metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[bis(4-pyridinealdoxime- κN^1)zinc]- μ -benzene-1,4-dicarboxylato- $\kappa^2 O^1: O^4$] 4-pyridinealdoxime monosolvate1

Hitoshi Kumagai,^a* Satoshi Kawata^b and Yoshiyuki Sakamoto^a

^aToyota Central R&D Labs., Inc., Nagakute 41-1, Aichi, Japan, and ^bDepartment of Chemistry, Fukuoka University, Fukuoka 814-0180, Japan Correspondence e-mail: e1254@mosk.tytlabs.co.jp

Received 18 February 2013; accepted 4 March 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.078; data-to-parameter ratio = 15.9.

the title compound, $\{[Zn(C_8H_4O_4)(C_6H_6N_2O)_2]$. In $C_6H_6N_2O_{n}$, the Zn^{II} ion exhibits a tetrahedral coordination environment defined by two benzene-1.4-dicarboxylate dianions and two 4-pyridinealdoxime ligands. The dianions bridge the Zn^{II} ions, giving a zigzag chain along the *b* axis. Adjacent chains are connected by $O-H \cdots O$ hydrogen bonds, forming a cavity in which an uncoordinating 4-pyridinealdoxime molecule is located; this molecule is linked by O- $H \cdots O$ and $O - H \cdots N$ hydrogen bonds to the zigzag chain.

Related literature

For coordination polymers, see: Cheetham et al. (1999); Furukawa et al. (2010). For related host-guest systems, see: Kitagawa & Kawata (2002); Lehn (1995).

$\beta = 98.516 \ (3)^{\circ}$ V = 2600.7 (16) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.00 \text{ mm}^{-1}$ T = 293 K

 $0.60 \times 0.40 \times 0.15 \text{ mm}$

24675 measured reflections 5922 independent reflections 5402 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.27$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å, °).

Experimental

 $[Zn(C_8H_4O_4)(C_6H_6N_2O)_2]$ --

Rigaku Mercury70 diffractometer

Absorption correction: multi-scan

(REQAB; Rigaku, 1998)

 $R[F^2 > 2\sigma(F^2)] = 0.030$

 $T_{\min} = 0.714, T_{\max} = 0.860$

Crystal data

C₆H₆N₂O

a = 7.583 (3) Å

b = 15.831 (6) Å

c = 21.906 (8) Å

Data collection

Refinement

S = 1.06

 $wR(F^2) = 0.078$

5922 reflections

373 parameters

Monoclinic, $P2_1/c$

 $M_r = 595.88$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{matrix} O5-H3\cdots N5^{i}\\ O6-H9\cdots O4^{ii}\\ O7-H13\cdots O4^{i} \end{matrix}$	0.89 (5)	1.81 (4)	2.692 (3)	172 (4)
	0.81 (3)	1.94 (3)	2.752 (3)	177 (3)
	0.77 (4)	2.07 (4)	2.800 (3)	158 (4)

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5248).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
- Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329 424-428
- Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34.
- Lehn, J.-M. (1995). In Supramolecular Chemistry: Concepts and Perspectives. VCH: Weinheim
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2013). E69, m216 [doi:10.1107/S1600536813006107]

catena-Poly[[[bis(4-pyridinealdoxime- κN^1)zinc]- μ -benzene-1,4-dicarboxylato- $\kappa^2 O^1: O^4$] 4-pyridinealdoxime monosolvate]

Hitoshi Kumagai, Satoshi Kawata and Yoshiyuki Sakamoto

Comment

The design and synthesis of coordination polymers (CPs) have received considerable attention in recent years due to potential applications for magnetic materials, sorption and host–guest materials (Cheetham *et al.*, 1999; Furukawa *et al.*, 2010; Lehn, 1995). Intermolecular interactions, such as coordination bonding, hydrogen bonding and van der Waals forces, have been used to produce such network materials. Among them, hydrogen bonding interaction is an important interaction to realize self-assemblies of molecules with novel properties such as proton-transfer-mediated electron transfer, non-linear optics and thermochromic properties of crystalline forms. We have focused on the synthesis and characterization of one-dimensional coordination polymers as host materials and have found a number of host–guest systems using hydrogen bonding interactions (Kitagawa & Kawata, 2002). Here we report synthesis and single-crystal structure of a new one-dimensional coordination polymer which consists of tetrahedral Zn(II) ion, 1,4-benzene-dicarboxylate as a bridging ligand and 4-pyridineoxime (4-pyNOH) as terminal ligands. Two types of 4-pyridinealdoxime are found in the crystal. One is uncoordinated and the other 4-pyNOH coordinates to Zn(II) ion. Uncoordinated 4-pyNOH molecules are stabilized by intermolecular hydrogen bonds in the cavity formed by hydrogen bonds between chains.

Experimental

An aqueous solution (5 ml) of zinc nitrate hexahydrate (0.29 g) was transferred to a glass tube, then an ethanol-water mixture (5 ml) of terephthalic acid (0.17 g), NaOH (0.08 g) and 4-pyNOH (0.24 g) was poured into the glass tube without mixing the two solutions. Colorless crystals began to form at ambient temperature in 2 months. One of these crystals was used for X-ray crystallography.

Refinement

Hydrogen atoms bonded to carbon atoms were introduced at the positions calculated theoretically and treated with riding models with $U_{iso}(H) = 1.2U_{eq}(C)$. Other hydrogen atoms (H3, H9, H13) were located in a Fourier difference map and refined freely [O—H = 0.77 (4)–0.89 (5) Å].

Computing details

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear* (Rigaku/MSC, 2005); data reduction: *CrystalClear* (Rigaku/MSC, 2005); program(s) used to solve structure: *SIR2008* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010).

Figure 1

View of the title compound with atomic numbering scheme. Hydrogen atoms are omitted for clarity.

Figure 2

Hydrogen bonding interactions between chains (blue and red) and intercalated 4-pyNOH molecules. Hydrogen atoms and hydrogen bonding interactions are shown as purple color and dashed line, respectively.

catena-Poly[[[bis(4-pyridinealdoxime- κN^1)zinc]- μ -benzene-1,4-dicarboxylato- $\kappa^2 O^1:O^4$] 4-pyridinealdoxime monosolvate]

Crystal data

$[Zn(C_8H_4O_4)(C_6H_6N_2O_2)] \cdot C_6H_6N_2O$
$M_r = 595.88$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 7.583 (3) Å
b = 15.831 (6) Å
c = 21.906 (8) Å
$\beta = 98.516 \ (3)^{\circ}$
$V = 2600.7 (16) \text{ Å}^3$
Z = 4
Data collection
Rigaku Mercury70

Rigaku Mercury /0 diffractometer Detector resolution: 7.314 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.714, T_{\max} = 0.860$ 24675 measured reflections F(000) = 1224.00 $D_x = 1.522 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71070 \text{ Å}$ Cell parameters from 5655 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 293 KPlatelet, colorless $0.60 \times 0.40 \times 0.15 \text{ mm}$

5922 independent reflections 5402 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.019$ $\theta_{max} = 27.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -20 \rightarrow 20$ $l = -28 \rightarrow 28$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.030$	map
$wR(F^2) = 0.078$	Hydrogen site location: inferred from
S = 1.06	neighbouring sites
5922 reflections	H atoms treated by a mixture of independent
373 parameters	and constrained refinement
0 restraints	$w = 1/[\sigma^2(F_o^2) + (0.0395P)^2 + 0.8505P]$
Primary atom site location: structure-invariant	where $P = (F_o^2 + 2F_c^2)/3$
direct methods	$(\Delta/\sigma)_{\rm max} = 0.002$
	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.27 \ { m e} \ { m \AA}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	-0.06451 (2)	0.622158 (11)	0.714672 (8)	0.03146 (7)
O1	-0.21883 (16)	0.54529 (7)	0.74818 (6)	0.0431 (3)
O2	0.00514 (16)	0.45411 (8)	0.76070 (7)	0.0509 (4)
O3	-0.79388 (15)	0.22499 (7)	0.79980 (6)	0.0421 (3)
O4	-0.58272 (17)	0.16416 (8)	0.86719 (6)	0.0474 (3)
O5	0.9256 (2)	0.74280 (12)	0.91104 (8)	0.0654 (5)
O6	0.3534 (2)	0.50254 (9)	0.39196 (7)	0.0525 (4)
O7	0.4650 (4)	0.24025 (15)	0.98388 (10)	0.0887 (7)
N1	0.15225 (17)	0.66275 (8)	0.77281 (6)	0.0339 (3)
N2	0.7742 (2)	0.70378 (11)	0.88055 (7)	0.0503 (4)
N3	0.02911 (17)	0.59469 (8)	0.63468 (6)	0.0330 (3)
N4	0.30194 (19)	0.49616 (9)	0.45026 (7)	0.0415 (4)
N5	0.1156 (3)	0.60383 (14)	0.94885 (9)	0.0614 (5)
N6	0.3640 (3)	0.30885 (14)	0.95959 (9)	0.0680 (5)
C1	0.2999 (3)	0.61485 (10)	0.78018 (9)	0.0417 (4)
C2	0.4614 (3)	0.64161 (11)	0.81024 (9)	0.0427 (4)
C3	0.4744 (3)	0.72219 (11)	0.83570 (7)	0.0381 (4)
C4	0.3214 (3)	0.77116 (11)	0.82951 (8)	0.0407 (4)
C5	0.1641 (3)	0.74000 (10)	0.79765 (8)	0.0376 (4)
C6	0.6445 (3)	0.75430 (13)	0.86763 (9)	0.0491 (5)
C7	-0.0049 (3)	0.65017 (10)	0.58845 (8)	0.0369 (4)
C8	0.0624 (3)	0.64167 (11)	0.53383 (8)	0.0409 (4)
C9	0.1692 (3)	0.57299 (10)	0.52502 (8)	0.0376 (4)
C10	0.2016 (3)	0.51452 (11)	0.57240 (8)	0.0414 (4)
C11	0.1296 (3)	0.52711 (11)	0.62583 (8)	0.0405 (4)
C12	0.2375 (3)	0.56456 (12)	0.46607 (9)	0.0474 (5)
C13	-0.2764 (2)	0.41148 (9)	0.78608 (7)	0.0318 (3)
C14	-0.4586 (2)	0.42012 (9)	0.76680 (8)	0.0356 (4)
C15	-0.5772 (2)	0.36017 (10)	0.78215 (8)	0.0357 (4)
C16	-0.5140 (2)	0.29122 (9)	0.81793 (7)	0.0314 (3)

C17	-0.3329 (2)	0.28438 (10)	0.83923 (8)	0.0363 (4)
C18	-0.2141 (2)	0.34347 (10)	0.82278 (8)	0.0359 (4)
C19	-0.1499 (2)	0.47331 (10)	0.76378 (7)	0.0344 (4)
C20	-0.6376 (2)	0.22133 (9)	0.83015 (8)	0.0348 (4)
C21	0.1206 (3)	0.54202 (17)	0.90740 (10)	0.0629 (6)
C22	0.2009 (3)	0.46555 (16)	0.92026 (9)	0.0603 (6)
C23	0.2809 (3)	0.44822 (15)	0.98042 (9)	0.0547 (5)
C24	0.2726 (3)	0.51129 (17)	1.02396 (10)	0.0637 (6)
C25	0.1912 (3)	0.58644 (18)	1.00653 (11)	0.0670 (7)
C26	0.3730 (4)	0.36927 (16)	0.99751 (10)	0.0631 (6)
H1	0.2921	0.5605	0.7640	0.0500*
H2	0.5607	0.6065	0.8136	0.0512*
H3	0.990 (6)	0.699 (3)	0.9271 (18)	0.131 (15)*
H4	0.3247	0.8249	0.8468	0.0488*
Н5	0.0629	0.7739	0.7933	0.0451*
H6	0.6572	0.8111	0.8783	0.0590*
H7	-0.0770	0.6964	0.5934	0.0443*
H8	0.0364	0.6819	0.5029	0.0490*
H9	0.376 (4)	0.4540 (18)	0.3841 (12)	0.075 (9)*
H10	0.2715	0.4672	0.5682	0.0497*
H11	0.1514	0.4871	0.6571	0.0485*
H12	0.2331	0.6109	0.4398	0.0568*
H13	0.456 (5)	0.208 (3)	0.9572 (16)	0.105 (13)*
H14	-0.5012	0.4668	0.7433	0.0427*
H15	-0.6987	0.3660	0.7685	0.0429*
H17	-0.2909	0.2396	0.8648	0.0436*
H18	-0.0926	0.3376	0.8364	0.0431*
H21	0.0658	0.5518	0.8672	0.0755*
H22	0.2023	0.4255	0.8892	0.0723*
H24	0.3222	0.5025	1.0649	0.0764*
H25	0.1883	0.6278	1.0365	0.0804*
H26	0.4388	0.3632	1.0366	0.0757*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02747 (10)	0.02856 (10)	0.03936 (11)	0.00125 (6)	0.00831 (7)	0.00241 (7)
O1	0.0429 (7)	0.0306 (6)	0.0598 (8)	-0.0038 (5)	0.0205 (6)	0.0039 (5)
O2	0.0326 (6)	0.0496 (8)	0.0730 (9)	-0.0027 (6)	0.0165 (6)	0.0068 (7)
O3	0.0330 (6)	0.0317 (6)	0.0612 (8)	-0.0067(5)	0.0050 (6)	0.0005 (5)
O4	0.0488 (7)	0.0361 (7)	0.0571 (8)	-0.0058 (6)	0.0077 (6)	0.0126 (6)
05	0.0478 (8)	0.0793 (12)	0.0652 (10)	-0.0185 (8)	-0.0049 (7)	-0.0220 (9)
06	0.0630 (9)	0.0467 (8)	0.0536 (8)	-0.0017 (7)	0.0281 (7)	-0.0102 (6)
O7	0.1144 (17)	0.0847 (14)	0.0620 (12)	0.0132 (12)	-0.0030 (11)	0.0018 (11)
N1	0.0327 (7)	0.0311 (7)	0.0382 (7)	0.0005 (5)	0.0066 (6)	0.0001 (6)
N2	0.0416 (9)	0.0650 (11)	0.0428 (9)	-0.0147 (8)	0.0011 (7)	-0.0138 (8)
N3	0.0293 (7)	0.0324 (7)	0.0377 (7)	-0.0008(5)	0.0062 (6)	-0.0013 (6)
N4	0.0367 (8)	0.0466 (8)	0.0422 (8)	-0.0037 (6)	0.0091 (6)	-0.0074 (7)
N5	0.0432 (9)	0.0849 (14)	0.0554 (11)	-0.0078 (9)	0.0050 (8)	-0.0060 (10)
N6	0.0698 (13)	0.0799 (14)	0.0540 (11)	-0.0014 (11)	0.0079 (9)	0.0014 (10)

C1	0.0360 (9)	0.0327 (8)	0.0553 (11)	0.0017 (7)	0.0033 (8)	-0.0092 (7)
C2	0.0339 (9)	0.0408 (9)	0.0524 (11)	0.0025 (7)	0.0029 (8)	-0.0083 (8)
C3	0.0400 (9)	0.0413 (9)	0.0335 (8)	-0.0079 (7)	0.0069 (7)	-0.0032 (7)
C4	0.0525 (10)	0.0340 (8)	0.0365 (9)	-0.0024 (7)	0.0098 (8)	-0.0069 (7)
C5	0.0423 (9)	0.0345 (8)	0.0381 (9)	0.0054 (7)	0.0129 (7)	-0.0010 (7)
C6	0.0511 (11)	0.0491 (11)	0.0462 (11)	-0.0129 (9)	0.0037 (9)	-0.0101 (8)
C7	0.0375 (9)	0.0322 (8)	0.0410 (9)	0.0028 (7)	0.0061 (7)	-0.0008 (7)
C8	0.0492 (10)	0.0351 (8)	0.0388 (9)	0.0023 (7)	0.0081 (8)	0.0037 (7)
C9	0.0370 (9)	0.0373 (9)	0.0394 (9)	-0.0036 (7)	0.0086 (7)	-0.0043 (7)
C10	0.0399 (9)	0.0395 (9)	0.0454 (10)	0.0090 (7)	0.0083 (8)	-0.0012 (7)
C11	0.0413 (9)	0.0385 (9)	0.0416 (9)	0.0070 (7)	0.0063 (7)	0.0046 (7)
C12	0.0593 (12)	0.0405 (10)	0.0461 (10)	-0.0002 (8)	0.0204 (9)	-0.0002 (8)
C13	0.0309 (8)	0.0272 (7)	0.0385 (8)	-0.0034 (6)	0.0094 (6)	-0.0041 (6)
C14	0.0328 (8)	0.0256 (7)	0.0491 (9)	0.0022 (6)	0.0085 (7)	0.0036 (7)
C15	0.0274 (8)	0.0311 (8)	0.0490 (10)	0.0002 (6)	0.0066 (7)	0.0018 (7)
C16	0.0313 (8)	0.0270 (7)	0.0371 (8)	-0.0027 (6)	0.0085 (6)	-0.0013 (6)
C17	0.0348 (8)	0.0334 (8)	0.0402 (9)	0.0005 (6)	0.0037 (7)	0.0061 (7)
C18	0.0287 (8)	0.0367 (8)	0.0417 (9)	-0.0014 (6)	0.0029 (7)	0.0006 (7)
C19	0.0357 (8)	0.0313 (8)	0.0373 (8)	-0.0059 (6)	0.0091 (7)	-0.0045 (6)
C20	0.0351 (8)	0.0279 (8)	0.0431 (9)	-0.0031 (6)	0.0111 (7)	-0.0022 (7)
C21	0.0549 (12)	0.0891 (17)	0.0432 (11)	-0.0147 (12)	0.0025 (9)	-0.0012 (11)
C22	0.0608 (13)	0.0814 (16)	0.0392 (10)	-0.0156 (12)	0.0096 (9)	-0.0062 (10)
C23	0.0451 (11)	0.0778 (14)	0.0426 (10)	-0.0173 (10)	0.0114 (8)	-0.0015 (10)
C24	0.0549 (13)	0.0956 (18)	0.0397 (11)	-0.0098 (12)	0.0045 (9)	-0.0071 (11)
C25	0.0539 (13)	0.0950 (19)	0.0515 (13)	-0.0069 (13)	0.0057 (10)	-0.0186 (12)
C26	0.0637 (14)	0.0843 (17)	0.0420 (11)	-0.0127 (12)	0.0102 (10)	0.0050 (11)

Geometric parameters (Å, °)

Zn1—O1	1.9088 (14)	C14—C15	1.383 (3)
Zn1—O3 ⁱ	1.9501 (13)	C15—C16	1.387 (3)
Zn1—N1	2.0289 (13)	C16—C17	1.388 (3)
Zn1—N3	2.0327 (15)	C16—C20	1.500 (3)
O1—C19	1.279 (2)	C17—C18	1.383 (3)
O2—C19	1.226 (2)	C21—C22	1.366 (4)
O3—C20	1.2713 (19)	C22—C23	1.394 (3)
O4—C20	1.245 (2)	C23—C24	1.389 (4)
O5—N2	1.385 (3)	C23—C26	1.453 (4)
O6—N4	1.393 (3)	C24—C25	1.368 (4)
O7—N6	1.388 (4)	О5—Н3	0.89 (4)
N1—C1	1.342 (3)	O6—H9	0.81 (3)
N1—C5	1.336 (2)	O7—H13	0.78 (4)
N2—C6	1.267 (3)	C1—H1	0.930
N3—C7	1.336 (3)	C2—H2	0.930
N3—C11	1.344 (3)	C4—H4	0.930
N4—C12	1.258 (3)	С5—Н5	0.930
N5—C21	1.339 (4)	С6—Н6	0.930
N5—C25	1.337 (3)	С7—Н7	0.930
N6—C26	1.262 (4)	C8—H8	0.930
C1—C2	1.369 (3)	C10—H10	0.930

C2—C3	1.390 (3)	C11—H11	0.930
C3—C4	1.385 (3)	C12—H12	0.930
C3—C6	1.464 (3)	C14—H14	0.930
C4—C5	1.381 (3)	C15—H15	0.930
С7—С8	1.375 (3)	C17—H17	0.930
C8—C9	1.386 (3)	C18—H18	0.930
C9—C10	1.385 (3)	C21—H21	0.930
C9—C12	1.467 (3)	C22—H22	0.930
C10—C11	1.378 (3)	C24—H24	0.930
C13—C14	1.390 (3)	C25—H25	0.930
C13—C18	1.384 (3)	C26—H26	0.930
C13—C19	1.502 (3)		
$01-Zn1-O3^{i}$	103.92 (6)	N5-C21-C22	124.4 (2)
O1—Zn1—N1	116.51 (6)	C21—C22—C23	119.2 (2)
O1—Zn1—N3	120.49 (6)	C22—C23—C24	116.8 (3)
$O3^{i}$ —Zn1—N1	102.30 (6)	C22—C23—C26	122.5 (2)
O3 ⁱ —Zn1—N3	107.02 (6)	C24—C23—C26	120.69 (19)
N1—Zn1—N3	104.77 (6)	C23—C24—C25	119.9 (2)
Zn1—O1—C19	114.91 (12)	N5—C25—C24	123.7 (3)
Zn1 ⁱⁱ —O3—C20	119.68 (10)	N6—C26—C23	120.4(2)
Zn1-N1-C1	118.72 (11)	N2—O5—H3	102 (3)
Zn1—N1—C5	123.01 (11)	N4—O6—H9	103(2)
C1-N1-C5	117.62 (14)	N6-07-H13	100(2) 104(3)
05-N2-C6	112.76 (18)	N1 - C1 - H1	118.183
Zn1-N3-C7	117 37 (12)	C^2 — C^1 — H^1	118 181
Zn1-N3-C11	124 92 (11)	C1 - C2 - H2	120 577
C7 - N3 - C11	117 63 (15)	C3 - C2 - H2	120.575
O6-N4-C12	111.05 (15)	$C_3 - C_4 - H_4$	120.575
$C_{21} = N_{5} = C_{25}$	116.0(3)	C5 - C4 - H4	120.070
07 - N6 - C26	110.0(3) 111.6(2)	N1 - C5 - H5	118 876
$N_1 - C_1 - C_2$	123 64 (16)	C4 - C5 - H5	118 881
C1 - C2 - C3	118 85 (16)	N2-C6-H6	120 410
$C_1 - C_2 - C_3$	117.76 (16)	C_3 C_6 H_6	120.420
$C_2 = C_3 = C_4$	117.70(10) 121.03(17)	N2 C7 H7	120.420
$C_2 - C_3 - C_6$	121.03(17) 121.21(17)	R_{3} C_{7} H_{7}	118.656
$C_1 = C_2 = C_0$	121.21(17) 110.86(16)	$C_{3} - C_{7} - H_{7}$	120.074
C_{3}	119.00(10) 122.24(16)	$C = C = H \delta$	120.074
N1 - C5 - C4	122.24(10)	$C_{9} = C_{0} = H_{10}$	120.062
N2 - C0 - C3 $N3 - C7 - C8$	119.17 (16)	C_{9} C_{10} H_{10}	120.301
$N_{3} = C_{7} = C_{8}$	122.09 (10)	$\frac{11}{1000000000000000000000000000000000$	120.200
$C^{2} = C^{2} = C^{2}$	117.64 (10)		118.377
$C_{8} = C_{9} = C_{10}$	117.34 (17)		118.577
$C_{0} - C_{9} - C_{12}$	118.92 (10)	N4 - C12 - H12	119.234
C10 - C9 - C12	123.31 (10)	C9—C12—H12	119.230
$U_{10} = U_{10} = U_{11}$	119.41 (17)	C15 - C14 - H14	119.625
$N_{3} - C_{11} - C_{10}$	122.85 (16)	C13 - C14 - H14	119.62/
N4 - C12 - C9	121.54 (18)	C14—C15—H15	120.158
C14 - C13 - C18	119.43 (15)	C16—C15—H15	120.177
C14—C13—C19	119.41 (14)	C16—C17—H17	119.676

C18—C13—C19	121.06 (14)	C18—C17—H17	119.670
C13—C14—C15	120.75 (14)	C13—C18—H18	120.059
C14—C15—C16	119.66 (15)	C17—C18—H18	120.071
C15—C16—C17	119.55 (15)	N5-C21-H21	117.814
C15—C16—C20	120.58 (14)	C22—C21—H21	117.818
C17—C16—C20	119.74 (14)	C21—C22—H22	120.395
C16—C17—C18	120.65 (15)	C23—C22—H22	120.411
C13—C18—C17	119.87 (15)	C23—C24—H24	120.064
O1—C19—O2	124.31 (16)	C25—C24—H24	120.069
O1—C19—C13	114.32 (14)	N5—C25—H25	118.127
O2—C19—C13	121.36 (15)	C24—C25—H25	118.128
O3—C20—O4	124.72 (15)	N6—C26—H26	119.823
O3—C20—C16	115.58 (14)	C23—C26—H26	119.820
O4—C20—C16	119.68 (14)		
$O1$ — $Zn1$ — $O3^{i}$ — $C20^{i}$	-51.57 (11)	C2—C3—C6—N2	-11.0(3)
O3 ⁱ —Zn1—O1—C19	-177.30 (8)	C4—C3—C6—N2	169.38 (16)
O1—Zn1—N1—C1	84.68 (11)	C6—C3—C4—C5	178.20 (15)
O1—Zn1—N1—C5	-104.80 (11)	C3—C4—C5—N1	1.0 (3)
N1—Zn1—O1—C19	-65.65 (10)	N3—C7—C8—C9	0.5 (3)
O1—Zn1—N3—C7	122.99 (9)	C7—C8—C9—C10	0.8 (3)
O1—Zn1—N3—C11	-60.34 (11)	C7—C8—C9—C12	179.15 (14)
N3—Zn1—O1—C19	62.98 (10)	C8—C9—C10—C11	-0.7 (3)
O3 ⁱ —Zn1—N1—C1	-162.75 (9)	C8—C9—C12—N4	-164.73 (16)
O3 ⁱ —Zn1—N1—C5	7.77 (12)	C10—C9—C12—N4	13.5 (3)
$N1 - Zn1 - O3^{i} - C20^{i}$	-173.22 (10)	C12—C9—C10—C11	-179.00 (15)
O3 ⁱ —Zn1—N3—C7	4.81 (10)	C9—C10—C11—N3	-0.6 (3)
O3 ⁱ —Zn1—N3—C11	-178.51 (9)	C14—C13—C18—C17	0.8 (3)
$N3 - Zn1 - O3^{i} - C20^{i}$	76.92 (11)	C18—C13—C14—C15	-2.2(3)
N1—Zn1—N3—C7	-103.31 (9)	C14—C13—C19—O1	25.0 (2)
N1—Zn1—N3—C11	73.36 (11)	C14—C13—C19—O2	-154.27 (14)
N3—Zn1—N1—C1	-51.20 (10)	C19—C13—C14—C15	174.36 (13)
N3—Zn1—N1—C5	119.32 (10)	C18—C13—C19—O1	-158.55 (14)
Zn1—O1—C19—O2	3.1 (2)	C18—C13—C19—O2	22.2 (3)
Zn1—O1—C19—C13	-176.10 (8)	C19—C13—C18—C17	-175.65 (13)
Zn1 ⁱⁱ —O3—C20—O4	-22.5 (3)	C13—C14—C15—C16	0.9 (3)
Zn1 ⁱⁱ —O3—C20—C16	156.16 (9)	C14—C15—C16—C17	1.7 (3)
Zn1—N1—C1—C2	169.39 (12)	C14—C15—C16—C20	-174.19 (14)
Zn1—N1—C5—C4	-170.06 (10)	C15—C16—C17—C18	-3.0 (3)
C1—N1—C5—C4	0.6 (3)	C15—C16—C20—O3	8.3 (3)
C5—N1—C1—C2	-1.6 (3)	C15—C16—C20—O4	-172.96 (15)
O5—N2—C6—C3	-179.56 (15)	C17—C16—C20—O3	-167.49 (14)
Zn1—N3—C7—C8	175.10 (10)	C17—C16—C20—O4	11.2 (3)
Zn1—N3—C11—C10	-174.78 (10)	C20-C16-C17-C18	172.87 (14)
C7—N3—C11—C10	1.9 (3)	C16—C17—C18—C13	1.8 (3)
C11—N3—C7—C8	-1.8 (3)	N5-C21-C22-C23	1.4 (4)
O6—N4—C12—C9	178.33 (14)	C21—C22—C23—C24	0.2 (4)
C21—N5—C25—C24	0.9 (4)	C21—C22—C23—C26	-178.39 (19)
C25—N5—C21—C22	-1.9 (4)	C22—C23—C24—C25	-1.0 (4)

O7—N6—C26—C23	178.2 (2)	C22—C23—C26—N6	-9.1 (4)
N1—C1—C2—C3	1.1 (3)	C24—C23—C26—N6	172.4 (2)
C1—C2—C3—C4	0.4 (3)	C26—C23—C24—C25	177.53 (19)
C1—C2—C3—C6	-179.20 (16)	C23—C24—C25—N5	0.5 (4)
C2—C3—C4—C5	-1.4 (3)		

Symmetry codes: (i) -*x*-1, *y*+1/2, -*z*+3/2; (ii) -*x*-1, *y*-1/2, -*z*+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
O5—H3…N5 ⁱⁱⁱ	0.89 (5)	1.81 (4)	2.692 (3)	172 (4)	
06—H9…O4 ^{iv}	0.81 (3)	1.94 (3)	2.752 (3)	177 (3)	
O7—H13…O4 ⁱⁱⁱ	0.77 (4)	2.07 (4)	2.800 (3)	158 (4)	

Symmetry codes: (iii) *x*+1, *y*, *z*; (iv) *x*+1, -*y*+1/2, *z*-1/2.