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Abstract

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is rapidly replacing chromatin
immunoprecipitation combined with genome-wide tiling array analysis (ChIP-chip) as the preferred approach for mapping
transcription-factor binding sites and chromatin modifications. The state of the art for analyzing ChIP-seq data relies on
using only reads that map uniquely to a relevant reference genome (uni-reads). This can lead to the omission of up to 30%
of alignable reads. We describe a general approach for utilizing reads that map to multiple locations on the reference
genome (multi-reads). Our approach is based on allocating multi-reads as fractional counts using a weighted alignment
scheme. Using human STAT1 and mouse GATA1 ChIP-seq datasets, we illustrate that incorporation of multi-reads
significantly increases sequencing depths, leads to detection of novel peaks that are not otherwise identifiable with uni-
reads, and improves detection of peaks in mappable regions. We investigate various genome-wide characteristics of peaks
detected only by utilization of multi-reads via computational experiments. Overall, peaks from multi-read analysis have
similar characteristics to peaks that are identified by uni-reads except that the majority of them reside in segmental
duplications. We further validate a number of GATA1 multi-read only peaks by independent quantitative real-time ChIP
analysis and identify novel target genes of GATA1. These computational and experimental results establish that multi-reads
can be of critical importance for studying transcription factor binding in highly repetitive regions of genomes with ChIP-seq
experiments.
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Introduction

The introduction of next generation sequencing has enabled a

myriad of creative ways to answer genome-wide questions.

Chromatin immunoprecipitation coupled with high-throughput

next generation sequencing (ChIP-seq) has become a powerful

technique for large scale profiling of transcription factor binding

and chromatin modifications [1–5] and is offering a powerful

alternative to ChIP on microarrays (ChIP-chip) [6–9]. In ChIP-

seq, DNA fragments are sequenced directly instead of being

hybridized on an array. Although there are multiple platforms for

high-throughput sequencing, the Illumina sequencer, which works

by sequencing a small region (25 to 100 bp) from one or both ends

of each fragment, is commonly used for ChIP-seq experiments. A

ChIP-seq experiment generates millions of short reads/tags. The

first step of data analysis is to map reads to the reference genome

and retain reads that map to unique locations (uni-reads) [10–12].

Although constraining the analysis to uni-reads by discarding

reads that map to multiple locations (multi-reads) leads to reduced

coverage and sequencing depth, this may not render a serious

problem in most cases. This is because many uni-reads might be

adjacent to discarded multi-reads and can lead to identification of

underlying peaks. However, discarding multi-reads poses a

significant challenge for identifying binding locations residing in

genomic regions that have been duplicated over evolutionary time

since these regions will not have many uni-reads.

Shortcomings of discarding multi-reads have been recognized in

transcriptome sequencing (RNA-Seq) [13–18]. These studies

demonstrated that discarding multi-reads leads to inaccurate

estimation of expression of genes that reside in repetitive regions.

Gene repetitiveness may be due to either low complexity segments

or recent gene duplications. Numerous studies have highlighted

the biological importance of segmental duplications [19,20].

Duplicated genes could retain their original functions or acquire

new functions by changes in coding sequences and regulatory

regions [21,22]. [23,24] showed that segmental duplications in

human genomes are selectively enriched for genes associated with

disease susceptibility, immunity, and defense. Overall, these
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studies highlighted that annotating segmental duplications in terms

of transcription factor binding might aid in understanding

functions of genes within these regions. In addition, retro-

transposon elements, a major class of transposable elements which

duplicate through RNA intermediates that are reverse transcribed

and are inserted at new genomic locations, also carry transcription

factor binding sites that regulate gene expression [25,26]. For

example, [27] showed with in vivo ChIP experiments that

transcription factor p53 binds to human endogenous retrovirus

(ERV) long terminal repeats (LTR), that are 100 bp to 5 kb long,

with a p53 binding site.

There has been little work in the literature that investigates the

effects of multi-reads in ChIP-seq data analysis. [12] provided an

example of how discarding multi-reads could result in potential

false negatives. [10] briefly discussed that by randomly assigning

multi-reads to one of their mapping locations, one can increase the

number of detected binding sites. [28] recently studied enrichment

of the known repetitive elements as described by the Repbase

database [29] and the RepeatMasker [30] scans in ChIP-seq data

of histone modifications. Similarly, [31] developed an algorithm

for genomic mapping of ambiguous tags which increased read

coverage for highly repetitive sequences. However, neither of these

thoroughly investigated the effects of multi-reads on overall peak

(binding location) detection. Currently, none of the popular ChIP-

seq data analysis software [10–12,32–42] takes multi-reads into

account.

We investigate the effects of discarding multi-reads on two

different ChIP-seq datasets: STAT1 binding in interferon-c-

stimulated HeLa S3 cells [10] and GATA1 binding in mouse

G1E-ER4 cells [43]. We develop a method for utilizing multi-

reads and illustrate that incorporation of multi-reads can lead to

an increase of up to 25% in the sequencing depth and identify high

quality novel peaks. Location analysis of these peaks reveals that a

large fraction of them reside in close proximity to promoters and in

genic regions within segmental duplications of the genomes.

Furthermore, true peaks are highly enriched for retrotransposon

elements such as LINE (long interspersed repetitive elements) and

LTR (long terminal repeats). Therefore, they are likely to be

critical for constructing comprehensible genetic networks with

members in repetitive regions of the genomes. Our computational

experiments demonstrate that multi-reads can not only lead to

detection of novel peaks in low mappable regions but also improve

peak identification in moderate to highly mappable regions. We

support our computational experiments by experimental valida-

tion of a subset of GATA1 peaks that were only identifiable when

multi-reads were incorporated. This leads to identification of novel

GATA1 target genes.

Results

Multi-reads significantly increase the sequencing depth
of ChIP-seq data with 30 to 75mer tags

The two datasets, STAT1 binding in interferon-c-stimulated HeLa

S3 cells [10] and GATA1 binding in mouse GATA1-null erythroid

cells (G1E-ER4) after genetic complementation with a conditionally

active allele of GATA1 (ER-GATA1) [43], and their input DNA

controls were downloaded from GEO (http://www.ncbi.nlm.nih.gov/

geo/) (accession numbers GSM320736, GSM320737, GSM453997,

GSM453998 for STAT1 ChIP and input, and GATA1 ChIP and

input samples, respectively). Data from different lanes within an

experiment were pooled together. The STAT1 data set has a higher

sequencing depth than most published ChIP-seq data sets and is

therefore especially suited for studying the effects of multi-reads. Both

datasets utilize single end short reads (30 mers for STAT1, 36 mers for

GATA1), which is still the current state of the art for ChIP-seq

experiments.

We devised a method for allocating multi-reads to a given

reference genome. This is motivated by the generative statistical

model from [14] that addressed read mapping uncertainty in a

principled manner within the context of RNA-Seq. In Table 1 are

the total number of reads, percentages of aligning reads, uni-reads,

multi-reads, and the rescued-reads (gain in sequencing depth by

incorporating multi-reads) for both of the datasets we study. We

observe that utilizing multi-reads leads to an increase of 22%

(25%) and 17% (19%) in the sequencing depths of STAT1 and

GATA1 ChIP (input) samples, respectively. In our mapping

procedure, reads mapping to more than 100 locations in the

reference genome are discarded due to computational reasons.

Despite this, the increase in sequencing depths due to multi-reads

is substantial for short read datasets. The last four rows in Table 1

present results for longer reads (unpublished longer read datasets

are courtesy of Prof. Qiang Chang at UW Madison). Summaries

on MECP2-SET ChIP and input datasets (75 mer single end tags

(SETs) from mouse) indicate that multi-reads still constitute a

significant issue even with longer reads and they can lead to an

increase in sequence depth comparable to the increase in short

read datasets. The last two rows are from an experiment with

75 mer paired-end tags (PETs) in mouse. Although there is a

significant drop in the percentage of multi-reads, utilizing these

reads increases the sequencing depth by 7% for these 75 mer

PETs datasets.

Apparent mappability and GC content sequence biases
in multi-read samples

We next evaluated the effect of increase in sequencing depth

due to multi-reads in terms of peak detection. We started our

exposition by checking for known systematic biases such as

mappability and GC content in ChIP-seq data [10,44]. We

divided the genome into small non-overlapping intervals, i.e., bins,

of size 50–250 bp as in CisGenome [11] for the downstream

analysis of peak detection. We excluded bins which consisted of

only the ambiguous base N. Then, for each factor, two bin-level

Author Summary

Annotating repetitive regions of genomes experimentally
is a challenging task. Chromatin immunoprecipitation
followed by high-throughput sequencing (ChIP-seq) pro-
vides valuable data for characterizing repetitive regions of
genomes in terms of transcription factor binding. Al-
though ChIP-seq technology has been maturing, available
ChIP-seq analysis methods and software rely on discarding
sequence reads that map to multiple locations on the
reference genome (multi-reads), thereby generating a
missed opportunity for assessing transcription factor
binding to highly repetitive regions of genomes. We
develop a computational algorithm that takes multi-reads
into account in ChIP-seq analysis. We show with compu-
tational experiments that multi-reads lead to significant
increase in sequencing depths and identification of
binding regions that are otherwise not identifiable when
only reads that uniquely map to the reference genome
(uni-reads) are used. In particular, we show that the
number of binding regions identified can increase up to
36%. We support our computational predictions with
independent quantitative real-time ChIP validation of
binding regions identified only when multi-reads are
incorporated in the analysis of a mouse GATA1 ChIP-seq
experiment.

Multi-Read Analysis of ChIP-Seq Data
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datasets were created using (1) uni-reads only (UR sample) and (2)

both uni-reads and multi-reads (MR sample). Further preprocess-

ing involved extending each read to the expected fragment length

(200 bp for both datasets) as in [10] and summarizing the total

number of reads overlapping each bin. The bin size was selected to

match the expected fragment length. Multi-reads contributed

fractional counts to multiple locations and these counts were

proportional to their estimated alignment probability at each

location. The final bin counts were rounded to the nearest integer

for modeling purposes since fractional counts were not continuous

enough for fitting with a continuous distribution such as the

Gamma distribution. We also considered applications of the

ceiling and floor functions to fractional counts as alternatives to

rounding. These provided upper and lower bounds on the number

of reads obtainable from fractional counts, respectively. The

overlap of the peak sets under these three strategies were more

than 95%. Matching input control samples of the ChIP-seq data

were processed similarly to generate matching UR and MR input

samples.

Figures 1A, B display the bin-level average read counts against

mappability and GC content for the STAT1 UR and MR samples

(Figure S2 displays similar plots for GATA1). Each data point is

obtained by averaging the read counts across bins with the same

mappability or GC content. It is apparent from Figure 1A that the

MR sample still exhibits mappability bias, although to a lesser

extent compared to the UR sample in the low mappability range.

The GC content biases of both of the samples are comparable.

These results indicate that peak detection in the MR samples

might also benefit from the use of methods that take into account

these apparent sequence biases.

Multi-read samples reveal significant numbers of
additional peaks

We analyzed UR and MR bin-level data for each experiment

using our recently developed method MOSAiCS [44] to identify

peaks. This method accounts for non-specific sequence biases such

as mappability [10] and GC content [45]. It performs comparable

to or better than some of the commonly used peak finders such as

MACS [32], CisGenome [11], and PeakSeq [10]. Another reason

for using MOSAiCS is that currently none of the peak finders

readily allow incorporation of multi-reads. The MOSAiCS model

fits the UR and MR samples well. Figures S3 and S4 display the

goodness of fit (GOF) plots for chromosome 4 of STAT1 and

chromosome 9 of GATA1, respectively. Similar fits are observed

for other chromosomes. Since MOSAiCS explicitly incorporates

mappability as an explanatory variable in a regression framework,

we were able to confirm the decrease in the effect of mappability

on the model fit of the MR samples by comparing the estimated

mappability coefficients in the UR and MR samples. The average

coefficient estimates for mappability across chromosomes de-

creased from 2.94 (UR sample) to 1.95 (MR sample) for STAT1

and 3.72 (UR sample) to 2.75 (MR sample) for GATA1.

The final peak lists were obtained by controlling the false

discovery rate (FDR) at level 0.05 and filtering out bins with less

than 30 ChIP tag counts. Conclusions presented below remain

robust to various choices of this tag count threshold. Since the

number and the quality of the peaks rely on the FDR level used,

we first implemented a sensitivity analysis to evaluate the recovery

rate of the UR and MR analysis peaks. We declared peaks at FDR

levels of 0.005, 0.01, 0.05, 0.1, and 0.2 and classified the peaks

detected at FDR level of 0.005 as UR-only (specific to UR

analysis), MR-only (specific to MR analysis), and common peaks.

This resulted in 23424 and 3378 MR-only peaks for STAT1 and

GATA1, respectively. Then, we evaluated the percentage of the

MR-only peaks identified at FDR level of 0.005 and are recovered

by the UR analysis at higher FDR levels. We did not calculate the

recovery rate of UR-only peaks by the MR analysis since the

numbers of UR-only peaks were negligible (2 for STAT1 and 10

for GATA1). Figure 2 displays the results of the sensitivity analysis.

As the FDR level increases, the UR analysis can at most recover

30% and 5% of the MR-only peaks for STAT1 and GATA1,

respectively.

Figures 3A, B display two examples of MR-only peaks with their

MR ChIP, MR input, UR ChIP, UR input, and mappability

tracks. The first is a STAT1 peak (Figure 3A) that resides in a

poorly mappable region with a peak level mappability of 0.04 and

therefore cannot be recovered by the UR analysis that relies only

on uni-reads. The second is a GATA1 peak (Figure 3B) and is

located in a region with moderate mappability (average peak level

mappability of 0.72). It is not identified as a peak in the UR

analysis; however since the MR analysis boosts up the tag count of

the region by utilizing multi-reads, this peak reaches the required

statistical significance level in the MR sample. Of the MR-only

STAT1 and GATA1 peaks, 32% and 74% are located in regions

with mappability below 0.5, therefore these peaks are not likely to

be detected by UR analysis regardless of the sequencing depth.

To further quantify the advantage of incorporating multi-reads

beyond novel peaks that are not identifiable with only uni-reads,

we performed the following computational experiment for the

Table 1. Impact of multi-reads on sequencing depth.

Dataset # of reads % Alignable % Uni-reads % Multi-reads % Rescued

STAT1(C) 76,913,219 36.64 29.92 6.72 22.46

STAT1(I) 49,771,625 47.90 38.31 9.59 25.03

GATA1(C) 33,124,216 79.27 67.81 11.46 16.90

GATA1(I) 20,711,007 82.37 69.38 12.99 18.73

MECP2-SET(C) 15,253,906 79.23 65.06 14.16 21.76

MECP2-SET(I) 21,870,009 90.35 78.14 12.21 15.63

MECP2-PET(C) 18,622,331 68.55 64.24 4.31 6.70

MECP2-PET(I) 18,498,899 84.26 78.92 5.34 6.77

In the first column, ‘‘(C)’’ and ‘‘(I)’’ refer to ChIP and input samples, respectively. Percentages in the third to fifth columns are calculated with respect to the total number
of reads (the second column). The actual numbers of reads are provided in Table S1. ‘‘% Rescued’’ in the last column is obtained as the number of multi-reads divided by
the number of uni-reads and it indicates the gain in sequencing depth due to multi-reads.
doi:10.1371/journal.pcbi.1002111.t001

Multi-Read Analysis of ChIP-Seq Data
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Figure 1. (a) Mappability bias in the STAT1 UR and MR samples. Mean tag counts against mappability (Def 1 - mappability for uni-reads) and
GC content in UR and in MR samples, respectively. The patterns observed are typical of ChIP-seq data with 36 mer to 75 mer tags. Figure S2 displays
similar patterns for GATA1 UR and MR samples. Mappability plots utilizing Def 2 for the MR samples are provided in Figures S1a and S2a (right panels)
and exhibit similar patterns. (b) GC content bias in the STAT1 UR and MR samples.
doi:10.1371/journal.pcbi.1002111.g001

Multi-Read Analysis of ChIP-Seq Data
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STAT1 sample which had higher sequencing depth and was

therefore more suitable for this experiment. The idea is similar to

the study of saturation in ChIP-seq experiments where the number

of identified peaks is plotted as a function of the sequencing depth

[10,37]. We defined peaks identified using all the uni-reads as the

UR gold standard peak set. Then, we constructed smaller datasets

by sampling from uni-reads and multi-reads and identified peaks

using these datasets with lower sequencing depths. Figure 4 plots

the percentage of the gold standard UR peaks identified at lower

sequencing depths by the UR and MR analysis. We observe that

utilizing multi-reads recovers UR gold standard peaks at a faster

rate than using only uni-reads. In particular, peak calling using

MR sample recovers all the UR gold standard peaks using only

80% of the full dataset. This experiment further solidifies the gains

in sequencing depth in Table 1 by illustrating the practical utility

of multi-reads in terms of peak finding. When we performed a

similar experiment using MR peaks from the full dataset as the

gold standard peak set, a significant percentage of MR-only peaks

were not detected using only UR sample at any sequencing depth

(Figure S5).

For the rest of the comparisons among the MR and UR peak

sets, we focused on the highest quality peaks called at FDR level of

0.05 by further filtering UR-only or MR-only peaks. A peak

identified only in the MR (UR) analysis is labelled as an MR-(UR-

)only peak if its corresponding UR (MR) read count is less than 20

making it highly unlikely for the UR (MR) analysis to identify this

peak as a high quality peak. This filtering is further justified by

examining MR-only peaks with low and high UR ChIP read

counts in more detail. MR-only peaks with low UR ChIP read

counts exhibit stronger signal than those with high UR ChIP read

counts in the MR sample. Among the STAT1 MR-only peaks, the

peaks with low UR ChIP read counts are ranked higher than MR-

only peaks with high UR ChIP read counts based on their

posterior probability of ChIP enrichment in the MR peak list.

Moreover, the average log base 2 bin-level ratio of ChIP over

input tag counts of MR-only peaks with low UR ChIP tag counts

is 1.72 while those of MR-only peaks with high UR ChIP tag

counts is 0.89 (enrichments are computed after scaling ChIP and

input to the same total sequencing depth within each sample).

Results are similar for the GATA1 MR-only peaks (data not

shown).

In addition to the above quality filtering for the UR-only and

MR-only peaks, we also screened the MR-only peaks based on

their shared multi-reads with other MR peaks. This is to avoid

double counting and inclusion of MR-only peaks that are in low

mappable segmental duplications. We classified MR-only peaks

into three classes: peaks that share high multi-read similarity with

another peak (Type-I), peaks that share low multi-read similarity

with another peak (Type-II), and peaks that do not share any

multi-reads with another peak (Type-III). Type-I MR-only peaks

arise if two peaks share a majority of their multi-reads with similar

allocation weights and can be potential artifacts of segmental

duplications. We observed that 18.8% and 27.6% of the MR-only

peaks do not share any multi-reads with another peak (Type-III),

for STAT1 and GATA1, respectively. For MR peaks that are also

identifiable by uni-reads, these percentages increase to 54.1% and

92.6%. Of the remaining peaks, only 17.3% (STAT1) and 12.3%

(GATA1) have a similarity score greater than 0.5 with another

peak. We investigated the allocation weights of multi-reads among

peaks sharing multi-reads with formal hypothesis testing utilizing

both paired t-test and Wilcoxon signed-rank test. This investiga-

tion revealed that shared multi-reads might contribute significantly

differently to each peak pair despite overall high multi-read

similarity. We classified the peaks that are not Type-III as Type-I

Figure 2. Sensitivity analysis. ‘‘Recovered MR-only peaks’’ refer to MR-only peaks that are defined at FDR level of 0.005 and are detectable by the
UR analysis at higher FDR levels.
doi:10.1371/journal.pcbi.1002111.g002

Multi-Read Analysis of ChIP-Seq Data
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Figure 3. (a) STAT1 MR-only peak in a poorly mappable region. (b) GATA1 MR-only peak in a moderately mappable region. Tag
count profiles of MR-only peaks with corresponding mappability scores. Peak regions are depicted with black bars.
doi:10.1371/journal.pcbi.1002111.g003

Multi-Read Analysis of ChIP-Seq Data
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and Type-II as follows. Peak i is labeled as Type-II if (a) the sum of

its fractional counts, i.e., allocation weights from multi-reads, that

do not overlap with peak j is at least 20; or (b) it has at least 20 uni-

reads; or (c) its ratio of sum of fractional counts from unshared

versus shared multi-reads is at least 2. Although criterion (a)

accounts for 97.2% of the Type-II peaks, we decided to include (b)

and (c) based on visual inspection of the multi-read allocation of

the peaks. Illustrative examples of scatter plots of allocation

weights of MR-only peaks are provided in Figures S6-S7 (Type-II)

and Figures S8-S9 (Type-I). As a result, we observed that only

21.8% and 24.4% of the STAT1 and GATA1 MR-only peaks are

Type-I peaks. Moreover, 75.9% (STAT1) and 87.4% (GATA1) of

the peaks with a similarity larger than 0.5 with another peak are

classified as Type-I peaks. In contrast, only 13.5% (STAT1) and

22.6% (GATA1) of the peaks with a similarity smaller than 0.5 are

Type-I peaks. Table 2 summarizes the final number of peaks

retained in the subsequent downstream analysis after discarding

Type-I MR-only peaks. There are no UR-only peaks and multi-

reads identify 11% and 36% more high quality peaks for STAT1

and GATA1, respectively. In order to assess the robustness of these

results to the peak calling algorithm used, we implemented the

conditional binomial (CB) test of CisGenome [11] to handle multi-

reads. We processed the CB peaks identified at FDR level of 0.05

with the same procedure applied to MOSAiCS peaks and arrived

at the same conclusion: although a large fraction of the peaks are

common between UR and MR analysis, MR analysis identifies a

significant number of additional peaks. Detailed results of this

analysis are in the Table S2. We further compared GATA1 MR-

only peaks detected by MOSAiCS with the MACS peaks that

were reported in [43] and utilized only uni-reads. Only 127 out of

2146 MOSAiCS MR-only peaks (6%) were in the MACS peak list.

In contrast, 97% of MOSAiCS common peaks (5878 out of 6038)

were in the MACS list. The 127 MR-only peaks that were

detectable by MACS had an average mappability of 0.72 which

was significantly higher than the average mappability of 0.31 for

the peaks that were not detectable (p{valuev2:2e{16). Further-

more, these MACS detectable MR-only peaks had a median

ranking of 851 with an interquartile range (IQR) of 609 among the

2146 MR-only peaks, indicating that they are not the strongest

signal MR-only peaks. These peaks were also detectable by the

MOSAICS analysis of the UR sample at a higher FDR level.

MR-only peaks are from low mappability regions of the
genomes but have significant enrichment for known
consensus sequences

Figure 5A displays boxplots of mappability (left panel) and GC

content (middle panel) of STAT1 common and MR-only peaks

(Figure S10 shows the results for GATA1 peaks). The GC content

levels are comparable between MR-only and common peaks;

however, as expected, MR-only peaks cover a much broader range

of mappability and have, on average, lower mappability than

common peaks. Next, we investigated how the MR-only peaks

would be affected by using longer reads because larger fractions of

Figure 4. Saturation plot of the STAT1 sample. Percentage of STAT1 UR gold standard peaks recovered by MOSAiCS using sub-sampled UR and
MR samples with lower sequencing depths. x-axis refers to the percentage of reads sampled from the full dataset.
doi:10.1371/journal.pcbi.1002111.g004

Table 2. Summary of UR and MR peaks detected by
MOSAiCS.

Dataset
# of UR-only
peaks

# of common
peaks

# of MR-only
peaks

STAT1 0 23175 2546

GATA1 0 6038 2146

doi:10.1371/journal.pcbi.1002111.t002

Multi-Read Analysis of ChIP-Seq Data
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Figure 5. (a) Mappability, GC content, and STAT1 motif occurrence of the common and MR-only peaks. Common refers to common
peaks identified by both the MR and the UR samples; MR-only peaks are unique to the MR sample. For the motif occurrence panel, y-axis represents
the proportion of peaks with the consensus binding site. (b) Mappability scores of GATA1 peaks with respect to 75 mer SETs vs. 36 mer
SETs. Scatter plot of mappability of GATA1 MR-only peaks with respect to 75 mer SETs versus 36 mer SETs. The black line is the smooth fit through
all the data points. A colored version of the plot where shading in the grids represent frequency of data is provided in the Figure S11.
doi:10.1371/journal.pcbi.1002111.g005

Multi-Read Analysis of ChIP-Seq Data
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genomes become uniquely mappable when longer reads are

utilized [10]. To assess this, we studied how mappability changes

when 75 mer SETs are used instead of 36 mer SETs. Figure 5B

displays the scatter plot of mappability scores of GATA1 MR-only

peaks (identified using 36 mer SETs) according to 75 mer and

36 mer SETs. Even though mappability improves significantly

when longer reads are utilized, indicating that these peaks might

eventually become detectable with the uni-read analysis, more

than 50% of the GATA1 MR-only peaks still reside in low

mappability regions even with 75 mer SETs. The median

mappability of GATA1 MR-only peaks increase from 0.27

(IQR = .40) to 0.67 (IQR = .59) when 75 mer SETs are used

instead of the 36 mer SETs.

Next, we compared enrichment ratios of the peaks by taking an

average of bin-level ChIP to input ratios in the log base 2 scale. We

observe that, overall, common peaks tend to have higher

enrichment ratios compared to MR-only peaks; average enrich-

ments, i.e., fold-changes in the log base 2 scale, are 2.05 (2.89) and

1.72 (2.03) for STAT1 (GATA1) common and MR-only peaks,

respectively. However, further analysis reveals that 77% and 38%

of the GATA1 MR-only peaks have enrichment ratios larger than

1 and 2, respectively. For STAT1, 68% and 30% of the MR-only

peaks fall in these categories.

We also compared the peak sets in terms of their enrichments for

the known binding consensus sequence of the corresponding factors.

We scanned the STAT1 peaks with FIMO [46] using the two known

STAT1 position weight matrices from JASPAR [47]. For GATA1,

we counted the occurrence of the consensus motif [A/T]GATA[A/

G] [48] in the peak regions. Right panel of Figure 5A displays the

STAT1 motif occurrences of common and MR-only peaks. Figure

S10 (right panel) exhibits similar results for GATA1. Motif

enrichments in the MR-only peak sets are lower compared to the

enrichment observed for the common peaks. This is potentially due to

uncertainty in the mapping of reads that contribute to these peaks.

However, the observed motif enrichments in both the STAT1 and

the GATA1 MR-only peak sets are much higher than one would

expect by chance (both p{valuesvv1e{4).

Genome-wide annotation reveals enrichment of MR-only
peaks in segmental duplications

As we discussed in the Introduction, there is a growing literature

that highlights the biological importance of segmental duplications

[23,24,49]. One of the findings is that segmental duplications are

enriched for genes involved in immunity and, therefore, could be

potential targets for transcription factor binding. We next assessed

to what extent common and MR-only peaks appear in segmental

duplications of the genomes. For this analysis, we utilized

segmental duplication data from the UCSC Genome Browser

database [50] and carried out a location analysis on the peak lists.

Pie charts in Figure 6A display location analysis results for STAT1

and GATA1, respectively. MR analysis identifies peaks in all

categories. The percentages of MR-only peaks that are in the

‘‘None’’ category are not drastically different than that of the

common peaks. A large percentage of MR-only peaks reside in

segmental duplication regions (54.91% for STAT1 and 60.58%

for GATA1) with a substantial amount located in promoter

(10.60% and 4.19% for STAT1 and GATA1, respectively) and

genic regions of genes (15.71% and 14.17% for STAT1 and

GATA1) within these segmental duplications. Next, we annotated

the peaks in the "None" category in terms of interspersed repeats

and low complexity DNA sequences in the human and mouse

genomes utilizing RepeatMasker [30]. For STAT1, 67% of the

8782 common peaks and 95% of the 667 MR-only peaks map to

at least one of these types of repeats. In particular, MR-only peaks

are enriched in the long terminal repeats (LTR) category

compared to common peaks. Percentages of peaks in the LTR

category are 22.6% and 58.5% for the common and MR-only

peaks, respectively. For GATA1, 54% of the 1347 common peaks

and 76% of the 526 MR-only peaks map to at least one of these

types of repeats. In addition, MR-only peaks are enriched in the

long interspersed repetitive elements (LINE) (9.3% of the common

peaks, 22.6% of the MR-only peaks) and LTR (16.5% of the

common peaks, 45.6% of the MR-only peaks) categories

compared to common peaks. In contrast, common peaks are

enriched in simple repeat and short interspersed repetitive

elements (SINE) category. Percentages of common peaks among

the "None" category that are in simple repeat and SINE categories

are 12.5% and 24.3% compared to 7.2% and 7.4% for the MR-

only peaks in these categories. Further results on the annotation of

the common and MR-only peaks in terms of repeat elements other

than segmental duplications for STAT1 and GATA1 are available

in Tables S7 and S8, respectively.

To further explore STAT1 peaks in UR and MR samples in

terms of segmental duplications, we compared the average tag

count profiles at promoters of expressed genes [51] in duplicated

and unduplicated regions in Figure 6B. Of the 10913 expressed

genes, 1862 (17%) are located within segmental duplications. The

profiles for the matching input DNA controls were also included

for relative enrichment comparison between STAT1 ChIP and

input samples. These profiles are normalized using the average of

four bins at the start and end of the profiles. Both the UR and MR

samples have comparable tag counts at promoters of expressed

genes in unduplicated regions. In contrast, STAT1 ChIP MR

sample exhibits increased signal at promoters in duplicated regions

relative to input MR sample. Specifically, 1 kb regions around the

transcription start site (TSS) of the expressed genes in duplicated

regions gain on average 24.69 and 9.93 tags in MR ChIP and

input samples, respectively, compared to UR ChIP and input

samples. In contrast, the gains in unduplicated regions are only

3.08 and 0.39 tags compared to UR ChIP and input samples.

We used the DAVID tools of [52,53] to further annotate the

MR-only peaks. For STAT1, we applied DAVID to the group of

102 expressed genes with at least one MR-only peak and no

common peaks in their promoters. This analysis revealed

significant enrichment of these genes for response to DNA

damage, transcription activity, regulation of gene expression,

apoptosis, programmed cell death, and intercellular signaling

cascade. For GATA1, the set of expressed genes with an MR-only

peak was too small. Instead, we applied DAVID to the set of genes

with at least one MR-only peak and no common peaks within

10 kb upstream of TSS and 2 kb downstream of transcription end

site (TES) excluding exons. DAVID analysis of such 340 genes

identified significant enrichment for immune/defense response,

immune system development, regulation of apoptosis, hemopoi-

esis, and SAND domain. These results agreed well with the

observation that the segmental duplications are selectively

enriched for genes associated with immunity and defense [23,24].

Experimental validation of MR-only peaks confirms novel
GATA1 target genes

We selected 13 GATA1 MR-only peaks for experimental

validation for GATA1 occupancy with quantitative ChIP assays

and real-time PCR. Peaks selected for validation contained a [A/

T]GATA[A/G] motif, resided within promoter or genic regions of

a RefSeq gene, and had a mappability value between 0.5 and 1.

Eighteen percent of the GATA1 MR-only peaks satisfied the two

former requirements. The mappability constraint was necessary

for designing unique primers for the real-time PCR analysis of the

Multi-Read Analysis of ChIP-Seq Data

PLoS Computational Biology | www.ploscompbiol.org 9 July 2011 | Volume 7 | Issue 7 | e1002111



Figure 6. (a) Annotation of common and MR-only peaks with respect to TSS and duplicated regions. Categories are: Prom & Dup: peaks
that are in promoter regions (+2:5 kb of TSS) of RefSeq genes that reside in segmental duplications; Prom: Peaks in promoter regions (excludes
peaks in Prom & Dup); Genic & Dup: peaks that are within [210 kb of TSS, +1 kb of TES] of RefSeq genes that are in segmental duplications (excludes
peaks in Prom & Dup); Genic: peaks that are within [210 kb of TSS, +1 kb of TES] of RefSeq genes (excludes peaks in Genic & Dup, Prom, and Prom &
Dup); Dup: peaks that are in segmental duplications (excludes Prom & Dup and Genic & Dup); None: peaks that do not fall into any of the other
defined categories. Numbers within the pie charts indicate the percentages of peaks in each category. (b) Aggregation plots depicting STAT1

Multi-Read Analysis of ChIP-Seq Data
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peaks. The quantitative ChIP experiments were performed in the

G1E-ER-GATA1 cells, which are pro-erythroblast cells derived

from mouse ES cells in which the Gata1 gene was disrupted via

homologous recombination and further engineered to express a

conditionally active estrogen receptor (ER) ligand binding domain

fusion to GATA1 (ER-GATA1). When b-estradiol is added to the

culture medium (+EST), the ER-GATA1 fusion protein gets

activated and binds to GATA1 specific sites. Figure 7 displays

quantitative ChIP analysis of GATA1 occupancy of the eight

validated peaks, where +EST and -EST refer to relative

occupancy with respect to input DNA with or without b-estradiol

treatment (Figures S12, S13, S14, S15, S16, S17, 18, and S19

display raw data tracks for these peaks). We observe a significant

increase in GATA1 occupancy in +EST compared to -EST for

these MR-only GATA1 targets. Of these 13 peaks, 9 are located in

the lower 50th percentile of the full peak set obtained with the MR

sample in terms of their peak scores (median rank of the 13 peaks

is 4661 out of 8184 peaks from the MR sample). A scatter plot of

average log base 2 ChIP to Input ratio versus ChIP count for all

the GATA1 MR-only peaks are provided in Figure S20. Although

this validation rate of 61.5% is not representative of all MR peaks

since the selected peaks are from promoter/genic regions and are

required to have a GATA motif, it agrees well with rates one might

observe in the lower half of a ranked ChIP-seq peak list. Previous

studies exhibited that the validation rate may drop to 61.5% even

at the bottom of the upper 50th percentile of a UR sample peak list

[5]. In addition to our validation experiments of MR-only peaks,

we also performed validation experiments for 7 [A/T]GATA[A/

G] sites that resided in low mappable regions and were not

predicted to be MR peaks. None of these 7 regions exhibited an

increase in GATA1 occupancy in +EST compared to -EST

(Figure S21), confirming that they are true negatives.

We next analyzed the expression of the genes corresponding to

the above validated peaks in 24 hr b-estradiol treated G1E-ER-

GATA1 cells using microarray data generated from b-estradiol

treated and control cells as described in [5]. Upon b-estradiol-

treatment and GATA1 activation, these genes exhibited a fold

change of 0.9 to 4.9 in expression. This confirms that GATA1

binds to these MR-only peaks and triggers expression of their

corresponding genes during GATA1 mediated maturation of pro-

erythroblasts. Even though these genes are not direct erythroid

maturation factors, the megakaryocyte-erythrocyte progenitors

express these factors at substantial levels as evidenced in the

BioGPS analysis [54]. These validated genes are chromatin

modifiers, m-RNA splicing factors, zinc finger proteins and are

mainly involved in transcriptional regulation and signal transduc-

tion. They may further contribute to the expression of erythroid

specific genes/factors after being activated in the early phase of

erythroid maturation.

Discussion

We investigated the shortcomings of discarding multi-reads in

ChIP-seq analysis and illustrated how incorporating multi-reads

can improve detection of binding sites in highly repetitive regions

of genomes. Multi-reads lead to identification of novel binding

sites that are located in highly repetitive and low mappability

regions and are not identifiable with uni-reads alone. They further

contribute to effective utilization of uni-reads so that more peaks

can be detected with lower sequencing depths. Utilizing location

analysis and biological annotation, we further showed that a

substantial fraction of peaks specific to multi-read analysis are

located in segmental duplications of the human and mouse

genomes, and attributed to genes that are well associated with

immunity and defense.

Since multi-reads arise automatically in ChIP-seq experiments,

our pipeline does not require any additional experiments for

utilizing these reads. Once multi-reads are appropriately convert-

ed into counts by an application of the multi-read allocation

algorithm, peak calling might be performed with any method that

can handle bin or nucleotide level count data; however, since

many of existing software start the analysis with aligned or raw tag

files, these would need to be modified. To accommodate some of

the existing software that rely on aligned read files (or alignment

results in the bed format), we developed a script that rounds the

multi-read weights to the nearest integer and adds the ones that

round up to 1 to the original alignment files as pseudo reads so that

they can be utilized. This procedure is equivalent to (1) allocating

each multi-read to the location that it maps to with the largest

weight; (2) filtering out multi-reads with weightsv0:5 since they

round to 0; and (3) ignoring weight information (degree of

confidence for multi-reads allocation). Although this implementa-

tion decreases the number of utilized multi-reads by about a half

(for GATA1), it still leads to a significant increase in the

sequencing depth compared to using uni-reads alone. An

application of this strategy with the MACS algorithm [32] was

able to identify 37% of the MR-only peaks identified by the

MOSAiCS MR analysis. This set included the 3 true positive and

2 false positive peaks that we validated with the quantitative real

time ChIP analysis.

We showed that the overall conclusions of utilizing multi-reads

agree well when peak calling is performed either with MOSAiCS

[44] or CisGenome’s conditional binomial model [11]. Almost all

of the the published ChIP-seq studies in GEO (http://www.ncbi.

nlm.nih.gov/geo/) utilize short reads (25–36 mers) and we have

observed that multi-reads can lead to a substantial increase in the

sequencing depths of such datasets. A thorough investigation of

peaks that were detectable only with multi-reads highlighted that a

significant fraction of these peaks still have low mappability even

when 75 mer SETs are used. Therefore, utilization of multi-reads

is also likely to improve the analysis of data from longer and/or

paired-end reads. The two factors we studied are not particularly

known to bind to repetitive regions. However, there are many

examples of DNA binding proteins, e.g., MECP2, KAP1, that

selectively bind to repetitive regions. Our pipeline should even

have a higher impact in the analysis of such datasets. We have

initially implemented our methodology for use with ChIP-seq data

from the Illumina Genome Analyzer platform; however it is

straightforward to adapt it for use with other high-throughput

sequencing platforms.

A related question is whether utilizing a more flexible

definition of uni-reads by relaxing the alignment criterion can

provide a similar utility to that of multi-reads in terms of

sequencing depth. Our computational experiments (data not

uni-read and multi-read ChIP and input signals across ++2:5 kb of TSS of expressed genes in duplicated and unduplicated regions
Tag counts within each profile are normalized by subtracting average counts of two bins at both ends of the boundary. ChIP tag counts in 1 kb
region around the TSSs within segmental duplications (left panel) increase by an average of 24.69 tags in the MR ChIP sample compared to the UR
ChIP sample. The corresponding increase in the input tag counts is only 9.93 tags. In contrast, for the TSSs that reside outside of the segmental
duplications (right panel), ChIP and input tags counts increase on average by 3.08 and 0.39 tags in the MR sample compared to UR sample.
doi:10.1371/journal.pcbi.1002111.g006
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shown) indicate that more flexible definitions of uni-reads (e.g.

single best alignment of each read with at most 3 mismatches) can

increase the sequencing depth and lead to identification of more

peaks. However, such applications fail to identify high signal MR-

only peaks that a multi-read analysis can identify. For example,

defining uni-reads by considering the single best alignment of

each read with at most 3 mismatches increases the sequencing

depth by 12% for GATA1 but can only identify 2.6% of the

GATA1 MR-only peaks.

Significant fractions of eukaryotic genomes are composed of

repetitive regions, e.g., more than half of the human genome.

Therefore, functional properties of the repetitive regions of

genomes are of significant biological interest. In particular,

genomic repeats play important roles in functioning and evolution

of transcriptional regulatory networks [55,56]. [56] illustrated that

binding sites embedded in genomic repeats are associated with

significant regulatory expansions throughout the mammalian

phylogeny. Therefore, analysis and/or re-analysis of available or

future ChIP-seq datasets with our multi-read approach is expected

to reveal fundamental insights into functional properties of highly

repetitive regions of the genomes.

Methods

Allocating multi-reads
The computation of weighted alignments for the reads in each

data set was performed in two steps. First, a short-read alignment

tool was used to establish a set of candidate alignments for each

read against the reference genome. Second, an iterative alignment

reweighting algorithm was used to establish probabilities for each

candidate alignment. For the first step, we used the Bowtie aligner

[57] to align reads against the appropriate reference genome

(human HG18 or mouse MM9). The parameters for Bowtie were

set such that for each read, all alignments with at most 2

mismatches were reported. Reads with 100 or more such

alignments were filtered out. For all samples except STAT1,

reads were obtained from the FASTQ-formatted files produced by

the Illumina pipeline. For STAT1, reads were extracted from the

output of the ELAND aligner (reads with ELAND tags ‘‘QC’’ or

‘‘RM’’ were filtered out).

Given a set of candidate alignments for each read, we used a

novel alignment weighting algorithm to assign probabilities of

being correct to each alignment. The strategy we used can be

thought of as an iterated version of the ‘‘rescue’’ technique

described in [13], or a heuristic version of the Expectation-

Maximization method used for estimating expression levels from

RNA-Seq data [14]. During the algorithm, we maintain a list of

(possibly non-integer) counts of the number of reads assigned to

start at each position in the genome. Strand information for each

alignment was ignored such that the left-most coordinate of each

alignment was defined as its starting position. On each iteration of

the algorithm, we reallocated the fraction of a read assigned to

each of its possible starting positions using the counts from the

previous iteration. The fraction of a read assigned to a given

position s was defined to be proportional to the number of reads

assigned within a length 2wz1 interval centered on s (w~100 for

this study). More precisely, for a read with n possible starting

positions, s1,s2, . . . ,sn, the fraction of the read assigned to position

si was computed as f (si,w)=
Xn

j~1
f (sj ,w), where

f (si,w)~
Xsizw

s~si{w

cs,

and cs is the count of reads assigned to position s. The algorithm

was initialized by setting cs~1, for all positions s and was repeated

Figure 7. Experimental validation of GATA1 MR-only peaks. Quantitative real-time ChIP analysis of a subset of MR-only peaks in b-estradiol
untreated (2) and 24 hrs treated (+) G1-ER-GATA1 cells based on three independent biological replicates (*: p{valuev0:05). The Preimmune (PI)
values did not exceed 0.006.
doi:10.1371/journal.pcbi.1002111.g007
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for a fixed number of iterations (200 in this study). The fraction of

a read allocated for each alignment in the final iteration was used

as the probability of that alignment being correct. In this allocation

procedure, the choice of w controls the degree at which multi-read

allocation is affected by uni-reads. Therefore, setting 2wz1&L,

where L is the fragment size (200 bp for both STAT1 and GATA1

datasets), ensures that uni-reads and multi-reads within a given bin

correspond to the same binding event. We considered setting w to

25, 50, and 100 bp, respectively, and observed that, although

there is high overlap among the peak sets obtained with different w
(w70% overlap), w~100 captures the largest number of true

positives and smallest number of false positives in our validation

set.

For efficient storage and retrieval of the number of reads

mapped to each position in the genome, a binary tree structure,

similar to that of a Fenwick tree [58] was used. This structure

allows for O( log n) time updates of read counts and O( log n)
time computations of the cumulative sum of counts within any

interval, where n is the total number of genomic positions for

which counts are recorded. For space efficiency, only genomic

positions at which at least one read alignment started are stored in

the tree. The multi-read allocation algorithm is available at

http://www.stat.wisc.edu/*keles/Software/multi-reads/ in the

form of a C++ program.

Mappability for 36 mer and 75 mer SETs
Consider a tag length of k and a fragment length of L. Let

x(i):(izk{1) denote the kmer starting at position i and ending at

position izk{1 from 5
0

to 3
0
. Let xc

(i):(i{kz1) denote the kmer

starting at position i and ending in i{kz1 in the other strand.

Nucleotide level mappability is defined as in [10]:

di~
1 if x(i):(izk{1) is unique,

0 o:w:

�

We can similarly define mappability for a position in the reverse

strand as:

dc
i ~

1 if xc
(i):(i{kz1) is unique,

0 o:w:

�

Note that dc
i ~di{kz1. In the pre-processing of ChIP-seq data,

as a result of fragment extension, the total number of observed

counts at position i could be contributed by forward strand tags

that originate between positions i{Lz1 and i or reverse strand

tags that originate between positions i and izL{1. Therefore, we

modify the definition of mappability at position i as follows for

single-end tags:

d�i ~
1

2L

Xi

j~i{Lz1

djz
XizL{1

j~i

dc
j

 !
, ð1Þ

~
1

2L

Xi

j~i{Lz1

djz
XizL{k

j~i{kz1

dj

 !
(Def 1) : ð2Þ

Mappability plots in Figure 1A, Figure S1a, and Figure S2a

(middle panels) are based on the above definition of mappability to

highlight the effect of multi-reads on low mappable regions and

allow direct comparison with uni-reads.

When we are utilizing multi-reads in the actual statistical

analysis, the definition of nucleotide level mappability is modified

to take into account the fact that kmers mapping to less than 100

locations can generate non-zero counts. This can be achieved by

defining di~I(Riƒ100)=Ri where Ri is the number of times

kmerx(i):(izk{1) occurs in the genome. We will refer to bin-level

mappability utilizing this di as Def 2. Figures S1a and S2a (right

panels) illustrate that the mappability bias is also apparent for the

MR samples with this modification on mappability to take multi-

reads into account.

Finally, the mappability score Mj for bin j is the average of

mappabilities (d�i ) of positions that are within this bin. The GC

content at the bin level is calculated similarly by changing di to be

GC content of the kmer starting at position i.

MOSAiCS
MOSAiCS is based on a two-component mixture model where

data from unbound bins, i.e., background bins, are characterized

with a negative binomial regression model that accounts for

mappability, GC content, and input counts. Data from bound bins

are modeled with a mixture of two negative binomials. Let Yj

denote ChIP tag counts, Xj input tag counts, Mj and GCj

mappability and GC content, respectively. Define Zj to be an

unobserved random variable representing whether the bin is

bound or not. Then, MOSAiCS assumes that

Yj jZj~0,Mj ,GCj ,Xj*NegBin(a,a=mj),

Yj jZj~1,Mj ,GCj ,Xj*NegBin(a,a=mj)zSj ,

where Sj is a mixture of two negative binomial distributions, i.e.,

Sj~p1NegBin(b1,c1)z(1{p1)NegBin(b2,c2)zk, where k~3 is

a constant that represents the minimum tag count observable in a

bound region;

log (mj)~b0zI(Xjƒs)½bM log2 (Mjz1)z

bGCSp(GCj)zbX1
X d

j �zI(Xjws)bX2
X d

j

and Sp is a piecewise linear B-spline model with knots at the first

and third quartiles of GC content. We had previously shown that

this piecewise linear B-spline model characterizes the dependence

of background tag counts on GC content well [44]. s and d are

tuning parameters. For all the datasets we have used MOSAiCS

on, d~0:25 works best. Optimal s was chosen among f2,3,4g for

each chromosome based on BIC scores. The R package mosaics

implements this model (available from Bioconductor [59]) and

provides parameter estimates and posterior probabilities depicting

the probability that a given bin is bound. False discovery rate

(FDR) is then controlled at the desired level utilizing these

posterior probabilities. Contiguous bins declared as bound are

merged as peaks.

Classification of MR-only peaks based on their shared
multi-reads

We classified the MR-only peaks into three classes, Type-I, II,

and III, based on their shared multi-reads with the following

procedure in a high throughput fashion.

1. For each peak, we identified the set of reads that map to its

peak region. As expected, no uni-reads were shared between any

two peaks. There were cases where the same multi-read was
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mapped to multiple locations within a peak (albeit with different

weights). We collapsed reads mapping to a peak to a unique set of

reads and combined weights from multiple mappings of the same

read within the peak region.

2. For every pair of peaks, we counted the number of shared

multi-reads and computed a similarity score between them based

on their multi-reads. Although two peaks can share a substantial

number of multi-reads, the weights of the reads may be

substantially different for the two peaks. For example, if a multi-

read is shared by peaks i and j but its weight for peak i is 0.9 and is

0.1 for peak j, then the two peaks can be more different, compared

to the case when the weights are 0.6 and 0.4 for the two peaks,

respectively. Therefore, we weighted the contribution of each

multi-read to the similarity score by the difference in its weights in

the two peaks. Then, the similarity between peaks i and j is defined

as
XT

t~1
dt

ij where dt
ij~1{jwt

i{wt
j j=max (wt

i ,w
t
j) and wt

i is the

fractional count of read t in peak i. For the above example, this

results in dt
ij~0:111 if wt

i~0:9 and wt
j~0:1 and dt

ij~0:667 if

wt
i~0:6 and wt

j~0:4.

Under this similarity definition, the self-similarity (diagonal

elements of the similarity matrix), is just the total number of reads

in the peak. In addition, if the weights for each overlapping multi-

read between peaks i and j are all 0.5, then the similarity is again

the total number of overlapping reads. We normalized the

similarity scores between peaks i and j by the maximum of the

number of reads in peaks i and j to make the similarity scores

comparable across peaks.

3. We further assessed the degree of similarity of peak pairs

sharing multi-reads with a paired t-test of the multi-read weights.

Specifically, we tested whether the average weights of the shared

multi-reads are the same for each peak of the pair. This analysis

suggested that even for peaks with high similarity based on the

above definition (similarityw0:5), the weights could contribute

significantly differently to the two peaks. We obtained similar

results when the paired t-test is replaced with the non-parametric

Wilcoxon signed-rank test.

4. Finally, we classified a peak as Type-II if (a) the sum of its

fractional counts that do not overlap with peak j is at least 20; or

(b) it it has at least 20 uni-reads; or (c) if its ratio of sum of

fractional counts from unshared versus shared multi-reads is at

least 2.

Detailed results of the similarity analysis and formal hypothesis

testing of shared multi-read allocation weights are provided in

Tables S3, S4, S5 and S6.

Conditional binomial test
For each bin j, let nj~YjzXj denote total tag counts. The

conditional binomial test of CisGenome [11] builds on the fact

that under the independence of ChIP counts Yj and input counts

Xj , the conditional distribution of Yj given nj follows a binomial

distribution with parameters (nj ,p0). p0 is estimated by

p0~r=(rz1), where r~NC=NI , NC and NI are the total ChIP

and input tag counts across the bins with total counts smaller than

or equal to 1. Under this null model of no binding, a p-value is

computed for each bin and overall FDR can be controlled at any

desired level. Contiguous bins declared as bound are merged as

peaks.

Saturation analysis
STAT1 UR gold standard peaks are defined as the peaks

detected by MOSAiCS at FDR level of 0.005 based on the whole

STAT1 UR sample. Then, we sampled 10%,20%, � � � ,100% of

uni-reads and multi-reads, respectively, and set the UR and MR

samples as the sampled uni-reads and combined uni-reads and

multi-reads, respectively. We also made sure that the samples

obtained at higher sampling percentages are super sets of the

samples with lower sampling percentages. After the construction of

UR and MR samples of increasing sequencing depth, we detected

peaks in these samples with MOSAiCS using the same parameter

setting as in the construction of the UR gold standard peak set. We

then compared the overlap of the identified peaks sets with the UR

gold standard peak set.

Segmental duplications
Segmental duplications are defined as 1 kb or longer repeats

with at least 90% similarity to another region within the genome

[24,60]. We downloaded segmental duplication data for human

HG18 and mouse MM8 from the UCSC Genome Browser

database (‘genomicSuperDups’ table in the ‘Segmental Dups’

track) [50]. Then, duplicated segments of MM8 were lifted over to

MM9 using the lift-over tool of the UCSC Genome Browser

database.

Motif analysis
We scanned the peak sets with both versions of STAT1 motifs

(ID: MA0137.1 and MA0137.2) using the position weight matrices

in the JASPAR database [47]. Scoring on each peak set was

conducted with the FIMO tool of the MEME suite [46,61]. FIMO

evaluates the significance of each subsequence in a given dataset

by comparing the likelihoods of the subsequence under the

position weight matrix model and a background model. For each

peak set, we allowed the background model to be estimated from

the sequences of all the peaks. The resulting p-values were

adjusted by controlling peak level FDR at 0.1 to take into account

the differences in peak widths, where median widths of common

and MR-only peaks were 600 and 400 bp, respectively. For

GATA1, we counted the occurrence of the GATA1 consensus

sequence [A/T]GATA[A/G] [48] in the peak regions. The

median widths of both the common and MR-only peaks were

400 bp.

We assessed the significance of motif occurrences by estimating

a null distribution of motif occurrence for each factor, separately.

We repeated the following null peak set generation 10,000 times

for each of the MR-only peak lists. First, for each peak in the peak

list, we randomly sampled a region matching the actual peak in

terms of width, mappability, and GC content from the same

chromosome. After sampling as many peaks as the number of

peaks in the actual dataset, we scanned the peaks for motif

occurrence with the procedure used for the actual dataset. We

then reported the proportion of peaks with the motif in each of the

10,000 simulated datasets. A p-value for each MR-only peak list

was obtained by taking the proportion of number of simulated

peak sets out of 10,000 with a motif occurrence proportion greater

than that of the actual MR-only peak list’s proportion.

Quantitative ChIP assay
Quantitative ChIP analysis was conducted in G1-ER-GATA1

cells with (+EST) and without (-EST) b-estradiol treatment and

validated as described in [62]. The PCR primers are provided in

Table S9. P-values for assessing the change in GATA1 occupancy

upon b-estradiol treatment are based on one-sided t-tests.

Supporting Information

Figure S1 Mappability and GC content sequence biases
in the STAT1 UR and MR samples. Mean tag counts against

mappability and GC content in the UR and MR samples,
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respectively. The patterns observed are typical of ChIP-Seq data with

36 mer to 75 mer tags. ‘‘Def 1’’ and ‘‘Def 2’’ indicate the definitions

of mappability for the UR and MR samples, respectively.

(PDF)

Figure S2 Mappability and GC content sequences
biases in the GATA1 UR and MR samples. Mean tag

counts against mappability and GC content in the UR and MR

samples, respectively. The patterns observed are typical of ChIP-

Seq data with 36 mer to 75 mer tags. ‘‘Def 1’’ and ‘‘Def 2’’

indicate the definitions of mappability for the UR and MR

samples, respectively.

(PDF)

Figure S3 MOSAiCS goodness of fit for the STAT1 UR
and MR samples. (a) Goodness of fit for the UR sample. (b)
Goodness of fit for the MR sample. Both axes are in log10 scale.

(PDF)

Figure S4 MOSAiCS goodness of fit for the GATA1 UR
and MR samples. (a) Goodness of fit for the UR sample. (b)
Goodness of fit for the MR sample. Both axes are in log10 scale.

(PDF)

Figure S5 Saturation plot of the STAT1 sample. Percent-

age of STAT1 MR gold standard peaks recovered by MOSAiCS

using sub-sampled UR and MR samples with lower sequencing

depths. x-axis refers to the percentage of reads sampled from the

full dataset.

(PDF)

Figure S6 Scatter plot of multi-read weights for a Type-
II peak # 1. Peak i is a Type-II MR-only peak (chr4:

145,711,000 - 145,711,199) with a total of 54 mapping reads, 4

of which are uni-reads (circled in blue). It shares a maximum of 9

reads (circled in green) with peak j with a maximum multi-read

similarity of 0.0144. The sums of its fractional counts from

unshared and shared multi-reads with peak j are 28.25 and 0.47,

respectively. Uni-reads of peak j are circled in magenta.

(PDF)

Figure S7 Scatter plot of multi-read weights for a Type-
II peak # 2. Peak i is a Type-II MR-only peak (chr3: 96,290,200

- 96,290,799) with a total of 328 mapping reads, none of which are

uni-reads. It shares a maximum of 236 reads with peak j with a

maximum multi-read similarity of 0.516. The sums of its fractional

counts from unshared and shared multi-reads with peak j are

73.94 and 17.30, respectively. Uni-reads of peak j are circled in

magenta.

(PDF)

Figure S8 Scatter plot of multi-read weights for a Type-I
peak # 1. Peak i is a Type-I MR-only peak (chr7: 9,183,800 -

9,184,199) with a total of 200 mapping reads, none of which are

uni-reads. It shares a maximum of 161 reads with peak j with a

maximum multi-read similarity of 0.717. The sums of its fractional

counts from unshared and shared multi-reads with peak j are 8.97

and 40.45, respectively.

(PDF)

Figure S9 Scatter plot of multi-read weights for a Type-I
peak # 2. Peak i is a Type-I MR-only peak (chr12: 19,040,000 -

19,040,399) with a total of 343 mapping reads, none of which are

uni-reads. It shares a maximum of 312 reads with peak j with a

maximum multi-read similarity of 0.762. The sums of its fractional

counts from unshared and shared multi-reads with peak j are 7.73

and 53.68, respectively.

(PDF)

Figure S10 Mappability, GC content, and GATA1 motif
occurrence of the common and MR-only peaks. Common

refers to common peaks identified by both the MR and the UR

samples; MR-only peaks are unique to the MR sample. For the

motif occurrence panel, y-axis represents the proportion of peaks

with the consensus binding site.

(PDF)

Figure S11 Mappability scores of GATA1 peaks with
respect to 75 mer SETs vs. 36 SETs. Scatter plot of

mappability of GATA1 MR-only peaks with respect to 75 mer

versus 36 mer SETs. Shading in the grids represent frequency of

data (higher to lower from red to blue). The dark red line is the

smooth fit through all the data points.

(PDF)

Figure S12 Validated GATA1 MR-only peak # 1. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within the first intron of the

Zfp637 gene. Peak regions are depicted with black bars.

(PDF)

Figure S13 Validated GATA1 MR-only peak # 2. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within [2 kb, 10 kb] upstream of

the transcription start site (TSS) of the Pb1 gene. Peak regions are

depicted with black bars.

(PDF)

Figure S14 Validated GATA1 MR-only peak # 3. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within the first exon of the Iigp2

gene. Peak regions are depicted with black bars.

(PDF)

Figure S15 Validated GATA1 MR-only peak # 4. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within the sixth intron of the

Polr3h gene. Peak regions are depicted with black bars.

(PDF)

Figure S16 Validated GATA1 MR-only peak # 5. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within the seventh exon of the

Srsf3 gene. Peak regions are depicted with black bars.

(PDF)

Figure S17 Validated GATA1 MR-only peak # 6. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within [2 kb, 10 kb] upstream of

the TSS of Prim2 gene. Peak regions are depicted with black bars.

(PDF)

Figure S18 Validated GATA1 MR-only peak # 7. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within the first intron of the Grk5

gene. Peak regions are depicted with black bars.

(PDF)

Figure S19 Validated GATA1 MR-only peak # 8. Tag

count profiles of the validated MR-only peak with corresponding

mappability scores. This peak is within the second intron of the

Ccdc85a gene. Peak regions are depicted with black bars.

(PDF)

Figure S20 Scatter plot of average log base 2 ChIP to
Input ratio versus ChIP count of GATA1 MR-only peaks.
Green boxes and red circles indicate peaks validated by

quantitative real-time ChIP analysis and peaks that are not

validated, respectively. Horizontal and vertical lines correspond to
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average log base 2 ChIP to Input ratio of 2.25 and ChIP count 65,

respectively.

(PDF)

Figure S21 Experimental validation of GATA1 negative
peaks. Quantitative real-time ChIP analysis of sites that were not

predicted to be MR peaks, in b-estradiol untreated (2) and 24 hrs

treated (+) G1-ER-GATA1 cells based on three independent

biological replicates. None of these 7 regions exhibited an increase

in GATA1 occupancy in +EST compared to -EST.

(PDF)

Table S1 Summary of number of reads for short and
long read datasets. ‘‘(C)’’ and ‘‘(I)’’ refer to ChIP and input

samples, respectively.

(PDF)

Table S2 Summary of the UR and MR peaks detected
by the conditional binomial test.
(PDF)

Table S3 Multi-read similarity analysis of STAT1 MR
peaks.
(PDF)

Table S4 STAT1 MR peaks that share multi-reads with
another peak. In parentheses are the number of peaks classified

as Type-II.

(PDF)

Table S5 Multi-read similarity analysis of GATA1 MR
peaks.
(PDF)

Table S6 GATA1 MR peaks that share multi-reads with
another peak. In parentheses are the number of peaks classified

as Type-II.

(PDF)

Table S7 Annotation of STAT1 common and MR-only
peaks in terms of repeat elements other than segmental
duplications.

(PDF)

Table S8 Annotation of GATA1 common and MR-only
peaks in terms of repeat elements other than segmental
duplications.

(PDF)

Table S9 Primers used for real-time PCR.

(PDF)
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