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ABSTRACT: The overarching goal of this work is to investigate the size-dependent characteristics of the ionization potential of PbS
and CdS quantum dots. The ionization potentials of quantum dots provide critical information about the energies of occupied states,
which can then be used to quantify the electron-removal characteristics of quantum dots. The energy of the highest-occupied
molecular orbital is used to understand electron-transfer processes when invesigating the energy-level alignment between quantum
dots and electron-accepting ligands. Ionization potential is also important for investigating and interpreting electron-detachment
processes induced by light (photoelectron spectra), external voltage (chemiresistance), and collision with other electrons (impact
ionization). Accurate first-principles calculations of ionization potential continue to be challenging because of the computational cost
associated with the construction of the frequency-dependent self-energy operator and the numerical solution of the associated Dyson
equation. The computational cost becomes prohibitive as the system size increases because of the large number of 2particle-1hole
(2p1h) and 1particle-2hole (1p2h) terms needed for the calculation. In this work, we present the Stratified Stochastic Enumeration
of Molecular Orbitals (SSE-MO) method for efficient construction of the self-energy operator. The SSE-MO method is a real-space
method and the central strategy of this method is to use stochastically enumerated sampling of molecular orbitals and molecular-
orbital indices for the construction of the 2p1h and 1p2h terms. This is achieved by first constructing a composite MO-index
Cartesian coordinate space followed by transformation of the frequency-dependent self-energy operator to this composite space. The
evaluation of both the real and imaginary components of the self-energy operator is performed using a stratified Monte Carlo
technique. The SSE-MO method was used to calculate the ionization potentials and the frequency-dependent spectral functions for a
series of PbS and CdS quantum dots by solving the Dyson equation using both single-shot and iterative procedures. The ionization
potentials for both PbS and CdS quantum dots were found to decrease with increasing dot size. Analysis of the frequency-dependent
spectral functions revealed that for PbS quantum dots the intermediate dot size exhibited a longer relative lifetime whereas in CdS
the smallest dot size had the longest relative lifetime. The results from these calculations demonstrate the efficacy of the SSE-MO
method for calculating accurate ionization potentials and spectral functions of chemical systems.

1. INTRODUCTION
Ionization potential (IP) ω (or ionization energy) is defined as
the energy needed to remove an electron from a chemical
system.
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E EIP
N 1 N= (2)

The ejection of the electron can be facilitated using incident
photons, scattering by high-energy electrons, or applying a
strong electric field. As one of the fundamental properties of a
material, IP has relevance to the areas of photovoltaics, mass
spectrometry, photoelectron spectroscopy, electrochemistry,
photocatalysis, and light-induced electron-transfer processes.
The IP of atoms, molecules, and various chemical compounds
is a quantity of interest when performing X-ray spectroscopy.
Recently, it has been found that small gas-phase polyatomic
molecules with a heavy atom, such as iodomethane, when
bombarded with hard X-ray pulses display surprisingly
enhanced ionization relative to an individual heavy atom
with the same absorption cross-section.1 Following the
excitation of an electron from an inner orbital of one atom,
another electron from a higher energy orbital of the same atom
can occupy this inner orbital. Instead of undergoing de-
excitation, the newly excited electron can transfer energy via
photon emission by ionizing an electron from an outer orbital
of a neighboring atom. This process is called interatomic
Coulombic decay (ICD).2,3 The IPs of both the inner and
outer orbitals of molecules, dimers, and clusters influence
which de-excitation mechanism occurs in a highly excited
neutral or a highly excited ionized state of these types of
systems. Knowledge of the IPs of these systems’ inner and
outer orbitals can assist in the prediction of which de-excitation
mechanism is likely to occur in a system of interest.4−9 High
precision IP measurements in atoms and molecules provide
important information about electron−electron correlation
and serves as a benchmark for the development and testing of
theories. Ionization potential also is a quantity of interest in
biological systems. For example, ionizing radiation causes
permanent heritable DNA damage,10 and the IPs of nucleic
acid tautomers are quantities of interest, due to the role of
these molecules in cancer.11

In quantum dots (QDs) and nanomaterials, knowledge of
the IP for ionization from HOMO serves as an important
metric for quantifying electron-transfer rates.12−18 Photo-
ejection of electrons by X-ray and UV radiation has been
used to study valence-band states in QDs.19 Cyclic voltametry
has also been used to calculate HOMO energies in QDs and
IPs.20 Transient photoemission in two-photon experiments has
provided information on the energy levels of unoccupied
orbitals.21 Knowledge of the relative positions of the HOMO
and lowest unoccupied molecular orbital (LUMO) levels of a
QD with respect to the surface ligands is an important factor in
extraction of a hot carrier from the QD.19

In molecular quantum chemistry, the simplest approxima-
tion of IP (denoted as ωi

0) is given by the Koopmans’
approximation, where the exact IP is approximated as the
negative of the orbital energies.

p Hp H forp p
N N N N

p
N0

HF HF HF HF HF= = | | | |†

(3)

Koopmans’ treatment utilizes the Hartree−Fock (HF)
approximation to obtain a single N-electron Slater determinant
from which an electron from one of the occupied states is
annihilated, as shown in eq 3. Although Koopmans’ theorem is
limited by the use of single Slater determinants and does not
account for orbital relaxation and electron−electron correla-
tion effects, it still provides an acceptable first approximation
for the IP of a system of interest.22 Going beyond Koopmans’

approximation by including the effect of electron−electron
correlation can be achieved in a variety of different ways such
as with electron-propagator methods,23−31 algebraic diagram-
matic construction (ADC),32,33 equation-of-motion coupled-
cluster (IP-EOM-CCSD),34−39 many-body perturbation
theory (MBPT),40,41 GW method,42 correlated-orbital theory
(COT),43 and time-dependent density functional theory
(TDDFT).44−46 The IP of the HOMO has a special
significance in DFT because of Janak’s theorem and plays a
prominent role in the development and testing of DFT
functionals.47 Without loss of generality, the many-body
correction to the IP can always be written as,

p p p
0= + (4)

where Δωp accounts for all of the correction terms missing
from the Koopmans’ approximation; post-HF methods
mentioned earlier offer different approximations and for-
mulations for calculating Δωp. However, efficient first-
principles calculation of Δωp for large chemical systems
continues to be challenging and is an active field of research.
Using the electron-propagator method, Ortiz and co-workers
developed a series of approximations that offer an order-by-
order treatment of electron correlation to the many-body
correction for IPs.23−25,48,49 Open-shell systems possess
additional complexities compared to their closed-shell counter-
parts, and the spin-flip EOM-IP approach has been used to
treat open-shell systems.50 In the GW formulation, the
projective eigen decomposition of the dielectric screening
(PDEP) algorithm has been used for calculating the
quasiparticle gap of QDs.42 In recent works, methods using
stochastic techniques have been demonstrated to achieve the
low-scaling needed for applications to large chemical systems.
Specifically, the use of stochastic orbitals in the stochastic
Green’s function method developed by R. Baer can be used for
the calculation of IPs.51 A different strategy of combining the
Laplace-transformed expression of the self-energy operator
with a real-space Monte Carlo integration scheme developed
by Hirata and co-workers has been used for the calculation of
IPs at the second-order MP2 level.52 The approach was
recently extended for ground-state MP4 level.53 In a related
work by Li et al., the Laplace-transformed MP2 approach has
been combined with the density-of-states approach to reduce
the overall computational cost of the MP2 calculation.54 This
approach demonstrated the effectiveness of using the intrinsic
degeneracies present in chemical systems to reduce the overall
cost of MP2 calculations.

In this article, we present the stratified stochastic
enumeration of molecular orbitals (SSE-MO) method for the
efficient computation of the IP through the iterative solution of
the Dyson equation. The SSE-MO method was originally
inspired by the 2013 paper, “Stochastic Enumeration Method for
Counting NP-Hard Problems” by Rubinstein.55 The original
stochastic enumeration by Rubinstein was based on the
importance sampling scheme. In the field of computer science,
the stochastic enumeration technique has been applied to
traversing deep tree structures and implementing backtracking
algorithms.55 For the SSE-MO method, we have combined
stochastic enumeration with stratified sampling to perform the
necessary summations over a direct-product space of molecular
orbital indices and 6D Cartesian coordinate space. The
reduced computational cost of the SSE-MO method allowed
us to investigate the full frequency-dependent pole structure of
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the 1-particle Green’s function by an iterative solution of the
Dyson equation. In this work, the SSE-MO method was used
to investigate IPs of PbS and CdS QDs. The motivation for the
SSE-MO method comes from the fact that not all terms
contribute equally to the overall self-energy operator. A similar
observation has also been made for the density-of-state MP2
method.54 For example, for the Pb4S4 system, the contribution
for each term as a function of the hole-index, (i), is presented
in Figure 1. Without loss of generality, the self-energy operator
can be written as the sum of the 2-particle 1-hole (2p1h) and
1-particle 2-hole (1p2h) terms as shown in eq 5.

A A( ) ( ) ( )
i

N

i
i

N

i
(2)

1

2p1h

1

1p2h
occ occ

= +
= = (5)

It is seen that some terms contribute more than other terms.
The SSE-MO method aims to distribute the computation
effort used to calculate of the overall self-energy operator in
proportion to the contribution of each of the terms and their
associated errors. Here, we provide a general formulation of
stratified stochastic tensor contraction (section 2.1), details
about the construction of the self-energy operator (section
2.2), formulation of stochastic stratified sampling in MO space
(section 2.3), performing low-discrepancy sampling (section
2.5), construction of the control-variate functions for the real-
space integrals (section 2.6), performing joint MO-space real-
space stratified sampling (section 2.7), the iterative solution of
the Dyson equation (section 2.2), and the calculation of pole-
strengths of the Green’s function and calculation of higher-
order derivatives of the self-energy operator (section 2.9).
Benchmark calculations on well-studied systems and new
results on PbS and CdS QDs are presented in section 3.
Comparisons to existing methods and future directions are
discussed in section 4.

2. THEORY
2.1. Stratified Stochastic Enumerated Tensor Con-

traction. As an introduction to the application of SSE for the
calculation of the self-energy operator, we present the SSE
approach for performing a general N-index tensor contraction.
We start by considering the following general tensor
contraction S = Tr{ABCD}.

S A B C D G...
i

N

i

N

i

N

i i i i i i i i i i i i i i i
1 1 1

...

1 2 12

1 2 3 4 5 6 7 8 9 10 11 12 1 2 12
=

= = = (6)

One situation for which this type of tensor contraction is
encountered is when the integration of a 4-point kernel in real
space ⟨A(r1)B(r2)C(r3)D(r4) G(r1, r2, r3, r4)⟩ on a spatial grid
with N point per dimension is being performed. This tensor
contraction has N12 terms and a simple sequential evaluation
will require N12 terms. For the stratified stochastic enumera-
tion approach, we will first define a composite index K such
that K = 1, ..., N12. The composite index, K, uniquely maps
each ordered set of indices (i1, i2, i3, ..., i12) to an integer in 1, ...,
N12.

A B C D GK i i i i i i i i i i i i i i i...1 2 3 4 5 6 7 8 9 10 11 12 1 2 12 (7)

Using the composite index K, we can define the summation as
displayed in the following equation.

S
K

N

K
1

12

=
= (8)

Next, we divide the entire range of K into N nonoverlapping
segments Nseg = N. The number of terms in each segment is
NT = N11. The summation over K can be written in terms of
the segmented summation.

S S S S S... N1 2 3= + + + + (9)

Figure 1. Percent contribution of terms Ai2p1h and Ai1p2h (defined in eq 5) to the total self-energy as a function of hole index (i) for Pb4S4.
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1
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=

=
+

(14)

The partial averages are defined as follows.

X
S
N

X
S
N

X
S
N

, , ...,
T T

N
N

T
1

1
2

2= = =
(15)

The total sum can be written as displayed in the equation
below.

S N X X X...T N1 2= [ + + + ] (16)

In SSE, the sequential segment average, X̅, is approximated
using the stochastic average,

X M
M

( )
1

K N

M

K1
SSE

1
1 1,..., Tswr

1

=
[ ] (17)

X M
M

( )
1

K N
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K N2
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2
2 1,...,
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T
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2

=
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+
(18)

= (19)

X M
M

( )
1

N N
N K N

M

K N N
SSE

1,...,
(( 1) )

T

N

T

swr

=
[ ]

+
(20)

where the subscript in K N1, ..., Tswr
[ ] denotes “sampling-

without-replacement”. For any segment “p”, the SSE average
approaches the sequential average as Mp → NT.

X M Xlim ( )
M N

p p p
SSE

p T

=
(21)

The SSE estimate of the total summation is presented in the
equation below.

S N X M( )T
p

N

p p
SSE

1

SSE=
= (22)

The allocation of the sampling points for each segment is
proportional to the variance in the SSE segment average X̅pSSE.

M Xp p
SSE

(23)

Xp
SSE[ ] (24)

The SSE approach is based on stratified sampling, which has
been used extensively for reducing sampling error in Monte
Carlo calculations56−58 and a brief description stratified
sampling is presented in the Supporting Information (SI).
The SSE method is not restricted to square tensors and can be

applied to rectangular tensors as well. We recommend a row-
major composite indexing scheme. For an index vector (i1, i2,
i3, ..., iD), where D is the dimension of the tensor and each
index (id, d = 1, D) is in the range (id = 1, ..., Nd), the row-
major composite index K can be calculated using the following
expression.

K N i1 ( 1)
d

D

j

d

j d
1 1

1

= +
= =
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ÅÅÅÅÅÅÅÅÅÅÅÅÅ
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zzzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ (25)

2.2. Second-Order Dyson Equation. In this work we are
interested in calculating the IPs of chemical systems. The
component of the 1-particle Green’s function, G(ω), that
contains information about the IPs can be expressed in the
Lehman representation as follows.59

G a
E H i

a( ) lim
1

( )pq
N

q N p
N

0
0

0
0= | |†

+ (26)

where, Gpq is the matrix element of the matrix representation of
the operator in canonical Hartree−Fock (HF) orbital basis
{χp},

f p pp| = | (27)

{ aq†, ap,} are creation and annihilation operators defined with
respect to the HF orbitals, {E0

N, Ψ0
N} are the exact ground state

energies and wave function, and H is the electronic
Hamiltonian. By inserting a complete set of projectors, 1 =
∑m |Ψm

N−1⟩ ⟨Ψm
N−1|, we obtain the following equation.

G
A A

E E i
( ) lim

( )pq
m

mq mp
N

m
N0 0

1=
*

+
(28)

As shown in eq 28, the Green’s function’s poles correspond to
the vertical IPs of a many-electron system.

Epole IP= (29)

The quantity |Amp|2 is the residue of the pole and is known as
the pole strength.

A amp m
N

p
N1
0= | | (30)

The limit η → 0+ in eq 28 is traditionally associated with this
expression because of its use in performing the Fourier
transform from the time-domain to frequency-domain and will
be suppressed in the rest of the derivation. Analogous to the
many-body Green’s function, the uncorrelated HF Green’s
function G0 is given by the following expression.59

G a
E H

a( )
1

( )pq
N

q N p
N0

0
HF 0

0= | |†

(31)

which immediately simplifies to following diagonal representa-
tion.59

G ( )ij
ij

i

0 =
(32)

where i, j = 1, Nocc are indices for occupied orbitals and ϵi is the
orbital energy. The above equation recovers the Koopmans’
approximation to the IPs, which is defined as EIP

Koopmans = −ϵi.
In the frequency representation, the relationship between

the correlated 1-particle Green’s function, G, and the
uncorrelated Green’s function G0 is given by the well-known
Dyson equation.60
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G G G G( ) ( ) ( ) ( ) ( )0 0= + (33)

Here, Σ is the self-energy operator. The relationship between
the correlated and uncorrelated Green’s function can be
derived using various techniques including time-dependent
perturbation theory, time-independent perturbation theory,
coupled-cluster theory, the configuration interaction method,
and electron-propagator methods.26,34,59,61,62 The above
operator equation can also be presented in various
representations such as plane-waves, real-space grids, and
canonical HF orbitals.42,63,64 In this work, we use canonical HF
orbitals to represent the Dyson equation.60 To facilitate the
calculation of the poles, it is useful to express eq 33 in terms of
inverse operators by multiplying G−1(ω) from left and G0

−1(ω)
from the right.

G G( ) ( ) ( )1
0

1= (34)

Once G(ω) is determined for an appropriate set of values of ω,
the poles can be observed by constructing a plot of G(ω)
versus ω. Approximating the total self-energy operator by
diagonal representation,

( ) diag ( )[ ] (35)

allows for analytical inversion of the Dyson equation into the
following simplified expression,60

( )i ii
0 + = (36)

where ωi
0 is the orbital energy of occupied orbital (i) and ω =

−EIP. We have used the second-order approximation to the
self-energy operators, which in the canonical MO basis is
defined as,60

ij r ab ab r ij

ia r jk jk r ia

( )
1
2

1
2

ii ii
jab

A A

j a b

jak

A A

a j k

(2) 12
1

12
1

12
1

12
1

= | | | |
+

+
| | | |

+ (37)

where i, j, and k indicate occupied spin orbitals and a and b
indicate virtual spin orbitals.

Using the restricted Hartree−Fock (RHF) formulation, the
correction to the orbital energies using the second-order self-
energy expression can be written as,

( ) ( ) ( ) ( )p p p
C

p
D

p
E

p
F(2) ( ) ( ) ( ) ( )= + + + +

(38)

where the RHF expressions for the self-energy terms are
defined as,

V V

E
( ) 2

( )
p
C

iab

iapb iapb

iab

( )
2p1h=

(39)

V V

E
( )

( )
p
D

iab

iapb ibpa

iab

( )
2p1h=

(40)

V V

E
( ) 2

( )p
E

ija

ipja ipja

ija

( )
1p2h=

(41)

V V

E
( )

( )p
F

ija

ipja iajp

ija

( )
1p2h=

(42)

Here, we have used the following compact notation for the
energy denominators,

E ( )iab i a b
2p1h = + (43)

E ( )ija i j a
1p2h = + (44)

and the r12−1 matrix elements are defined using the chemist’s
notation for the indices.

V d d rr r r r r r( ) ( ) ( ) ( )pqst p q s t1 2 1 1 12
1

2 2=
+

(45)

Next, we will develop the SSE-MO approach for evaluating the
self-energy operator.

2.3. Stratified Stochastic Enumeration of Self-Energy.
We begin by defining a set 2p1h of ordered integers (i, a, b),

i a b i N a b N( , , ) ; 1, ..., ; ( , ) 1, ...,2p1h
occ vir= { } = =

(46)

which contains all the possible combinations of indices that
occur in 2p1h self-energy expression. We will use the
composite index K = (i, a, b) to enumerate this ordered set
of integers. The size of set 2p1h is given as,

K N Nmax
2p1h 2p1h

occ vir
2= | | = × (47)

Using this notation, we can define a general form of the 2p1h
self-energy term as follows.

X
A B

Ep
K

K
pK pK

K

2p1h

1
2p1h

max
2p1h

=
= (48)

where,

A VpK iapb (49)

B V forpK iapb p
C( )

(50)

B V forpK ibpa p
D( )

(51)

In eq 48 the summation is performed sequentially for all terms.
In the stochastic enumeration (SE) approach the sequential
sum is replaced by a stochastic summation. We define a new
operator Σ̃ which is defined as follows,

X K
N

A B

E
1

p
K

N
pK pK

K

2p1h
max
2p1h

sample
MO 2p1h

swr
2p1h

sample
MO

= ×
(52)

and where K is sampled from the set 2p1h. This sampling is
performed without replacement and the notation K

swr
2p1h

is used to emphasize this procedure (sample-without-
replacement). The Nsample

MO is sample size and bounded from
above by Kmax

2p1h. In the limit when the sample size approaches
Kmax

2p1h the following limiting condition is satisfied.

X X( ) lim ( )p
N K

p
2p1h 2p1h

sample
MO

max
2p1h

=
(53)

Simple stochastic enumeration will involve performing the
sampling over multiple runs and averaging the final results.

X
N

X X X1
p p p p
2p1h,avg

runs

2p1h,1 2p1h,2 2p1h,Nruns= + + ··· +
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑ

(54)
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The variance is defined as follows.

X X Xp
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p p
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We expect the variance to disappear when Nsample
MO approaches

Kmax
2p1h,

Xlim 0
N K

p
2p1h

sample
MO

max
2p1h

=
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑ (56)

To reduce the variance of the overall calculations, we introduce
stratification in the sampling procedure. This is achieved in two
steps. First, the set 2p1h is decomposed into a union of
nonintersecting subsets,

...2p1h 2p1h,1 2p1h,2 2p1h,3 2p1h,Nseg
MO

= (57)

M

N

1

2p1h,Mseg
MO

=
= (58)

where the subsets are nonoverlapping.

M Mfor2p1h,M 2p1h,M = (59)

The number of elements in subset M is denoted as Kmax
2p1h,M.

Kmax
2p1h,M 2p1h,M= | | (60)

In the second step, X̃2p1h is calculated using summation over all
the subsets.

X
A B

Ep
M

N

K

K
pK pK

K

2p1h

1 1
2p1h

seg
MO

max
2p1h,M

=
= = (61)

The stratified stochastic enumeration of the MO indices (SSE-
MO), which uses stochastic enumeration for segment
sampling, is described by the following equation.

X
K
N

A B

E
( )

( )p
M

N

K

N
pK pK

K

2p1h

1

max
2p1h,M

sample
MO,M 2p1h

seg
MO

swr
2p1h,M

sample
MO,M

=
= (62)

To write the expressions in compact notation, we introduce
the following for stochastic summation.

Using this notation, we can write the following expression.

A similar treatment is performed for the 1p2h terms. The
combined result for the total self-energy operator is given as,

2.4. Calculation of Optimal Sampling Points for MO-
Space Stratified Sampling. To calculate optimal sampling
points, we define the segment average as,

Y
N

A B

E
1

( )p
K

N
pK pK

K

2p1h,M

sample
MO,M 2p1h

swr
2p1h,M

sample
MO,M

=
(66)

which allows us to write the following expression.

X k Yp
M

N

p
2p1h

1
max
2p1h,M 2p1h,M

seg
MO

=
= (67)

It is important to note that Ỹp2p1h,M is a stochastic variable for
which the average value, Ỹp2p1h,M,avg, can be obtained by
sampling over multiple runs.
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N
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p
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= (68)

The variance is defined as,
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The variance of Ỹ goes to zero as Nsample
MO,M approaches Kmax

2p1h,M,

Ylim 0
N K

p
2p1h,M

sample
MO,M

max
2p1h,M

=
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To distribute the sampling points optimally, we define the
following weight factor,

w
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In addition to that we also define another weight factor that
depends on the magnitude of the terms,
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The sampling is performed in batches, and the variance is
updated after completion of a batch. The number of sampling
points for each segment has the general form of,

N N w N w N( ) ( )M Msample
MO,M

base
var

opt
mag

opt= + × + × (73)

where all segments get Nbase sample points per batch
irrespective of the segment average and variance. Nopt indicates
the number of additional sample points that are distributed in a
manner that is proportional to the normalized weights, which
depend on the segment average and variance.

2.5. Low-Discrepancy Sampling without Replace-
ment Using Quasi-Monte Carlo Method. It is important
to note that obtaining K

swr
is a correlated sampling process.

It is intrinsically non-Markovian and depends on the entire
history of the string of previously generated indices. One way
to achieve this in discrete integer space is by performing self-
avoiding random walks. However, sampling in the self-avoiding
random walker is local in nature, and therefore is not ideal for
variance reduction in each segment. Here we use quasi-Monte
Carlo sampling and a low-discrepancy integer sequence to
perform sampling within each segment.56−58 The linear
congruent generator for low-discrepancy quasi-random num-
bers is modified for generation of integer sequences.56 The
sampling index for a segment M is defined as K(M) and can
have values in the range [1, ..., Kmax

(M)]. The exact value of Kmax
(M)

for each segment is known at the start of the calculation and is
a consequence of the stratification procedure described in
subsection 2.3. Associated with each segment are two integer
random numbers which we define as q(M) and r(M). The
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variable q(M) impacts the discrepancy of the points and is an
integer random number chosen randomly from the interval
q(M) ∼ [10, 50]. Using q(M), we define the following sequence
from which r(M) is selected randomly.

r q1, 2, 3, ..., 1, 0M( ) [ ] (74)

Using q(M) and r(M), the low-discrepancy sequence is defined
as,

K n q r( )M M M( ) ( ) ( )= × + (75)

n K q1, 2, 3, ..., /M M
max
( ) ( )=

Ä
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where K q/M M
max
( ) ( )Å

Ç
ÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑ is the floor of the ratio.

2.6. Control Variate for Monte Carlo Evaluation of
Two-Electron Integrals. In this section, we extend the
stochastic procedure developed in the previous section for
numerical evaluation of the two-electron integrals. Monte
Carlo evaluation of the two-electron integrals is not a
requirement for implementing the SSE-MO method, and the
SSE-MO procedure described in section 2.3 can be used
whenever the two-electron repulsion integrals, Vpqst, are
available in MO representation. However, for large systems,
it is computationally advantageous to avoid the AO-to-MO
two-electron transformation and instead, to numerically
integrate directly in the MO representation using the Monte
Carlo scheme.

Associated with each MO pair function, ψp(r)ψq(r), we
define a control-variate function, ψpq

cv (r). The control variate
function must satisfy two important features. First, ψpq

cv (r) must
be nonfactorizable as a product of functions that depend only p
and q indices.

f fr r r( ) ( ) ( )pq p q
cv × (77)

Second, the two-electron integrals, [ψpq
cv(r1)|r12−1|ψst

cv(r2)], must
be known analytically. Adding and subtracting the control
variate function, we express the MO product function as
follows.

r r r r r r( ) ( ) ( ) ( ) ( ) ( )p q pq pq p q pq pq
cv cv= + [ ] (78)

dr r( ) ( )pq pq pq
cv= + (79)

Here, αpq is the control variate and dpq(r) is the difference
function. Using the above expression, the two-electron integral
can be expressed as,

V V Dpqst pqst pqst
cv= + (80)

where,

V rr r( ) ( )pqst pq st pq st
cv cv

1 12
1 cv

2= [ | | ] (81)

and,

D r d d r

d r d
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1
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2

1 12
1

2

= [ | | ] + [ | | ]

+ [ | | ]
(82)

The control variate, αpq, is defined as the quantity that
minimizes the following weighted-variance function.

r r r r r

r r
argmin

( ) ( ) ( ) ( ) ( )

( ) ( )
S p q pq p q

S p q
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r

r

cv 2 2

2

space

space

[ ] | |

| |
=

(83)

Here, Sspace is a set of sampling points in 3D space from which
r is drawn at random. The control-variate functions, ψpq

cv, are
represented by Gaussian functions. For p = q, a single Gaussian
function is used and for p ≠ q a linear combination of two
Gaussian functions is used.

a
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This form of the control variate function guarantees the
orthonormality conditions for the MOs.

p q pq pq
cv| = = (86)

The widths and the centers of the Gaussian functions are
determined using a moment-matching condition. The
weighted moments for any pair of molecular orbitals are
calculated as,

m m m
x y z

m m m

r r r r

r r
( , , )
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q p q
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x y z

r
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x y zspace

space
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[ ]| |

| |

= (87)

and the moments for the control-variate functions are obtained
analytically.

m m m x y z( , , ) ( )pq x y z pq
m m mcv cv x y z= (88)

The coefficients for the control-variate function are obtained
by performing a steepest-descent search on the following loss-
function.

argmin
a b m m m

pq pq
A B0, 0, , , , 0,3

cv 2

pq pq pq pq x y z

[ ]
> > = (89)

The equations eq 83 and eq 89 completely define the control-
variate function and are used to calculate the Vpqstcv term.

2.7. Monte Carlo Evaluation of Two-Electron Inte-
grals Using Real-Space Stratified Sampling. Since Vpqstcv is
analytical, only the Dpqst terms are calculated numerically using
the stratified Monte Carlo procedure. We use a combination of
ratio estimator, control variate, and stratified sampling
techniques to efficiently and accurately evaluate the MO
integrals. For calculating Dpqst, we define the following two-
electron kernel function,

D d d T rr r r r( , )pqst pqst1 2 1 2 12
1=

+

(90)

where,
T d d d dr r r r r r r r( , ) ( ) ( ) ( ) ( ) ( ) ( )pqst pq pq st st pq st pq st1 2

cv
1 2 1

cv
2 1 2= [ ] + [ ] + [ ]

(91)

Associated with each Dpqst integral, we define a control variate
f pqstcv as,

f r r r r r r( , )
1
4

( ) ( ) ( ) ( )pqst p q s t
cv

1 2 1
2

1
2

2
2

2
2= [| | + | | ] × [| | + | | ] (92)
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where the integral of the control variate is 1 for all values of p,
q, s, t.

d d fr r r r( , ) 1pqst1 2
cv

1 2 =
+

(93)

The calculation of Dpqst requires evaluation of the six-
dimensional integral over all space. Traditionally, Monte
Carlo integration is performed over an N-dimensional unit
cube by transforming the integral range from [−∞, + ∞] to
[0, 1]. One approach to achieve this is by using the following
transformation,

t
x

x1
=

+ (94)

dxf x dx f x f x dtJ t f x f x( ) ( ) ( ) ( ) ( ) ( )
0 0

1
= [ + ] = [ + ]

+ +

(95)

However, this procedure introduces singularity in the form of
the Jacobian J(t) in the integration kernel. In this work, we use
a finite-grid approximation to evaluate the integral over a finite
volume,

d f V fr r( ) 1
a

a

3D= = ±
+

(96)

where the limits selected are large enough so that ϵ ≤ 10−5 for
all MOs. Using f pqstcv , we define the following ratio estimator for
Monte Carlo evaluation of the Dpqst integral.
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The averages ⟨Tpqstr12−1⟩ and ⟨f pqstcv ⟩ are defined as follows.
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We introduce stratification in the sampling of points in real-
space by dividing the entire space into a set of Nseg

space

nonoverlapping regions with identical volumes.
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The stratified sampling estimate of the averages is then defined
as,
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Nsample
space,M,pqst is the number of sampling points associated with

the spatial segment, M for indices p, q, s, t. Similar to the
stratification strategy in eq 73, the sampling points for each
segment are proportional to the variance of the integral kernel
in that segment.

N T rr r( , )M pqstsample
space,M,pqst

1 2 12
1[ ] (103)

T rr r( , )M pqst 1 2 12
1[| |] (104)

We use common-random-number (CRN) sampling for
sampling within a segment. The CRN method has been used
extensively for reducing variance56−58 and a brief summary of
the method is presented in ref 65. In the evaluation of the
integral, this means that at any point in time, if a random
number η1 is used in the evaluation of Tpqst, then that same
random number is used for evaluation of f pqstcv in the same
segment. To emphasize this usage, we use superscript “CRN”
(common random number) in the following expression.
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(105)

2.8. Iterative Solution of the Dyson Equation.
Combining the results from section 2.3 and section 2.7, we
can express the full self-energy operator as the sum of two
terms,

( ) ( ) ( )p p p
cv= + (106)

The first term Σp
cv(ω) depends only on control-variate

functions and is evaluated analytically.

The second term contains the different terms and is defined as
follows.

The single-shot determination of the self-energy operator is
performed by evaluating the self-energy at the HOMO energy.

Koopmans HOMO= (109)

( ) (with )p pone shot HOMO HOMO HOMO= + =
(110)

The full iterative solution of the Dyson equation is obtained by
evaluating Σp(ω) for a range of ω and then finding the point
where,

( ) (with )p piter HOMO iter HOMO= + = (111)

The SSE-MO method allows for a third approximation for ω.
We can solve the Dyson equation iteratively using Σp

cv(ω)

( ) (with )p pHOMO
cv

HOMO
* = + * = (112)

and then include the correction from ΔΣp.

( ) ( )

(with )

p p

p

iter,cv HOMO
cv

HOMO

= + * + *

= (113)

2.9. Calculation of Derivatives. The first derivative of the
self-energy, with respect to ω, is useful for locating the poles of
G(ω), and is defined as follows.
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The higher-order derivatives of the self-energy operator can
then be obtained from the higher-order powers of the
denominator.
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In the SSE-MO method, the derivative of Σp is obtained by
replacing the energy denominator with the higher powers of
the denominator,
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The contributions from Σp
cv are obtained analytically, and the

contributions from the ΔΣp are obtained from the stochastic
enumeration procedure described above. Because the deriva-
tive does not impact r12−1, which is present in expression for the
self-energy, the calculation of the derivatives can be performed
concurrently while the calculation of ΔΣp is being performed.
This approach was used for the construction of the spectral
function and is presented in section 3.2.

2.10. Computational Details. The SSE-MO method was
applied to investigate the ionzation potentials of PbS and CdS
QDs. In addition, benchmark calculations for Ne, H2O, and
CH4 were also performed. The single-particle states and
energies were obtained from HF calculations using the 6-31G*
basis for Ne, H2O, and CH4 and the LANL-2DZ ECP basis for
the quantum dots. These HF calculations were performed
using the TERACHEM electronic structure package. The SSE-
MO calculations were performed by dividing the MO-index
space into Nocc number of segments. The 6D Cartesian space
was divided into 100 nonoverlapping regions. A total of Nsample
∼ 109 sampling points were used for calculating the self-energy
at each value of ω and the sampling points were distributed
using the stratification strategy described earlier. We used the
relative standard deviation, σrel, also known as coefficient of
variance for defining the convergence criteria for the calculated
IPs (eq 119).

rel =
(119)

In this work, we enforced σrel < 10−2 to be the criteria for
convergence for each segment.

3. RESULTS
3.1. 10-Electron System. For benchmarking and testing,

the SSE-MO method was used to calculate the IPs of Ne, H2O,
and CH4. The results for these chemical systems are presented
in Table 1. The IPs were calculated using both single-shot and
iterative solution of the Dyson equation and the results
between the two approaches were found to be very similar to a
maximum difference of 0.17 eV. In all cases, the SSE-MO
results were found to be in good agreement with the previously
reported results.

3.2. Ionization Potential of PbS and CdS Quantum
Dots. The SSE-MO method was applied to Pb4S4, Pb44S44,
Pb140S140, Cd6S6, Cd24S24, and Cd45S45 and the ionization
potentials from the single-shot and iterative solution of the
Dyson equation are presented in Table 2 and Table 3,

respectively. We note that the calculated IPs are vertical
ionization potentials and do not include contributions from the
quantum mechanical treatment of nuclear degrees of freedom.
Figure 2 illustrates the graphical verification of the self-
consistency of the iterative procedure for Pb140S140. We
observe that the curve for Σ(ω) + ω0 versus ω intersects
with the curve for ω versus ω at that the value of ω for which
the diagonal approximation to the Dyson equation converges.
The frequency dependence of the 1-particle Green’s function
was evaluated near the poles and is presented in Figures 3, 4,
and 5.

When compared to G0(ω), the poles of G(ω) were found to
have higher values of ω indicating that for these systems,
inclusion of electron correlation effects resulted in a lower IP

Table 1. Ionization Potentials (eV) of Ten Electron Systems: Comparison with Benchmark Literature Values

system Koopmans’ single-shot solution iterative solution lit. value66,67 IP-EOM-CCSD(T)68

CH4 14.86 13.94 ± 0.03 13.95 ± 0.03 13.91 12.76
Ne 22.59 21.47 ± 0.06 21.38 ± 0.07 21.13 20.98
H2O 13.56 10.44 ± 0.13 10.61 ± 0.08 10.74 11.37

Table 2. Self-Energy and Ionization Potentials (eV) of PbS
and CdS Quantum Dots from Single-Shot Solution

system Koopmans’
self-energy from

single-shot solution
IP from single-shot

solution

Pb4S4 8.28 0.65 7.63 ± 0.05
Pb44S44 7.13 0.22 6.91 ± 0.04
Pb140S140 6.91 0.09 6.82 ± 0.05
Cd6S6 5.25 0.42 4.837 ± 0.04
Cd24S24 6.25 0.09 6.16 ± ϵ < 0.01
Cd45S45 6.09 0.23 5.86 ± 0.02

Table 3. Self-Energy and Ionization Potentials (eV) of PbS
and CdS Quantum Dots from Iterative Solution

system Koopmans’
self-energy from
iterative solution

IP from iterative
solution

Pb4S4 8.28 0.61 7.66 ± 0.01
Pb44S44 7.13 0.17 6.96 ± 0.01
Pb140S140 6.91 0.28 6.71 ± 0.08
Cd6S6 5.25 0.41 4.84 ± 0.01
Cd24S24 6.25 0.08 6.16 ± ϵ < 0.01
Cd45S45 6.09 0.22 5.87 ± 0.01
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than Koopmans’ IP values. Comparison between G and G0
shows that inclusion of electron correlation in IPs becomes
more important for larger dots. Comparison between the
single-shot versus iterative solution of Dyson equation also
exhibits similar trends, where the need for iterative solutions
become more important for larger dots.

3.3. Single-Pole Approximation to the Spectral
Function. We define the single-pole approximation to the
spectral function as,

A ( )
Im ( )

( ) (Im ( ))p
sp 2 2=

+ (120)

where the subscript “sp” in Asp denotes that we are looking at
the form of the spectral function near the pole (ω= ϵp). The
imaginary part of the self-energy operator can be approximated
from the first derivative of the self-energy, with respect to ω, as
described in section 2.9. For example, the imaginary part of the
following quantity I(ω),

I
x

y ib

x y ib

y b
( )

( )

( )

( )n

n

n n

n b

n
2 2=

+
=

+ (121)

is given by,

I b
x

y b
Im ( )

( )n

n

n
2 2[ ] =

+ (122)

In Figure 6, the ratio Awp/Awp
max is plotted as a function of ω/

ωopt for the three PbS QDs.
The line width of the plot was found to be narrowest for the

Pb4S4 and broadest for Pb44S44. This feature indicates that the
relative lifetime of the quasi-hole in the intermediate dot size
(Pb44S44) is longer than the other dots in the series. Similar
analysis for the CdS QDs in Figure 7 revealed that the line
width decreases with increasing dot size. The results from the
spectral analysis highlight the importance of including
frequency dependency in the self-energy operator. The plots
also demonstrate the impact of many-body correlations in the
these systems. Specifically, in the absence of electron−electron
correlation, the limit σ → 0 will reduce the plots to a Dirac
delta function.

Figure 2. ω (ordinate) versus ω (abscissa) displayed as the curve
labeled ω. The curve labeled ω0+Σ displays the relationship between
the HOMO energy + the self-energy (ordinate) and ω. The value of
ω at which these two curves intersect is equivalent to the value of ω
for which the diagonal approximation to the Dyson equation
converges.

Figure 3. Poles of G0(ω) and G(ω) for the Pb4S4 system. G(ω)
(ordinate) versus ω (abscissa) is labeled as G(ω) in the legend. The
curve labeled G0(ω) displays the relationship between G0(ω)
(ordinate) and ω (abscissa).

Figure 4. Poles of G0(ω) and G(ω) for the Pb44S44 system. G(ω)
(ordinate) versus ω (abscissa) is labeled as G(ω) in the legend. The
curve labeled G0(ω) displays the relationship between G0(ω)
(ordinate) and ω (abscissa).

Figure 5. Poles of G0(ω) and G(ω) for the Pb140S140 system. G(ω)
(ordinate) versus ω (abscissa) is labeled as G(ω) in the legend. The
curve labeled G0(ω) displays the relationship between G0(ω)
(ordinate) and ω (abscissa).
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4. DISCUSSION
4.1. Correlated Sampling in the Combined Cartesian

and Molecular Orbital Index Space. The main philosophy
of the SSE-MO method is to perform correlated sampling in a
joint real-space and occupation-number space (Table 4).
Assuming a discretization of 100 points per Cartesian

coordinate, the total number of points needed for exhaustive
sampling is in the range of 1016 to 1020 as shown in Table 4.
However, not all spatial components of all the molecular
orbitals contribute equally and uniformly to the calculation of
the self-energy. There are certain combinations of MOs whose
form in specific regions of the Cartesian space correlate
strongly with the error in the self-energy calculations. Through
the use of a two-step stratified sampling scheme in both
Cartesian and MO space, the SSE-MO method provides a
systematic and adaptive procedure to identify the important
contributors. We have used a combination of ratio estimator,
control-variate, and stratified sampling techniques for the
efficient and accurate evaluation of the MO integrals. The key
quantity that implements and controls this concept is the
Nsample

space,M,pqst term. This term represents the number of spatial
sampling points for the Mth spatial segment for the correction
term Dpqrs associated with indices p, q, r, s and depends on both
the spatial and MO indices. The total number of sampling
points is given by the following expression.

Figure 6. Ratio Awp/Awp
max (ordinate) plotted as a function of ω/ωopt (abscissa) for a series of PbS quantum dots. Awp/Awp

max is the ratio of Asp(ω) and
the maximum value of Asp(ω). ωopt is the value of ω for which convergence of the diagonal approximation to the Dyson equation is achieved.

Figure 7. Ratio Awp/Awp
max (ordinate) plotted as a function of ω/ωopt (abscissa) for a series of CdS quantum dots. Awp/Awp

max is the ratio of Asp(ω) and
the maximum value of Asp(ω). ωopt is the value of ω for which convergence of the diagonal approximation to the Dyson equation is achieved.

Table 4. Total Number of Sampling Points in the Combined
MO-Cartesian Space Assuming 100 Points Per Cartesian
Coordinate

system N2p1h N1p2h Nspace
MO Nspace

MO × Nspace
6D

Pb4S4 3.87 × 104 1.76 × 104 5.63 × 104 5.63 × 1016

Pb44S44 5.15 × 107 2.34 × 107 7.50 × 107 7.50 × 1019

Pb140S140 1.18 × 109 6.37 × 108 1.82 × 109 1.82 × 1021

Cd6S6 7.02 × 105 3.32 × 105 1.03 × 106 1.03 × 1018

Cd24S24 4.50 × 107 2.13 × 107 6.62 × 107 6.62 × 1019

Cd45S45 2.96 × 108 1.40 × 108 4.36 × 108 4.36 × 1020
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As shown in eq 103, this number was directly obtained from
the variance of the integral kernel, which also includes the
contribution from the r12−1 operator. Note that these sampling
points were not used to evaluate the full r12-integral kernel, but
instead were used to evaluate only the component of the full
r12-integral kernel not included in the control-variate
expression. The Cartesian space sampling for each spatial
segment was performed using simple Monte Carlo sampling.
This process can be enhanced by using low-discrepancy
random numbers, which is a quasi-Monte Carlo approach. We
expect that using the quasi-Monte Carlo approach will
accelerate the overall calculation process.

4.2. Segment-Based Analysis of Sampling Error. The
error in the calculated IP using the SSE-MO method originates
from the sampling error associated with sampling the integral
kernel in the combined Cartesian-MO space. However, not all
segments contribute equally to the numerical error. The goal of
SSE-MO is to distribute the computational effort in proportion

to the contributions from each segment. One insight generated
from the SSE-MO calculation is information about the
contribution of each segment to the total self-energy operator.
We define the cumulative percent contribution for the
segments as,

C M
S i

S i
( ) 100

( )

( )
i
M

i
N

1

1
seg

= × =

= (124)

where S(i) is the contribution to the self-energy for each
segment. The cumulative percent contribution of the segments
to the total self-energy operator is denoted as C(M) and is
presented for the PbS and CdS quantum dots in Figures 8 and
9, respectively.

Analysis of the results revealed that the 2p1h and 1p2h
terms show very different behavior. In all cases it was found
that only few segments, typically ≤50, had significant
contributions to the 1p2h component of the self-energy
operator. In contrast, for the 2p1h component, the cumulative
sum of the percent contribution increased in a much more
gradual manner. The distributions of the standard deviations

Figure 8. Cumulative sum of the percent contributions of the segments composing the sample space for the 2p1h and 1p2h terms of the self-energy
(ordinate) versus the segment index (abscissa) is displayed. Parts A, B, and C, are for QDs Pb4S4, Pb44S44, and Pb140S140, respectively.

Figure 9. Cumulative sum of the percent contributions of the segments composing the sample space for the 2p1h and 1p2h terms of the self-energy
(ordinate) versus the segment index (abscissa) is displayed. Parts A, B, C are for QDs Cd6S6, Cd24S24, and Cd45S45, respectively.

Figure 10. Frequency distributions of the standard deviations (in eV) for the segments that compose the sample space of the 2p1h and 1p2h terms
of the self-energy computed for Pb140S140, are displayed.
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associated with the segments for the 2p1h and 1p2h terms of
the self-energy for the two largest quantum dots, (Pb140S140
and Cd45S45), are presented in Figures 10 and 11, respectively.

Analysis of the distributions reveals that the sampling error
in the 2p1h term is significantly smaller than the sampling
error in the 1p2h term for the two largest quantum dots. These
plots also show that the overall sampling error in the calculated
IP is dominated by the sampling error in the 1p2h term. The
advantage of the SSE-MO method is that, by construction, the
SSE-MO scheme is able to extract this information dynamically
during the course of the calculation and then allocate more
sampling points to segments that have high sampling errors.
Because SSE-MO is based on stratified sampling, the
conventional stratified sampling error analysis69 is applicable
for the sampling error in the IP calculations. In addition to this
segment-based analysis, the overall sampling error in the
calculated IPs as a function of the number of sampling points
used to construct the self-energy for Pb140S140 quantum dot is
presented in Figure 12.

4.3. Connection with Diagrammatic Monte Carlo. The
SSE-MO method is conceptually similar to diagrammatic MC
(diagMC), where terms are evaluated stochastically. However,
there are key differences between the two methods. SSE-MO is
not diagram-based and the relative importance of the terms are
not evaluated using topological connectivity of the vertices.
Also, the SSE-MO method uses stratified sampling as opposed
to importance sampling, where emphasis is placed on reducing
numerical error through variance minimization and numerical

effort is predominantly spent on computing the correction
term to the self-energy operator. As an intrinsically adaptive
approach, the calculation puts more points where they are
needed to achieve reduction of numerical error.

4.3.1. Comparison with Laplace-Transformed Approach.
The SSE-MO method does not perform Laplace-trans-
formation, but instead relies on stochastic enumeration to
reduce the computational cost. Consequently, only 3D and 6D
spatial integrals are solved numerically. As a consequence,
higher-order derivatives of the self-energy operator (dnΣ/dωn)
can be obtained with relative ease and with very little
additional computational cost during the self-energy calcu-
lation. This not only allows for calculation of the imaginary
component of the self-energy operator, but also open doors for
iterative solution of the Dyson equation by Taylor-series
expansion of the self-energy operator.
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Because we are not using a Laplace transformation, the SSE-
MO method is well-suited to extending the self-energy
calculation to Σ(3) using the P3 correction developed by
Ortiz and co-workers.67 For example, the Laplace trans-
formation of the following term in the P3 expression

pa ij qa bc bc ij

d d dtdt K x y z x y z t tr r

( )( )

... ( , , , ..., , , , , )

abcij a i j i j b c

1 6 1 1 1 6 6 6

|| || ||
+ +

= (126)

will involve the Monte Carlo numerical integration of a 20-
dimensional integral. In the SSE-MO implementation, the
dimensionality of the spatial integral will still be six and the
MO index will be sampled from the 3p-2h space.

Equation 127 can be viewed as the stochastic tensor
contraction over the MO indices and can potentially be
applied to other branches of quantum mechanics.

4.4. Selection of Control-Variate Functions. The use of
moment-based fitting ensures that the integral of the Mth-order
multinomial comes out to be exact. For this work, a maximum
of two Gaussian functions were used and was found to be
adequate. For more challenging systems, the number of
Gaussian functions can be systematically increased. In addition,
metrics other than the moments can be used as criteria for the
selection of the Gaussian functions. The choice of the control-

Figure 11. Frequency distributions of the standard deviations (in eV) for the segments that compose the sample space of the 2p1h and 1p2h terms
of the self-energy computed for Cd45S45, are displayed.

Figure 12. Sample standard deviation (σ x̅) in the ionization potential
(eV) (ordinate) versus the number of sampling points (abscissa) used
to construct the self-energy for the Pb140S140 dot is displayed.
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variate functions is not restricted to Gaussian functions. For
QDs, it is possible to take advantage of the approximate
spherical symmetry of the system and construct the control-
variate functions from the hydrogenic wave functions with
effective hole and particle masses.

R r Yr( ) ( , ) ( , ) for hole statesi nl lm
cv

eff
hole= (128)

R r Yr( ) ( , ) ( , ) for particle statesa nl lm
cv

eff
elec= (129)

Although both density fitting70 and the control variate
schemes use Gaussian functions, their purpose and imple-
mentation are very different. When using the control variate
scheme, the goal is to reduce numerical error. When using
density fitting, the goal is to approximate it. Specifically in the
control variate, the integral of f pq is expressed as

f f f fcontrol variate: ( )pq pq pq pq
0 0= + (130)

f calculate analyticallypq
0

(131)

f f( ) calculate numericallypq pq
0

(132)

f fdensity fitting: pq pq
0

(133)

There are two main differences between control variate and
density fitting:

1. When using the control variate scheme, the error in
fitting the integral is always calculated. The error in the
estimation of the integral comes from the numerical
approximation to the analytical fitting error. If we were
to replace the numerical integral, ⟨( f−f 0)⟩, by an
analytical integral, we would recover the exact integral.
The origin of error in density fitting comes from the
finite expansion of the auxiliary basis. While in the
control variate the error is from the numerical
approximation to the residue-error integral, ⟨( f−f 0)⟩.

f f f f( ) ( )0 analytical 0 MonteCarlo (134)

2. Unlike density-fitting’s attribute of fit-once-use-every-
where, the control variate approach is kernel dependent.
This means that the integrals ⟨f pqKA⟩ and ⟨f pqKB⟩ will
have different control variate parameters αA and αB,
respectively. These parameters are obtained by minimiz-
ing the variance as shown below:

f f Kmin ( )pq pq A A
0 2[ ]

(135)

f f Kmin ( )pq pq B
0

B
2[ ]

(136)

One approach to do the above integrals efficiently is to
first expand the square term and then perform the α-
independent integrals separately as shown below.

I f f K( ) ( )A pq pq A
0 2= [ ] (137)

f K f f K f K( ) 2 ( )pq A pq pq A pq A
2 0 2 0 2 2= + +

(138)

5. CONCLUSIONS
This work presents the development and implementation of
the stratified stochastic enumeration of molecular orbitals
(SSE-MO) method for construction of the self-energy
operator. The central idea of this method is to express the
self-energy operator in a composite space, which is generated
by combining the 3D Cartesian space of molecular orbitals
with the discrete integer space of the molecular orbital indices.
In conjunction, a stratified sampling Monte Carlo scheme was
also developed for the efficient evaluation of the complex self-
energy operator and its frequency derivatives. The SSE-MO
method was applied to a series of CdS and PbS QDs, and the
IPs of these QDs were obtained from both single-shot and
iterative solution of the second order diagonal approximation
to the Dyson equation. The results from these calculations
showed that the IPs decreased with increasing dot size. The
imaginary component of the self-energy operator was used to
construct the single-pole frequency-dependent spectral func-
tions of the quantum dots. The quantum dots with the longest
relative lifetimes of the quasi-hole state were identified. The
strategy of stochastic enumeration used in the SSE-MO
method can also be interpreted in the broader context of
stochastic tensor contraction methods and can be applied to
other areas of quantum mechanics, where the sequential
enumeration of summations is computationally prohibitive.
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