pattern observed was identical with 
both early (Fig. 9, A and B) and late (Fig. 9, C and D) third 
instar larval nuclei and was indistinguishable from that ob- 
served using monoclonal antibodies directed against the 188- 
kD Drosophila nuclear pore complex glycoprotein (Fig. 9, 

E and F). A similar immunofluorescence staining pattern 
was observed when permeabilized whole Drosophila larval 
cells were probed with anti-NMPCL ATPase IgG fractions; 
nucleolar staining was also apparent (Fig. I0, A and B) but 
was not consistently observed in all cell types and prepara- 
tions. Staining of permeabilized whole cells with monoclo- 
nal anti-nuclear pore complex glycoprotein antibodies is 
shown for comparison (Fig. 10, C and D). A non-immune 
control for the permeabilized whole cell experiments is 
shown in Fig. 10, E and F. The specific localization of the 
Drosophila NMPCL ATPase was confirmed using larval 
cryosections (Fig. U). Immunofluorescent staining with 
anti-NMPCL ATPase IgG was largely restricted to the re- 
gion of the nuclear envelope (Fig. 11, A-D). Weak im- 
munofluorescent staining of the cytoplasm and relatively 
more intense staining in the region of the plasma membrane 
were also observed. The nuclear envelope staining shown in 
Fig. 11 was identical with that reported for the Drosophila 
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Figure 10. Indirect immuno- 
fluorescent localization of the 
NMPCL ATPase in permeabi- 
lized whole cells from Dro- 
sophila third instar larval sali- 
vary glands. Phase-contrast (A) 
and fluorescence (B) micro- 
graphs of permeabilized whole 
cells obtained using affinity-pu- 
rified anti-Drosophila NMPCL 
ATPase IgG as in Fig. 9. Phase- 
contrast (C) and fluorescence 
(D) micrographs of permeabi- 
lized whole cells probed "with 
monoclonal anti-nuclear pore 
complex glycoprotein antibod- 
ies AGP-26 and AGP-78 as in 
Fig. 9. Phase-contrast (E) and 
fluorescent (F) micrographs 
of permeabilized whole cells 
probed with nonimmune serum 
at 1:100. Bar, 25 ~m. 

nuclear pore complex glycoprotein (Filson et al., 1985) and 
for the nuclear lamins (Smith and Fisher, 1984). 

The Drosophila NMPCL ATPase Is lmmunochemicaily 
Homologous to the Major ATPOse Identified by UV 
PhotoaJ~nity Labeling of the Rat Liver Nuclear Pore 
Complex-Lamina Fraction 

The Drosophila NMPCL ATPase had previously been 
shown to be nearly identical with a rat liver ATPase polypep- 
tide, identified by UV photoaffinity labeling of the rat liver 
nuclear pore complex-lamina (NPCL) fraction, on the basis 
of both SDS PAGE mobility and elution from an SDS 
hydroxylapatite column (Berrios et al., 1983a, b). Immuno- 

chemical homology, determined by Western blot analysis, is 
shown in Fig. 12. Affinity-purified anti-rat NPCL ATPase 
IgG cross-reacted with the Drosophila NMPCL ATPase as 
well as with both the rat muscle myosin heavy chain and with 
the Drosophila muscle myosin heavy chain. We think it 
noteworthy that the cross-reactivity of the anti-rat NPCL 
ATPase antibodies with rat muscle myosin heavy chain, al- 
though readily demonstrable, was significantly weaker than 
had been observed between anti-Drosophila NMPCL ATPase 
antibodies and Drosophila muscle myosin heavy chain (Fig. 
2). In fact, the anti-rat NPCL ATPase antibodies recognized 
Drosophila muscle myosin heavy chain nearly as well as they 
did rat muscle myosin heavy chain (Fig. 12). In reciprocal 
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Figure 11. Indirect immuno- 
fluorescent localization of the 
NMPCL ATPase in cryosec- 
tions of Drosophila third in- 
star larval salivary glands. 
Phase-contrast (A and C) and 
fluorescence (B and D) micro- 
graphs of Drosophila larval 
cryosections probed with affin- 
ity-purified anti-Drosophila 
NMPCL ATPase IgG as in 
Fig: 9. Fields from two in- 
dependent experiments are 
shown. Bar, 50 Ixm. 

experiments, affinity-purified anti-Drosophila NMPCL ATP- 
ase antibodies also reacted with the rat NPCL ATPase con- 
siderably more effectively than with rat muscle myosin heavy 
chain (data not shown). 

Indirect lmmunofluorescence Localization 
of the NMPCL ATPase in Simian COS-7 Cells and 
Onion Cells 
Affinity-purified anti-rat NPCL ATPase IgG was used to 
probe COS-7 cells that had been grown on coverslips, fixed, 
and permeabilized. Indirect immunofluorescence analyses 
demonstrated intense cytoplasmic staining in a pattern char- 
acteristic of cytoskeletal myosin (Fig. 13, A and B). Staining 
of nuclei, if any, was barely discernible. Immunofluorescent 
staining of the COS cell nuclei was readily observed, how- 
ever, when specimens were probed with anti-Drosophila 
NMPCL ATPase antibodies (Fig. 13, C and D). Curiously, 
the anti-Drosophila NMPCL ATPase antibodies were rela- 
tively, quite reactive with the mammalian nuclei but only 
stained the cytoskeletal myosin weakly. Initial immunofluo- 
rescence experiments with higher plants were performed 
using onion cells that had been cut with a scalpel so as to 
incise their cell walls, and then further permeabilized in the 
same way as whole animal cells. Nuclear rim fluorescence 
was readily observed when these cells were probed with the 
anti-Drosophila NMPCL ATPase antiserum (Fig. 13, E and 
F). Similar results were obtained with affinity-purified IgG 
fractions (data not shown). 

Discussion 

A high molecular weight ATPase polypeptide, previously 

identified as a component of the Drosophila nuclear ma- 
trix-pore complex-lamina fraction (Berrios et al., 1983a) 
has been shown to be closely related to myosin heavy chain. 
Indirect immunofluorescence analyses of Drosophila sali- 
vary gland cryosections have demonstrated that this myosin 
heavy chain-like ATPase appears to be largely restricted to 
the nuclear envelope. These results confirm the impression 
obtained by examining extruded nuclei and permeabilized 
whole cells from a number of Drosophila tissues. Indirect 
immunofluorescence staining of these specimens with 
anti-ATPase antibodies showed a "rim" fluorescence pattern 
characteristic of antigens concentrated in the nuclear enve- 
lope. Anti-Drosophila NMPCL ATPase antibodies have also 
been used to decorate nuclei from mammalian tissue culture 
cells and from onions. A similar rim staining pattern was 
seen, at least with the onion cell nuclei. Thus, by the criteria 
of cell fractionation and in situ localization, it appears that 
myosin heavy chain or a myosin heavy chain-like molecule 
is a specific polypeptide component associated with the nu- 
clear envelopes of higher animals and plants. 4 

A prevailing concern throughout these studies has been the 
possibility that the myosin heavy chain found associated with 

4. The data in this paper pertain entirely to the identification of a myosin 
heavy chain-like polypeptide as a nuclear envelope component. It now ap- 
pears that a 16-kD Drosophila NMPCL polypeptida described previously 
(Fisher et al., 1982) is immunochemically indistinguishable from an 18-kD 
Drosophila muscle myosin light chain. Immunofluorescence analysis of 
Drosophila skeletal muscle with the anti-16-kD polypeptide antiserum 
shows intense A band staining of sarcomeres similar to that seen with the 
anti-ATPase antibodies. Immunofluorescence analyses of larval cryosec- 
tions indicate that this putative nuclear myosin light chain, like the NMPCL 
ATPase, is largely restricted to the nuclear envelope. A manuscript describ- 
ing these results is in preparation. 
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Figure 12. Cross-reactivity 
between anti-rat NPCL ATP- 
ase IgG and rat muscle myo- 
sin heavy chain, Drosophila 
NMPCL ATPase, and Dro- 
sophila muscle myosin heavy 
chain. SDS hydroxyapatite- 
purified nuclear ATPase frac- 
tions from both rat liver and 
Drosophila embryos were 
electrophoresed in parallel 
with muscle myosin prepared 
from these same organisms 
on an SDS 7% polyacryl- 
amide gel. Lane I was loaded 
with 2-3 ~tg of rat skeletal 
muscle myosin. Lane 2 was 
loaded with 0.2-0.3 Ixg of 
purified rat NPCL ATPase 
(the amount loaded was lim- 
ited by availability of this ma- 
terial). Lane 3 was loaded 
with 2-3 gg of purified Dro- 
sophila NMPCL ATPase. 
Lane 4 was loaded with 2-3 
Ixg of Drosophila muscle my- 
osin heavy chain. The blot 
shown was probed with affin- 
ity-purified anti-rat liver 
NPCL ATPase IgG at a 
concentration of specific 
IgG equivalent to ~1:200 of 
the unfractionated antiserum. 
Blots were developed for 20 
min in the phosphatase stain 
reagents. 

isolated nuclei and nuclear structural protein subfractions 
represented a contaminant resulting from imperfect cell frac- 
tionation. This possibility cannot be completely excluded. 
However, the fact that in our initial UV photoaffinity labeling 
studies (Berrios et al., 1983a), a similar polypeptide was 
identifiable in nuclear envelope fractions prepared by a vari- 
ety of methods and from several different organisms, argues 
against such an artifact. This argument has been strength- 
ened by the in situ studies presented in this paper. Although 
redistribution of antigens during the processing and probing 
of samples for immunofluorescence analysis is difficult to 
rule out absolutely, we feel that the results obtained with lar- 
val cryosections are particularly compelling-these sections 
were cut from living tissue which had been flash-frozen in 
liquid nitrogen, and then fixed in either formaldehyde, 
paraformaldehyde, glutaraldehyde, or some combination of 
these fixatives as part of the thawing process. In this context, 
it is also relevant to note that the identification of a myosin 
heavy chain-like molecule as a nuclear polypeptide is not 
entirely novel (see, for example, Jockusch et al., 1973; 
LeStourgeon et al., 1975; Kuo et al., 1982). Our present 
results confirm these earlier observations. 

In establishing the in situ localization of the NMPCL 
ATPase polypeptide, it was necessary to demonstrate as 
rigorously as possible, the specificity of the antibody frac- 
tions used for immunolocalization. This was particularly the 
case in that the nuclear pore complex glycoprotein, an estab- 

lished component of the nuclear envelope (Gerace et al., 
1982; Filson et al., 1985), co-migrates with the NMPCL 
ATPase on one-dimensional SDS polyacrylamide gels. To 
assure that antibodies against the glycoprotein (or any other 
nuclear proteins for that matter) did not contaminate our 
anti-ATPase IgG, all analyses were repeated with several 
different affinity-purified IgG fractions prepared by im- 
munoadsorption to either the Drosophila NMPCL ATPase 
or Drosophila muscle myosin heavy chain. Both of these 
polypeptides were highly purified and characterized before 
their use as affinity ligands. The apparent nonreactivity of 
our initial antiserum with the nuclear pore complex glyco- 
protein (Fig. 1), and even greater specificity of the affinity- 
purified IgG fractions as assessed by Western blot analyses 
both of crude organismal lysates and whole nuclear fractions 
(Fig. 7) as well as hydroxylapatite-purified polypeptides (see 
Results), argues against spurious results due to uncertain an- 
tibody specificity. Recently, we have undertaken to generate 
a library of monoclonal antibodies directed against the Dro- 
sophila NMPCL ATPase. The first two of these antibodies 
to be characterized show in situ immunofluorescence reac- 
tivity with Drosophila nuclei, as well as with both smooth 
and striated muscle, that is identical with that observed with 
the polyclonal IgG fractions used in this report (Berrios, M., 
unpublished observation). 

Although all of our anti-Drosophila NMPCL ATPase an- 
tibodies stain Drosophila muscle tissue intensely, they show 
relatively little staining of cytoplasmic regions in nonmuscle 
cells. This may reflect a paucity of cytoskeletal myosin in the 
Drosophila cells and tissues examined to date. However, 
the anti-Drosophila NMPCL ATPase antibodies also stain 
nuclei from mammalian tissue culture cells relatively in- 
tensely, with little staining of cytoplasmic regions. In con- 
trast, anti-rat liver NPCL ATPase antibodies stain cytoplas- 
mic myosin in these cultured mammalian cells so intensely 
as to virtually obscure any nuclear staining that might be 
present. It seems, therefore, that the antigenic determinants 
accessible on the NMPCL ATPase in situ and recognized by 
the anti-Drosophila ATPase antibodies may not be accessi- 
ble on cytoskeletal myosin; similarly, it may be that antibod- 
ies that recognize cytoskeletal myosin are relatively unreac- 
tive with the nuclear envelope ATPase in situ. This might 
explain, at least to some extent, the failure of other workers 
to note staining of nuclei with anti-myosin antibodies. This 
would also imply that the nuclear envelope ATPase polypep- 
tide is distinguishable, at least immunocytochemically, from 
cytoplasmic myosin heavy chain. It remains to be determined 
whether or not the NMPCL ATPase represents a previously 
unidentified polypeptide species, or rather, is simply a 
cytoskeletal myosin heavy chain localized in the nuclear 
envelope. 

In Drosophila melanogaster, only a single gene coding for 
myosin heavy chain has been found (Rozek and Davidson, 
1983; Bernstein et al., 1983). The similarity in the peptide 
maps between the NMPCL ATPase and the muscle myosin 
heavy chain is consistent with this. However, this gene may 
actually encode several protein variants. Northern blot anal- 
yses have demonstrated the existence of at least three and 
perhaps four or more different transcripts deriving from the 
single myosin heavy chain gene (Rozek and Davidson, 1983; 
Bernstein et al., 1983); it seems possible that the differences 
observed in CNBr and chymotryptic map comparisons of the 
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Figure 13. Indirect immunofluorescent localization of the NPCL/NMPCL ATPase in simian COS-7 cells and onion cells. Phase-contrast (,4, C, 
and E) and fluorescence (B, D, and F) micrographs. Fixed and permeabilized COS-7 cells were probed with affinity-purified anti-rat NPCL 
ATPase IgG (A and B) or affinity-purified anti-Drosophila NMPCL ATPase IgG (C and D) at approximately equivalent concentrations based 
on relative Western blot reactivity with species-homologous antigens, and for the anti-Drosophila ATPase IgG, exactly as in Figs. 9--11. Mechani- 
caUy disrupted onion ceils were probed with anti-Drosophila NMPCL ATPase antiserum diluted at 1:100 (E and F). Bar in D (A-D), 25 lam. 
Bar in F (E and F), 25 gm. 

NMPCL ATPase with the muscle myosin heavy chain reflect 
differences in primary protein sequence that result from 
translation of different transcripts. 

In contrast with Drosophila, preliminary CNBr peptide 
map comparisons between rat muscle myosin heavy chain 
and the rat NPCL ATPase reveal largely, though not entirely 
dissimilar patterns (data not shown). Immunochemical com- 
parisons of the rat liver ATPase with rat skeletal muscle myo- 
sin heavy chain have also shown relatively poor homology. 
In fact, the cross-reactivity between the rat NPCL ATPase 
polypeptide and skeletal muscle myosin heavy chain is com- 
parable to the cross-reactivity between the rat NPCL ATPase 
and the Drosophila NMPCL ATPase (or for that matter, the 
Drosophila muscle myosin heavy chain). Given the evidence 
for multiple myosin heavy chain genes in mammals (see, for 
example, Whalen et al., 1982), it seems probable that the rat 

NPCL ATPase is encoded by a gene distinct from those cod- 
ing for skeletal muscle myosin heavy chains. 

The results that have been presented in this paper are of 
a largely descriptive nature. It is therefore impossible to at- 
tach any certain functional significance to our observations. 
At least one role that could reasonably be ascribed to myosin 
localized in the nuclear envelope is in conferring mobility to 
nuclei. A number of developmental processes, particularly 
in Drosophila, involve wholesale nuclear migrations (Zalo- 
kar and Erk, 1976) for which a contractile apparatus might 
be necessary. The ability of myosin-coated beads to actually 
traverse actin cables in vitro (Sheetz and Spudich, 1983) 
makes plausible the notion that a similar process may account 
for nuclear mobility in vivo. 

It has previously been proposed that a contractile appara- 
tus may similarly be required for the nucleocytoplasmic ex- 
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change of macromolecules in vivo (LeStourgeon, 1978). Al- 
though a number of mechanisms might be envisioned, 
detailed speculation seems, in most respects, premature. 
There is perhaps one exception. In examining current models 
of nuclear pore complex ultrastrncture (Unwin and Milligan, 
1982), we have noted that the so-called annular subunits of 
both the nuclear and cytoplasmic faces of the nuclear pore 
complex are each nearly identical in size with the head of the 
native myosin molecule. The tail of the molecule is of 
sufficient length and flexibility to span the nuclear envelope 
and form the lumenal walls of the nuclear pore. Mechanisms 
whereby the energy of ATP hydrolysis in the myosin head 
could be coupled to the propulsion of macromolecules 
through the pore may also be proposed. In its simplest form, 
this model might therefore posit that there are eight myosin 
molecules in octagonal array with their heads facing the 
cytoplasm and their tails pointing radially inward and down 
toward the nucleus. These myosin molecules would be ar- 
ranged tail-to-tail with eight myosin molecules of opposite 
orientation; that is, with their heads on the nucleoplasmic 
side of the nuclear envelope and with their tails pointing radi- 
ally inward and up toward the cytoplasm. The bidirectional 
transport of macromolecules through the pore could be ac- 
complished by a peristaltic wave of contraction generated by 
ATP hydrolysis in the myosin heads at the margins of the nu- 
clear pore complex. A similar, though structurally less ex- 
plicit hypothesis has previously been put forth by LeStour- 
geon (1978). The recent report of Schindler and Jaing (1986) 
lends direct experimental support to this and related hypoth- 
eses. Alternative hypotheses remain to be tested. 
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