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Para-toluenesulfonamide (PTS) has been implicated with
anticancer effects against a variety of tumors. In the present
study, we investigated the inhibitory effects of PTS on
tongue squamous cell carcinoma (Tca-8113) and explored
the lysosomal and mitochondrial changes after PTS
treatment in vitro. High-performance liquid chromatography
showed that PTS selectively accumulated in Tca-8113 cells
with a relatively low concentration in normal fibroblasts.
Next, the effects of PTS on cell viability, invasion, and cell
death were determined. PTS significantly inhibited Tca-8113
cells’ viability and invasive ability with increased cancer cell
death. Flow cytometric analysis and the lactate
dehydrogenase release assay showed that PTS induced
cancer cell death by activating apoptosis and necrosis
simultaneously. Morphological changes, such as cellular
shrinkage, nuclear condensation as well as formation of
apoptotic body and secondary lysosomes, were observed,
indicating that PTS might induce cell death through
disturbing lysosomal stability. Lysosomal integrity assay
and western blot showed that PTS increased lysosomal

membrane permeabilization associated with activation of
lysosomal cathepsin B. Finally, PTS was shown to inhibit
ATP biosynthesis and induce the release of mitochondrial
cytochrome c. Therefore, our findings provide a novel insight
into the use of PTS in cancer therapy. Anti-Cancer Drugs
26:1026–1033 Copyright © 2015 Wolters Kluwer Health, Inc.
All rights reserved.
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Introduction
Para-toluenesulfonamide (PTS) is a novel anticancer

agent with good lipophilic ability. As an adjunct to che-

motherapy and radiation therapy, PTS is usually deliv-

ered by an intravenous or an intratumoral injection.

Recent studies suggested that PTS inhibits tumor pro-

gression by induction of tumor necrosis [1]. A phase II

clinical trial showed that chemotherapy with a concurrent

PTS local injection was well tolerated and had efficient

clinical outcomes in patients with peripherally advanced

lung cancer [2]. However, the mechanisms of anticancer

effects of PTS remain elusive.

Lysosomes are highly dynamic cellular organelles that

play critically important roles in endocytosis, autophagy,

phagocytosis, and exocytosis [3]. Disturbance of lysoso-

mal stability induces cancer cell death [4]. A limited

release of lysosomal contents to the cytoplasm triggers

apoptosis or apoptosis-like cell death, whereas general-

ized lysosomal rupture results in rapid cellular necrosis

[5]. Released lysosomal proteases including cathepsin B

and D also cause mitochondrial damage and dysfunction,

which further amplifies the cell death signals [6–8]. It has

been reported previously that PTS suppressed H460

lung cancer cells by necrotizing tumor in a nude mice

model [1]. However, the mechanisms of PTS-induced

cell death remain unknown. To determine whether

PTS treatment is associated with lysosome-mediated cell

death, we examined the effects of PTS on the human

tongue squamous cell carcinoma Tca-8113 cell line.

Materials and methods
Cell culture and reagents

The human tongue squamous cell carcinoma Tca-8113

cell line was purchased from the China Center for Type

Culture Collection (Wuhan, China). Nontumor normal

mucosa tissues were obtained from patients who under-

went primary surgical resection of gingival squamous cell

carcinoma with informed consent at West China Hospital

of Stomatology (Chengdu, China). The age range of all

individuals was 35–65 years. Mucosa tissues were washed

with PBS, minced, and incubated for 4 h at 37°C in 5ml

of 10% collagenase type I (Sigma-Aldrich, St Louis,

Missouri, USA). Cells were spun at 225g for 5 min,

washed with PBS, and cultured. Human gingival fibro-

blast (HGF) cells were incubated in Dulbecco’s modified

Eagle medium supplemented with 10% fetal bovine
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serum (FBS), 10 U/ml penicillin, 10 μg/ml streptomycin,

and 200 mmol/l L-glutamine (Biochrom, Berlin,

Germany). HGF and Tca-8113 cells were incubated at

37°C in a humidified atmosphere of 5% CO2 and 95% air.

Morphologic changes in HGF and Tca-8113 cells after

PTS treatment were monitored using a phase-contrast

microscope (Olympus, Tokyo, Japan). This study was

approved by the Human Research Ethics Committee of

West China Hospital of Stomatology of Sichuan

University. PTS was purchased from Sigma-Aldrich and

dissolved in dimethyl sulfoxide (DMSO).

High-performance liquid chromatography

Measurement of intracellular PST by high-performance

liquid chromatography (HPLC) was performed as descri-

bed previously [9]. HPLC was performed using an Agilent

1100LC system (Agilent Technologies, Palo Alto,

California, USA) equipped with a Zorbax C8 column

(4.6× 250mm, 5 μm; Dupont, Wilmington, Delaware,

USA). The mobile phase consisted of acetonitrile–water

(15 : 85, v/v). The flow rate was 1.3 ml/min with UV

detection at 268 nm. The protein concentration of samples

was determined using the Bradford protein assay.

Quantification of intracellular PST was expressed as PST

content per microgram of protein (ng/μg).

Cell viability assay

Cell viability was measured in 96-well plates using the

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) assay (Life Technologies, Gaithersburg, Maryland,

USA) as described previously [10]. Briefly, the effects of the

indicated concentration of PTS on the viability of Tca-8113

and HGF cells were assessed by mitochondrial activity indi-

cator MTT. The assay was performed according to the

manufacturer’s instructions and plates were read at 570 nm.

Viability was calculated as percentage compared with

untreated cells under basal conditions.

Flow cytometric analysis

The effects of PTS on cancer cell death were determined

by flow cytometric analysis. In brief, cells were collected

and washed twice with cold PBS. The cell collections

were resuspended in Annexin V–FITC and propidium

iodide (PI), and incubated for 15 min at room tempera-

ture in the dark. Fluorescence was measured at 488 nm

in a flow cytometer (FACSCalibur; BD Biosciences,

San Jose, California, USA).

Transwell migration assay

The effects of PTS on the invasive motility of Tca-8113

cells were determined using a transwell migration assay

(BD Biosciences). In brief, after treatment with PTS for

1 h, cells (2.5× 104) were seeded into the top chambers of

a 24-well, 8-μm pore-size micropore polycarbonate

membrane filter (BD Biosciences), and the bottom

chambers were filled with 500 μl Dulbecco’s modified

Eagle medium containing 10% FBS as a chemoattractant.

Cells were allowed to migrate for 24 h at 37°C.
Nonmigrated cells were removed with a cotton swab, and

migrated cells were fixed with 4% paraformaldehyde

and stained with 1% crystal violet. Data are represented

as the average number of migrated cells per field (20

random × 20 magnification fields) per membrane filter.

Colony formation assay

Cells were seeded into 60 mm culture dishes at 200 cells/

dish. After 24 h, cultures were replaced with fresh med-

ium containing 10% FBS with or without PTS. After 1 h

incubation, culture dishes were rinsed three times with

PBS. Cells were further grown in fresh medium con-

taining 10% FBS for 3 weeks. Colonies were stained with

a solution containing 0.5% crystal violet and 25%

methanol. Colonies were counted only if a single clone

contained more than 50 cells.

Lactate dehydrogenase release assay

Lactate dehydrogenase (LDH) release from cells was

measured by determining the activity of LDH released

into the culture medium using an LDH assay kit

(Nanjing Jiancheng Bioengineering Institute, Nanjing,

China) according to the manufacturer’s protocol. Briefly,

Tca-8113 cells were treated with either control medium

or PTS for 1 h. 100 μl culture medium was collected and

mixed with an LDH reaction solution. Absorbance was

measured at 450 nm using a microplate reader (Thermo

Fisher Scientific Inc., Waltham, Massachusetts, USA).

Necrotic cell death after PTS treatment was estimated by

the activity of LDH released from necrotic cells with

damaged plasma membrane integrity.

Transmission electron microscopy analysis

Tca-8113 cells were seeded on coverslips and treated

with PTS for 1 h. The medium was replaced by fresh

medium for a further 24-h incubation. At the end of the

incubation period, cells were fixed in 3% glutaraldehyde

in PBS for 2 h, washed, and fixed again in 1% osmium

tetroxide. Samples were dehydrated in graded ethanol

and embedded in epon 812. Serial ultrathin 60-nm sec-

tions were stained with uranyl acetate and lead citrate

and then observed using a transmission electron micro-

scope (Hitachi H-600; Hitachi, Tokyo, Japan).

Western blot

Preparation of total and cytosolic proteins as well as wes-

tern blot analysis were carried out as described previously

[11]. For immunodetection, anticathepsin B polyclonal

antibody (Abcam, Cambridge, Massachusetts, USA;

1 : 1000 dilution) and anticytochrome c monoclonal anti-

body (Cell Signaling Technology, Beverly, Massachusetts,

USA; 1 : 1000 dilution) were used. Proteins were detected

using HRP-conjugated secondary antibodies and an

enhanced chemiluminescence reagent (Millipore, Bedford,

Massachusetts, USA).
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Assays for lysosomal integrity

Lysosomes of Tca-8113 cells were isolated using the

Percoll gradient centrifugation method [12]. The effects

of PTS on lysosomal integrity were assessed by measuring

the activity of lysosomal β-galactosidase using UMBG (4-

methylumbelliferyl-β-D-galactoside) as described pre-

viously [13]. The 4-methylumbelliferone released was

determined by measuring its fluorescence (excitation:

365 nm, emission: 444 nm) on a fluorescence spectro-

photometer (Hitachi F-4500; Hitachi). The activity of the

enzyme measured in the presence and absence of 0.36%

Triton X-100 was designated the free activity and the

total activity, respectively.

ATP biosynthesis assay

Cellular mitochondria were isolated using the Percoll

density gradient centrifugation method [14].

Mitochondrial ATP biosynthesis was determined on the

basis of the luciferin–luciferase reaction as described

previously [15]. Measurements of the chemiluminescence

of the luciferin–luciferase reaction were performed in a

Varioskan Flash microplate reader (Thermo Fisher

Scientific Inc.).

Statistical analyses

Data are described by mean ± SD and the statistical

analysis was carried out using SPSS (version 13.0;

SPSS Inc., Chicago, Illinois, USA). Statistical significance

was evaluated using the Student’s t-test or two-way

analysis of variance. P-values of less than 0.05 were

defined as statistically significant.

Results
Para-toluenesulfonamide selectively accumulates in

cancer cells without affecting normal fibroblasts

To examine the anticancer properties of PTS, we first

measured the intracellular concentration of PTS in

human tongue cancer Tca-8113 cells and gingival fibro-

blast HGF cells after PTS treatment. The HPLC

method for the validation of PTS was performed with six

calibration standards ranging from 10.0 to 320.0 μmol/l.

The retention times of the internal standard and PTS

were 2.0 and 12.6 min, respectively. As shown in Fig. 1a,

PTS treatment increased the intracellular PTS con-

centration in Tca-8113 cells. We next assessed the

accumulation of intracellular PTS after different doses

and incubation periods of PTS treatment in Tca-8113

and HGF cells. Increased PTS treatment significantly

induced a higher level of intracellular PTS accumulation

in Tca-8113 and HGF cells. Prolonged PTS incubation

also increased the intracellular PTS level. 80 μmol/l PTS

treatment for 10 min induced maximal intracellular PTS

accumulation in Tca-8113 and HGF cells (Fig. 1b and c).

However, after 10 min of PTS treatment, intracellular

PTS accumulation was significantly inhibited in HGF

cells compared with that in Tca-8113 cells under the

same PTS treatment condition (Fig. 1d). These results

suggest that PTS selectively targets cancer cells, but

exerts less effect on normal fibroblasts.

Para-toluenesulfonamide activates apoptosis and

necrosis simultaneously to induce cancer cell death

To examine the effects of PTS on cell viability, Tca-8113

and HGF cells were treated with different doses of PTS

for 1 h. As shown in Fig. 2a, PTS significantly reduced

the viability of Tca-8113 cells in a dose-dependent

manner. 80 μmol/l PTS treatment almost completely

suppressed the number of viable cells. The inhibitory

effects of PTS in HGF cells were significantly decreased

compared with that in Tca-8113 cells, which is consistent

with our HPLC results that HGF cells accumulated less

intracellular PST. Observation of morphologic changes

using a phase-contrast microscope showed that 40 μmol/l

PTS treatment induced classical apoptotic features

including cell shrinkage, nuclear condensation, cell

density reduction, and apoptotic body formation

(Fig. 2b). Colony formation assay further confirmed the

cytotoxic effects of PTS on Tca-8113 cells (Fig. 2c). We

next measured cancer cell death using flow cytometric

analysis. PTS treatment for 1 h induced a significant

increase in early apoptotic cells (Annexin V+/PI−) with

5.82, 20.2, and 64.1% for DMSO, and 40 and 80 μmol/l of

PTS treatment. Late apoptotic/necrotic cells (Annexin

V+/PI+) after DMSO, and 40 and 80 μmol/l of PTS

treatment were 7.70, 11.5, and 15.9%, respectively.

Viable cells (Annexin V−/PI−) decreased from 83.0% in

the DMSO-treated group to 67.5 and 19.8% after 40 and

80 μmol/l of PTS treatment (Fig. 2d). The results of flow

cytometric analysis showed that PTS induced cancer cell

death by activating apoptosis and necrosis simulta-

neously. We further determined PTS-induced necrosis

using the LDH release assay. LDH is a cytosolic enzyme

that can be released into culture medium upon damage of

the plasma membrane. Necrosis, which results in an early

loss of plasma membrane integrity, can be determined

using the LDH release assay [16,17]. As shown in Fig. 2e,

PTS induced a significant increase in the activity of LDH

released from necrotic cells. 80 μmol/l PTS treatment for

1 h induced a two-fold increase in LDH release com-

pared with the control group. In addition, we investigated

the effects of PTS on the invasive ability of cancer cells.

Using a transwell migration assay, we observed that

40 μmol/l PTS treatment for 1 h significantly reduced the

invasive ability of Tca-8113 cells (Fig. 2f).

Para-toluenesulfonamide triggers cell death by inducing

lysosomal instability

To investigate the mechanisms of PTS-induced cell

death, we used transmission electron microscopy analysis

to observe the changes in ultrastructures of Tca-8113

cells. As shown in Fig. 3a, cells showed shrunk nuclei and

an irregular nuclear membrane after 40 μmol/l PTS

treatment. More secondary lysosomes with high electron

density were observed after PTS treatment. Lysosomal
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Fig. 1
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instability was proposed to control the fate of cells either

through activation of apoptosis or necrosis [18,19]. We

therefore performed a lysosomal integrity assay to assess

the effects of PTS on lysosomal membrane integrity.

Using the UMBG assay for β-galactosidase activity, PTS

was shown to significantly increase free enzyme activity

in a dose-dependent manner, which suggests that PTS

induces lysosomal membrane permeabilization (LMP)

and lysosomal damage (Fig. 3b). LMP leads to release

intralysosomal proteases such as cathepsin B and D and

chymotrypsin B, which are suggested to be essential

downstream effectors of caspases [20]. Western blot

showed PTS treatment significantly increased cleaved

cathepsin B expression (Fig. 3c). These results suggest

that the anticancer ability of PTS might be attributed to

inducing lysosomal instability and activating lysosome-

mediated cell death.

Para-toluenesulfonamide induces mitochondrial

damage and inhibits ATP biosynthesis

Increased lysosomal permeability is reported to induce

mitochondrial damage and the release of proapoptotic

Fig. 2
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factors [6]. We therefore investigated the cytosolic cyto-

chrome c released from the mitochondria after PTS

treatment. Western blot showed that 40 μmol/l PTS

treatment significantly induced cytosolic cytochrome c
expression in Tca-8113 cells (Fig. 4a). As the mitochon-

dria are at the core of cellular energy metabolism and also

the major organelles for ATP generation, we then asked

whether PTS regulates mitochondrial ATP biosynthesis.

As shown in Fig. 4b, PTS treatment significantly inhib-

ited mitochondrial ATP biosynthesis in a dose-

dependent manner. 40 μmol/l PTS treatment for 1 h

attenuated ATP biosynthesis to 65.8%. These results

suggest that PTS induces mitochondrial damage and

exerts a metabolic arrest effect on cancer cells.

Discussion
In the present study, we tested the anticancer effects of

a novel agent PTS on tongue cancer cells in vitro.
PTS selectively accumulated in Tca-8113 cells, with

fewer poisonous effects on normal fibroblasts. PTS

inhibits tumor progression by simultaneously inducing

apoptosis, and necrosis and suppressing invasive ability in

Tca-8113 cells. Moreover, our results suggest that PTS

triggers cell death through disturbing lysosomal stability

and inducing mitochondrial dysfunction.

PTS is reported to exert anticancer effects in many types

of cancer including hepatocarcinoma and non-small-cell

lung cancer [1,2]. Puncture injection of PTS combined

with transcatheter arterial chemoembolization resulted in

Fig. 3
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40 μmol/l PTS or dimethyl sulfoxide for 1 h; the ultrastructural changes were observed using a transmission electron microscope. The secondary
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significant tumor control without severe complications in

a patient with advanced hepatocellular carcinoma [21].

Previous studies showed that PTS induced necrosis in

lung cancer cells or in hepatocellular carcinoma cells

in vivo [1,22]. However, an in-vitro study of the

mechanisms of PTS-induced cell death is still lacking. In

this study, we showed that PTS treatment significantly

suppressed the cell viability and invasive ability of Tca-

8113 cells in vitro. Results from flow cytometric analysis

and the LDH release assay showed that PTS induced

apoptosis and necrosis simultaneously, which suggests

that the anticancer effects of PTS can be attributed to the

combined action of apoptosis and necrosis. In addition,

PTS is reported to exert a selective killing effect on lung

cancer cells compared with normal bronchial epithelium

cells, or result in a smaller injury area to normal tissue

than does ethanol in a xenograft mouse model [23]. We

also observed that PTS induced more significant cell

death in Tca-8113 cells than that in normal gingival

fibroblasts, and found that this might be partially attrib-

uted to different intracellular PTS accumulation between

cancer cells and normal cells. However, the mechanisms

of the selectively cytotoxic effects of PTS need further

investigation.

Lysosomes and their enzymes promote cancer progres-

sion by breaking down the extracellular matrix, and sti-

mulating angiogenesis and migration through releasing

the lysosomal proteases into the extracellular space [20,

24]. However, disturbed lysosomal stability and increased

LMP sensitize cells to the lysosome-mediated cell death

pathway [25,26]. The lysosomal proteases released reg-

ulate cell death either in a caspase-dependent or caspase-

independent manner [20]. Cytosolic cathepsin B released

from lysosomes cleaves and activates proapoptotic Bcl-2

family member Bid and PARP-1 [27–29]. In this study,

the formation of secondary lysosomes in cancer cells was

observed after PTS treatment.

We also showed that PTS treatment induced LMP and

the release of cathepsin B. Collectively, our findings

suggest that the anticancer effects of PTS might be

attributed to its ability to activate lysosome-mediated cell

death. Considering that LMP can be partially induced in

apoptosis, but massively in necrosis, blocking experi-

ments using an apoptosis inhibitor (e.g. z-VAD-fmk) or a

necrosis inhibitor (e.g. IM-54) are needed in the future.

A growing number of studies suggest that LMP could

induce mitochondrial dysfunction, associated with the

release of apoptogenic factors, such as cytochrome c, from
the mitochondria, followed by caspase activation [7,20,

30]. Reactive oxygen species generated after mitochon-

drial damage feeds back to the lysosomes, leading to

further lysosomal breakdown and exacerbation of apop-

tosis [31,32]. Induction of mitochondrial membrane per-

meabilization and subsequent mitochondrial dysfunction

are critical steps in lysosome-mediated cell death. The

anticancer effects of hydroxychloroquine, a lysosomo-

tropic amine with cytotoxic properties, were abolished

after inhibition of the mitochondrial translocation of Bax

[33]. In this study, we identified that PTS treatment

induced the release of mitochondrial cytochrome c and
inhibited ATP biosynthesis. These findings suggest that

PTS might induce mitochondrial damage and cell death

by disturbing lysosomal stability and activating LMP.

Conclusion

Our present results suggest that PTS is capable of

inducing Tca-8113 cells cell death by induction of lyso-

somal instability and further mitochondrial damage.

These results may provide a new insight into the use of
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PTS in the treatment of tongue squamous cell carcinoma.

However, the molecular mechanisms downstream of

lysosomal instability mediating the anticancer effects of

PTS need to be further identified.
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