Comprehensive genomic diagnosis of inherited retinal and optical nerve disorders reveals hidden syndromes and personalized therapeutic options

Marta Diñeiro,¹ Raquel Capín,¹ Guadalupe Á. Cifuentes,¹ Beatriz Fernández-Vega,² Eva Villota,² Andrea Otero,¹ Adrián Santiago,¹ Patricia C. Pruneda,³ David Castillo,³ Mónica Viejo-Díaz,⁴ Inés Hernando,⁴ Noelia S. Durán,¹ Rebeca Álvarez,¹ Claudia G. Lago,¹ Gonzalo R. Ordóñez,³ Álvaro Fernández-Vega,² Rubén Cabanillas¹ and Juan Cadiñanos¹

¹Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A., Oviedo, Spain

²Instituto Oftalmológico Fernández-Vega (IOFV), Oviedo, Spain

³Disease Research And Medicine (DREAMgenics) S. L., Oviedo, Spain

⁴Hospital Universitario Central de Asturias, Oviedo, Spain

ABSTRACT.

Purpose: In the era of precision medicine, genomic characterization of blind patients is critical. Here, we evaluate the effects of comprehensive genetic analysis on the etiologic diagnosis of potentially hereditary vision loss and its impact on clinical management.

Methods: We studied 100 non-syndromic and syndromic Spanish patients with a clinical diagnosis of blindness caused by alterations on the retina, choroid, vitreous and/or optic nerve. We used a next-generation sequencing (NGS) panel (OFTALMOgenicsTM), developed and validated within this study, including up to 362 genes previously associated with these conditions.

Results: We identified the genetic cause of blindness in 45% of patients (45/100). A total of 28.9% of genetically diagnosed cases (13/45) were syndromic and, of those, in 30.8% (4/13) extraophthalmic features had been overlooked and/or not related to visual impairment before genetic testing, including cases with Mainzer-Saldino, Bardet-Biedl, mucolipidosis and MLCRD syndromes. In two additional cases-syndromic blindness had been proposed before, but not specifically diagnosed, and one patient with Heimler syndrome had been misdiagnosed as an Usher case before testing. 33.3% of the genetically diagnosed patients (15/45) had causative variants in genes targeted by clinical trials exploring the curative potential of gene therapy approaches. *Conclusion:* Comprehensive genomic testing provided clinically relevant insights in a large proportion of blind patients, identifying potential therapeutic opportunities or previously undiagnosed syndromes in 42.2% of the genetically diagnosed cases (19/45).

Key words: genomic diagnostics – hereditary – inherited retinal dystrophies – next-generation sequencing – panel sequencing – precision ophthalmology – vision loss

doi: 10.1111/aos.14479

Introduction

The approval of Luxturna[®], the first gene therapy for an inherited condition to reach the clinic in the USA and Europe, has made reality the promise of a cure for genetic blindness (Russell et al. 2017). Although only patients with visual impairment caused by a defective RPE65 gene can benefit from this therapy, advanced clinical trials involving several forms of blindness caused by mutations in other genes are under way. In them, patient's eligibility depends on the fact that his/her disease-causing gene matches the target of the particular therapy. Thus, by holding the key to therapeutic intervention, molecular diagnostics of genetic blindness has reached the top of clinical applicability.

Inherited retinal dystrophies (IRDs), characterized by the degeneration of photoreceptor and retinal pigment epithelial cells, are the main cause of genetic blindness. With a worldwide prevalence of about 1/4000, retinitis pigmentosa (RP) is the commonest IRD (Verbakel et al. 2018). Besides the handicapping effects of visual impairment, between 20% and 30% of patients with RP have an associated non-ocular condition, ranging from mild morphologic changes to lifethreatening pathologies. With more

Acta Ophthalmol. 2020: 98: e1034-e1048

② 2020 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

than 250 genes described as responsible for syndromic and/or non-syndromic forms of the disease, the genetic heterogeneity of IRDs is overwhelming. Phenotypic heterogeneity is also characteristic of many IRD genes (Costa et al. 2017). As a result, the clinical testing approaches used for IRD diagnosis (electroretinography, optical coherence tomography, funduscopic examination, fundus autofluorescence, dark adaptation or visual field testing) are not usually able to predict the causative gene in a given patient (Hafler 2017).

Although the features mentioned above have historically hampered the clinical genetics of IRD, molecular diagnostics has demonstrated its utility for multiple aspects of patient management long before the availability of gene therapies. Thus, in paediatric patients, genetic diagnosis may dictate visual prognosis and guide educational and/or supportive plans for the proband (Jauregui et al. 2018). Correct IRD molecular diagnosis can also uncover associations with syndromes that manifest with disabling systemic disease, leading to early interventions that facilitate improved outcomes (Werdich et al. 2014). This is especially relevant, because many syndromic patients present initially to the ophthalmologist long before they are seen by the paediatrician with systemic symptoms (Sadagopan 2017).

Therefore, since 2012, the American Academy of Ophthalmology Task Force recommends genetic testing when clinical findings suggest that a known Mendelian disorder may affect the patient (Stone et al. 2012). However, comprehensive genetic testing of IRDs is not feasible by traditional Sanger sequencing techniques, as these are not suited for analysing hundreds of genes per patient. With the advent of next-generation sequencing (NGS), extensive IRD molecular diagnosis has become possible, even for patients whose clinical diagnosis and inheritance pattern are uncertain after ophthalmologic evaluation (Lee & Garg 2015)

Here we: (1) present the development and validation of an NGS-based panel for the comprehensive genomic diagnosis of blind patients with IRDs and/or optical nerve disorders; (2) evaluate its clinical performance and diagnostic yield in a series of 100 Spanish patients; and (3) illustrate, with real-life data, how the availability of a molecular diagnosis frequently reveals unnoticed syndromes/phenotypic expansions and opens the door to personalized therapeutic opportunities.

Material

Purpose of test

The performed test (OFTALMOgenicsTM) was aimed at detecting the molecular aetiology of individual clinical diagnoses of syndromic/non-syndromic IRDs and/or optic nerve disorders.

Panel content design: criteria for inclusion of specific genes

Genes associated with blindness caused by alterations in the vitreous, choroid, retina and optic nerve, including both syndromic and non-syndromic forms, were considered.

First, the Human Gene Mutation Database (HGMD) was queried using a list of phenotypes potentially related to ophthalmologic defects (Table S1) to generate a preliminary gene list. This was manually curated to identify genes fulfilling the following criteria: (I) gene defects cause alterations in any of the four ocular structures previously mentioned; (II) published evidence supports the gene-phenotype association in at least two independent families; and (III) at least one publication demonstrates convincing cosegregation of phenotype with gene variants. Then, a tiered classification system was devised. Genes with strong/moderate association with blindness (criteria I, II and III described above) formed tier 1, while genes with weak/preliminary association (criterion I, but not criteria II and/or III) were grouped in tier 2. The panel evolved with revision of newly published literature, yielding versions v1, v2, v3 and v4 (Tables S2-S4 and Table 1, respectively). v1 and v2 were used in the research and development (R&D) phase of the study, while v3 was used both during the R&D phase and as the first version of the clinical panel. v4 is the current optimized clinical version. Each patient was tested with only one of the four different versions: 20 cases were analysed with v1, 19 with v2, 55 with v3 (16

during the R&D phase and 39 in the clinical phase) and 6 with v4 (Table S5).

Sample types

Four millilitre of peripheral blood in conventional EDTA-tubes, 1.5 ml of saliva in Danagen saliva collection containers (Danagen-Bioted, S.L., Badalona, Spain) or \geq 200 ng of germline genomic DNA (quantitated by a fluorimetric method) were required per patient.

Library preparation, target enrichment and sequencing

Library preparation was carried out as previously described for the OTOgenics NGS platform (Cabanillas et al. 2018), except for library capture, that was performed with the OFTALMOgenicsTM probes. The OFTALMOgenicsTM NGS pipeline targeted the coding exons and intron–exon junctions of 278 genes (v1) (Table S2), 290 genes (v2) (Table S3), 297 genes (v3) (Table S4) or 362 genes (v4) (Table 1).

Bioinformatics for variant identification and annotation

Next-generation sequencing results were processed using the bioinformatics software Genome One Core (DREAMgenics, Oviedo, Spain), certified with CE/IVD-marking. The pipeline has been adapted from those previously described as part of the ONCOgenics and OTOgenics NGS platforms (Cabanillas et al. 2017; Cabanillas et al. 2018). The workflow of bioinformatics analysis that includes the FASTQ read generation, alignment, duplicate removal, variant identification, filtering and annotation has been previously described (Cabanillas et al. 2018).

Copy-number variants (CNVs) were systematically assessed as described in Cabanillas et al. (2018). Detection was performed with an adapted version of the exome2cnv algorithm, incorporating a combination of read depth and allelic imbalance computations. The algorithm employs a background of pooled samples processed using the same capturing protocol and sequencing technology (Valdes-Mas et al. 2012; Cabanillas et al. 2017). To improve sensitivity for large homozygous

Tier 1 (276 genes):	genes with strong/mo	derate association wi	ith Inherited Ketinal	and Optical INSIVE	Disoraers							
ABCA4	BBS5	CERKL	CPLANEI	FLVCRI	IFT140	MAPKAPK3	I H H M	PDE6G	PRPF4	RPI	SPG11	TTR
NM_000350.2	NM_152384.2	NM_001030311.2	NM_023073.3	NM_014053.3	NM_014714.3	NM_001243926.1	NM_000272.3	NM_002602.3	NM_004697.4	NM_006269.1	NM_025137.3	NM_000371.3
ABCC6	BBS7	CFAP410	CRBI	FZD4	IFT172	MCOLNI	NPHP3	PDE6H	PRPF6	RPILI	SRD5A3	TULPI
NM_001171.5	NM_176824.2	NM_004928.2	NM_201253.2	NM_012193.3	NM_015662.2	NM_020533.2	NM_153240.4	NM_006205.2	NM_012469.3	NM_178857.5	NM_024592.4	NM_003322.5
ABCD1	BBS9	CHM	CRX	GALC	IHDHI	MECR	NPHP4	PEXI	PRPF8	RP2	TBCE	USHIC
NM_00033.3	NM_198428.2	NM_000390.3	NM_000554.5	NM_000153.3	NM_000883.3	NM_016011.4	NM_015102.4	NM_000466.2	NM_006445.3	NM_006915.2	NM_003193.4	NM_005709.3
ABHD12	BBS10	CISD2	USPPI	GGCX	IMPGI	MEKIK	NK2E3	PEX2	PKPF31	KPE05	1C1N2	USHIG
NM_0010424/2.2	0.00400.50 NNI 2.272	NIM_001008588.4	NM_024/90.0	G 141	00100_MM	NIM_000545.2	NM_014249.5 NP7E1	NM_000518.2	5.620C10_MN	NIM_000529.2	NIM_024809.4 TIMAA8 4	NIM_1/34/14
NM 001098.2	NM 152618.2	NM 001042432.1	NM 025099.5	NM 000165.4	NM 016247.3	NM 014874.3	NM 005654.5	NM 003630.2	NM 000322.4	NM 000328.2	NM 004085.3	NM 206933.2
ADAM9	BESTI	CLN5	CTNNBI	GNATI	INPPEE	MFRP	NRL	PEX5	PRPSI	RPGRIPI	TIMP3	VCAN
NM 003816.2	NM 004183.3	NM 006493.2	NM 001904.3	NM 144499.2	NM 019892.5	NM 031433.3	NM 006177.4	NM 001131025.1	NM 002764.3	NM 020366.3	NM 000362.4	NM 004385.4
ADAMTS18	CIQTNF5	CLN6	CWC27	GNAT2	SANI	MFSD8	NYX	PEX6	RAB28	RPGRIPIL	TMEM67	VPSI3B
NM_199355.3	NM_015645.4	NM_017882.2	NM_005869.3	NM_005272.3	NM_014425.4	NM_152778.2	NM_022567.2	NM_000287.3	NM_004249.3	NM_015272.4	NM_153704.5	NM_017890.4
ADGRV1	C8orf37	CLN8	CYP4V2	GNPTG	IQCBI	MKKS	OAT	PEX7	RBP3	RSI	TMEM126A	WDR19
NM_032119.3	NM_177965.3	NM_018941.3	NM_207352.3	NM_032520.4	NM_001023570.3	NM_018848.3	NM_000274.3	NM_000288.3	NM_002900.2	NM_000330.3	NM_032273.3	NM_025132.3
AGBL5	C12orf65	CLRNI	DHDDS	GPR179	JAGI	MKSI	OFDI	PEX10	RBP4	RTN4IPI	TMEM138	WD R34
NM_021831.5	NM_152269.4	NM_174878.2	NM_024887.3	NM_001004334.	8 NM_000214.2	NM_017777.3	NM_003611.2	NM_153818.1	NM_006744.3	NM_032730.5	NM_016464.4	NM_052844.3
AHII	CA4	CNGAI	DHX38	GRKI	KCNJ13	MT-ATP6	OPAI	PEX12	RCBTBI	SAG	TMEM216	WFSI
NM_017651.4	NM_000717.4	NM_00087.3	NM_014003.3	NM_002929.2	NM_002242.4	NC_012920.1	NM_015560.2	NM_000286.2	NM_018191.3	NM_000541.4	NM_001173990.2	NM_006005.3
AIPLI	CABP4	CNGA3	DNAJC5	GRM6	KCNV2	MT-NDI	OPA3	PEX13	RD3	SCAPER	TMEM231	WHRN
NM_014336.4	NM_145200.3	NM_001298.2	NM_025219.2	NM_000843.3	NM_133497.3	NC_012920.1	NM_025136.3	NM_002618.3	NM_183059.2	NM_020843.3	NM_00107/416.2	NM_015404.3
ALMSI ALMSI	CAUNAIF	CNUBI	DKAMZ	U.K.V	1 0011100 DATA	MI-ND4	U1X2	PEA 20	CHUX	SUCCAUS	IMEM25/ NNE 001011205 2	Z/NF408
101120.44	5.581C00_MN	NM_00129/.4	0.4045/1_MN	NIM_00208/.5	NM_001244189.1	NC_012920.1	NM_1/233/.2	C'676/10 WN	6.606200_MNN	NM_006642.4	TO PO PC	NM_024/41.2
AKHUEFIS NM 001120055 1	CACNA2D4 NM 177264 4	C/VGB3 NIM 010008 4	ECH31 NM 004007 2	UUCAIA NIM 0004004	NIVI 004532 2		P3H2 NM 019107 2	PUAL NIM 000301 3	NIM 157442.7	DEMA4A	NIM DOFFON A	
1.004001100_MM	CAPN5	CNNAA	TNIM_004092.5	GUICY2D	C.C2C+00_MINI	MTTP	C.261010_MNI DANK7	C.162000_MNI	RFFPK	C.106220_MINI	TPP1	
NM 012106 3	NM 0040554	NM 0201843	NM 001039348 2	NM 0001803	NM 018474 5	NM 000533	1 AUN 153638 3	NM 0062143	NM 001329556	2 NM 007374.2	NM 0003913	
ARIG	CC2D24	COL241	ELOVIA	HARS	KLHL7	MVK	PAX2	PLK4	RGR	SLC7A14	TREXI	
NM 177976.3	NM 001080522.2	NM 001844.4	NM 022726.3	NM 002109.5	NM 001031710.2	NM 000431.3	NM 003987.4	NM 014264.4	NM 001012720.	1 NM 020949.2	NM 033629.5	
ATF6	CDH3	COL4A3	EXOSC2	HESXI	LAMAI	MY07A	PAX6	PNPLA6	RGS9	SLC19A2	TRIM32	
NM_007348.3	NM_001793.5	NM_000091.4	NM_014285.6	NM_003865.2	NM_005559.3	NM_000260.3	NM_000280.4	NM_006702.4	NM_003835.3	NM_006996.2	NM_012210.3	
ATOH7	CDH23	COL4A4	EYS	HGSNAT	LCA5	NDP	PCARE	POCIB	RGS9BP	SLC24AI	TRPMI	
NM_145178.3	NM_022124.5	NM_00092.4	NM_001142800.1	NM_152419.2	NM_181714.3	NM_000266.3	NM_001029883.2	NM_172240.2	NM_207391.2	NM_004727.2	NM_002420.5	
ATPIA3	CDHRI	COL4A5	FAM161A	HKI	LRAT	NDUFS2	PCDH15	POMGNTI	RHO	SLC25A46	TSPAN12	
NM_152296.4	NM_033100.3	NM_000495.4	NM_001201543.1	NM_000188.2	NM_004744.4	NM_004550.4	NM_033056.3	NM_017739.3	NM_000539.3	NM_138773.3	NM_012338.3	
ATP8A2	CEP41	COL9AI	FDXR	HMXI	LRIT3	NEURODI	PCYTIA	PPTI	RIMSI	SLC38A8	TTC21B	
C.926010_MN	NM_018/18.2	NM_001851.4	NM_02441/.4	NM_018942.2	NM_198506.4	NM_002500.4	NM_005017.3	NM_000310.3	0.14989.0 NM_014989.0	NM_001080442.2	2 NM_024/55.4	
NIM 074640 A	NIM 00100800 0	NM 001954 2	LUF0 NIM 022162 2	DINI DOCTOR	LINE) NIM 00325 2	NIM AND TIONS 2	NIM 000440.7	NIM DOID76303	NLBF1 NIM 000376.4	NIM 014014 4	11 CO NIM 109200 2	
RRS2	CEP164	CDL1841	FGFR1	L'US	LZTFLI	NMNATI	PDE68	PROMI	RNU4ATAC	SPATA7	TTLI55	
NM 031885.3	NM-014956.4	NM 130445.3	NM 023110.2	NM 000202.7	NM 020347.3	NM 022787.3	NM 000283.3	NM 006017.2	NR 023343.1	NM 018418.4	NM 015072.4	
BBS4	CEP290	CP^{-}	FKRP	IDUA	MAK	NOD2	PDE6C	PRPF3	ROMI	SPG7	TTPA	
NM_03028.4	NM_025114.3	NM_000096.3	NM_024301.4	NM_000203.4	NM_001242957.2	NM_022162.2	NM_006204.3	NM_004698.3	NM_000327.3	NM_003119.3	NM_000370.3	
2 (mm 38) C m L	milonal from dition or or		ith Inchastical Designal	ound Dation Monte								
11er 2 (50 genes): ₁	genes with weak/prent	mmary association wi	пл плепеа кепла	and Optical Instve	Disorders							
ACBD5	ARMC9	CASK	COL9	<i>A</i> 3	FSCN2	ITM2B	<i>KIAA1549</i>	NDUFA13	A PA	SDM13 S	SLC52A2	TUBGCP6
NM_145698.4	NM_025139.5	NM_003	688.3 NM_0	001853.3	NM_001077182.2	NM_021999.4	NM_001164665	.1 NM_01590	65.6 NI	M_021620.3 N	VM_024531.4	NM_020461.3
ADAMTSLI	ARSG	CDH16	CTNN	IAI	GALNS	IFT43	LAMA5	NEK2	Sd	SIPI	NO	UNC119
NM_001040272.5	NM_014960.4	NM_004	1062.3 NM_0	01903.4	NM_000512.4	NM_052873.2	NM_005560.4	NM_0024	97.3 NI	M_033222.5 P	NM_032195.2	NM_005148.3
NIM 015000 5	ALADDA NM 00117053	EST NIM 057	DINA DINA	UI/ 18163 7	UDF0 NM 001001557 2	NIM 075102 2	MAU NM 003261 2	NAIVLI NIM 1384	51 I	M 000182	ULEZ	NDFUE
4FG3L2	ATP13A2	CEP250	U_ININI 4.888.9	18105.4	GNR3	C.CUIC2U_MIN IFT80	C.10C2UU_ININI MFF	PDZD7	1.40 D4.1	T C.017400_M	NM_000944.2 TEAD1	0.017C10_1VIN
NM_006796.2	NM_022089.3	NM_007	7186.5 NM_0	001136536.4	NM_002075.3	NM_020800.2	NM_020194.5	NM_00119	95263.1 NI	M_032753.3 P	VM_021961.5	NM_018051.4
AHR	B3GALNT2	CFH	EMCI		GNS	IFT88	MIR204	PIK3R4	RI		TINF2	ZNF423
NM_001621.4	NM_152490.4	000 ⁻ MN	0186.3 NM_0	015047.2	NM_002076.3	NM_175605.4	NR_029621	NM_0146(02.2 NI	M_016026.3 N	VM_001099274.1	NM_015069.4

- e1036 -

_

Table 1. Tier 1 and tier 2 genes included in the OFTALMOgenicsTM panel (v4).

Fable 1. (Continued)

Nerv	
Dptical	
and 0	
Retinal	
Inherited	
with	
association	
preliminary	
weak	
with	
genes	
(86 genes):	

Disorders GRID2

Fier 2

EPRS

NM_006383.3 NM_001847.3 NM 001852.3

NM_001195306.1

NM_004644.4

AP3B2

BBIPI

BRATI NM_152743.3

NM_001650.6 NM_004311.3

ARL3

AOP4

C5AR2 NM_018485.2

CIB2

COL4A6 COL9A2

7-0+++0	NM_001510.3	NM_014055.3	NM_023936.1
	GUCAIB	ITM2B	MT-TP
1475.2	NM_002098.5	NM_021999.4	NC_012920.1
	HIKESHI	KCTD7	MT-TS2
031734.3	NM_016401.3	NM_153033.4	NC_012920.1
0-L01100			

NM_144631.5

NM_006088.5 NM_018943.2

RP9 NM_203288.1 SDHA NM_004168.3 SLC25A1

PITPNM3 NM_031220.3 *PNPT1* NM_033109.4 *POGZ*

MRPS34

IFT81

NM 014444.4

VM 005984.4

NM 015100.3

TUBGCP4 TUBB4B TUBA8

ZNF513

deletions, genomic regions with no sequencing coverage in an individual sample, but showing proper coverages in the remaining samples, were identified (i.e. homoz. BBS4 exon 1 deletion).

Estimation of analytical sensitivity, specificity and accuracy

The methodology for calculation of analytical sensitivity and specificity for SNVs and Indels has been described (Cabanillas et al. 2018). Accuracy was estimated based on the same dataset and it was expressed as the average \pm standard deviation of the absolute value of the difference between the expected and the observed allelic frequencies of each variant.

Multiplex Ligation-dependent Probe **Amplification (MLPA)**

Multiplex Ligation-dependent Probe Amplification analysis was performed using MRC-Holland (Amsterdam, The Netherlands) probe sets targeting five genes EYS (cat. # P328), PRPF31, RHO and RPE65 (cat. # P235) and USH2A (cat. #'s P361 and P362) on 31 patients without causative variants, following the manufacturer's instructions.

Variant interpretation, classification and diagnostic yield

Clinical classification of variants from v1 and v2 cases was performed as described (Cabanillas et al. 2017). For v3 and v4 cases, variants that could potentially explain the vision loss phenotype of the probands, based on zygosity of the variant, presence of additional variants and mode of inheritance, were further considered. After that, variants were clinically classified according to the American College of Medical Genetics and Genomics (ACMG) guidelines as described (Richards et al. 2015; Cabanillas et al. 2018). Diagnostic yield was defined as the percentage of tested patients with pathogenic/likely pathogenic variants capable of explaining their IRD phenotype.

Variant validation

Pathogenic/likely pathogenic **SNVs** indels validated by and were PCR + Sanger For sequencing.

validation and identification of the breakpoints flanking the BBS4 exon 1 deletion multiple PCR reactions were performed. Primers used in validation PCRs are described in Table S6.

Patient population

Between September 2014 and May 2019, 100 consecutive patients (47 male, 53 female) with syndromic/nonsyndromic IRDs were selected after excluding non-genetic causes. Consent was obtained from patients or their parents. The study was approved by the Comité de Ética de la Investigación del Principado de Asturias (research project #74/14).

Results

Performance of targeted NGS

Mean coverage of tier 1 genes was 453x for v1, 383x for v2, 347x for the 16 R&D phase cases performed with v3, 910x for the 39 clinical cases performed with v3 and 1056x for v4. 99.08%, 99.58%, 98.39%, 99.86% and 99.74% of their target bases were covered by ≥ 20 reads, respectively. The minimum, average and maximum coverage (average read depth of all target bases of the gene) and callabilities (% of the target bases of the gene with minimum read depths of 10, 20, 50 and 100 reads per each target base of the gene) for every tier 1 and tier 2 gene on samples analysed with OFTALMOgenics[™] v4 is shown in Table S7. In clinical cases, regions from tier 1 genes with less than 100% coverage \geq 20 reads (DP20) and specific positions within those regions affected by such limitation were included in each individual patient's report.

Analytical sensitivity, specificity and accuracy

A genotyped mixture of 10 lymphoblastoid cell lines was evaluated to determine the analytical sensitivities, specificities and accuracies of the clinical versions of the panel (v3 and v4). For v3, 1277/1286 variants with expected allelic frequency ≥ 0.1 (1208/ 1216 SNVs and 69/70 indels) were detected, what gives a sensitivity >0.993 (>99.3%). The v3 version of the platform did not call any SNV or indel in 936684 of the 937048 positions

Case ID Pretest phenotype	Pretest Previous inheritance genetic study pattern	è Age at diagnosis	Gene	Allele variant	Variant zygosity	ACMG classificatio	Clasificación n HGMD/ClinVar	Fulfilled ACMG pathogenicity criteria	Gene-associated phenotype	Gene- associatec phenotype inheritanc pattern	Pretest syndrome, hidden syndrome e or non- syndromic	
OFTALMO.001 Retinitis	Not reported AR [†]	Old age	SADHD	c.124A>G, p.(Lys42Glu)	Hom.	4	DM/P	PM3_VS, PP1_S, PM2,	Retinitis pigmentosa type	AR	Non-syndromic	
pigmentosa OFTALMO.002 Retinitis pigmentosa	Not reported AD/ AR	(61 years) Youth (26 years)	ABCA4	с.868С-Т, р.(Атg290Ттр)	Hom.	LP	DM/Absent	PM3_S, PM2	59 Stargardt disease type 1 Fundus flavimaculatus Retinitis pigmentosa type 19	AR	Non-syndromic	
OFTALMO.003 Retinitis	Not reported AD/ AR	Y outh	EYS	c.5928-2A>G	Hom.	4	DM?/P	PVS1, PM2, PM3, PP1	Cone-rod dystrophy type 3 Retinitis pigmentosa type	AR	Non-syndromic	
OFTALMO.004 Retinitis	Not reported AD/ AR	Childhood	RPI	c.1625C>G, p.(Ser542*)	Hom.	LP	DM/Absent	PM2, PM3_VS	Retinitis pigmentosa type 1	AR	Non-syndromic	
pigmentosa OFTALMO.005 Retinitis	Not reported AR^{\dagger}	(9 years) Youth	CNGBI	c.2957A>T, p.(Asn986Ile)	Hom.	4	DM/P	PM1, PM2, PM3_VS,	Retinitis pigmentosa type	AR	Non-syndromic	
pigmentosa OFTALMO.006 Retinitis pigmentosa	Not reported AR^{\dagger}	(24 years) Y outh (15 years)	IFT 140	c.874G>A, p.(Val292Met)	Hom.	Ъ	DM/P	PPI, BSI_P PS3_P, PM2, PM3_VS	45 Retinitis pigmentosa type 80	AR	Non-syndromic	
									Mainzer-Saldino syndrome Jeune syndrome Leber congenital amaurosis			
OFTALMO.007 Usher syndrome	Not reported AR [*]	Youth (16 vears)	USH2A	c.9304C>T, p.(Gln3102*)	Hom.	Р	Absent/P	PVS1, PM2, PM3_P	Usher syndrome type 2A	AR	Pretest syndrome	
OFTALMO.008 Retinitis	Not reported XD/ XR	Youth	CHM	c.1514delT, p.(Leu505Trpfs*4)	Hem.	LP	Absent/Absent	PVS1, PM2	Choroideremia	XD	Non-syndromic	
OFTALMO.009 Retinitis	Not reported AR	Youth (21 vears) (21 vears)	IFT140	c.874G>A, p.(Val292Met)	Hom.	4	DM/P	PS3_P, PM2, PM3_VS	Retinitis pigmentosa type 80	AR	Hidden syndrome	
)		•							Mainzer–Saldino syndrome Jeune syndrome			
OFTALMO.010 Retinitis	Not reported AR	Youth	PROMI	c.1414delC, p.(Arg472Glufs*18)	Hom.	Ь	Absent/Absent	PVS1, PM2, PM3_P	Leber congenital amaurosis Retinitis pigmentosa type	AR	Non-syndromic	
OFTALMO.011 Retinitis	Yes AD/ AR	Adulthood	FAM161A	c.1355_1356delCA, p.(Thr452Serfs*3)	Hom.	Р	DM/P	PVS1, PM2, PM3_VS,	Retinitis pigmentosa type	AR	Non-syndromic	
pigmentosa OFTALMO.012 Retinitis	Not reported \mathbf{AD}^{\dagger}	(44 years) Adulthood	RHO	c.173C>G, p.(Thr58Arg)	Hom.	LP	DM/P	PPI_S PM2, PPI_S, PP3	28 Retinitis pigmentosa type 4	AD	Non-syndromic	
pigmentosa OFTALMO.013 Retinitis	Not reported \mathbf{AR}^{\dagger}	(31 years) Adulthood	CNGBI	c.2957A>T, p.(Asn986Ile)	Hom.	Ъ	DM/P	PMI, PM2, PM3_VS,	Retinitis pigmentosa type	AR	Non-syndromic	
pigmentosa OFTALMO.014 Retinitis	Not reported \mathbf{AR}^{\dagger}	(37 years) Y outh	CNGBI	c.2957A>T, p.(Asn986Ile)	Hom.	Ч	DM/P	PPI, BS1_P PM1, PM2, PM3_VS,	45 Retinitis pigmentosa type	AR	Non-syndromic	
pigmentosa OFTALMO.015 Retinitis	Not reported AD/AR	(18 years) Adulthood	BBSI	c.1169T>G, p.(Met390Arg)	Hom.	Ь	DM/P	PPI, BS1_P PS3, PM3_VS, PPI,	45 Bardet–Biedl syndrome	AR	Hidden syndrome	
pigmentosa OFTALMO.016 Retinitis	Not reported AD/AR	(40 years) Childhood	MCOLNI	c.878-1G>A	Hom.	Р	Absent/Absent	BSL_P PVS1, PM2, PM3_P	type 1 Mucolipidosis type IV	AR	Hidden syndrome	
pigmentosa OFTALMO.017 Usher syndrome	Yes AR^{\dagger}	(8 years) Childhood	MY07A	c.6025delG, p.(Ala2009Profs*32)	Hom.	Ъ	DM/P	PVS1, PM2, PM3_VS,	Usher syndrome, type 1B	AR	Pretest syndrome	
OFTALMO.018 Usher syndrome	Not reported AR	Adulthood	MYO7A	c.397C>T, p.(His133Tyr)	Hom.	LP	DM?/LP	PMI, PM2, PM3, DM5, DM5, DM5, DM5, DM5, DM5, DM5, DM5	Usher syndrome, type 1B	AR	Pretest syndrome	
OFTALMO.019 Stargardt disease	Not reported AR	Youth (16 years)	ABCA4	c.6449G>A, p.(Cys2150Tyr)	Hom.	Ч	DM/LP	PMI, PM2, PM3_VS, PM5, PP3	Stargardt disease type 1 Fundus flavimaculatus	AR	Non-syndromic	
									Retinitis pigmentosa type 19 Cone-rod dystrophy type 3			
OFTALMO.020	Not reported XD/ XR		CHM	c.340G>T, p.(Glu114*)	Hem.	LP	Absent/Absent	PVS1, PM2	Choroideremia	XD	Non-syndromic	

_

Table 2. Clinical and genetic characteristics of cases with causative mutations.

ase ID Pretest phenotype	Pretest Previous inheritance e genetic study pattern	e Age at diagnosis	Gene	Allele variant	Variant ACN zygosity class	AG Clasificación áfication HGMD/ClinVar	Fulfilled ACMG pathogenicity criteria	Gene-associated phenotype	Gene- associated phenotype inheritance pattern	Pretest syndrome hidden syndrome or non- syndromic
Retinitis pigmentosa iFTALMO.021 Maculopathy	Not reported \mathbf{AR}^{\dagger}	Y outh (15 years) Y outh (18 years)	ABCA4	c. 5044_5058delGTTGCCATCTGCGTG, p.(Val1682_Val1686del) c. 3943C>T, p.(Gln1315*)	, Het. Het. P	DM/np DM/ Absent	PM2, PM3_VS, PM4 PVS1, PM2, PM3_S	Stargardt disease type 1 Stargardt disease type 1 Retinitis pigmentosa type 10	AR	Non-syndromic
FTALMO.022 Retinitis pigmentosa	Not reported AR	Adulthood (27 years)	OAT	c.416T>G, p.(Met139Arg)	Hom. LP	Absent/Absent	PM1, PM2, PM3_P, PP3	Gyrate atrophy of choroid and retina with or withou	l AR It	Non-syndromic
FTALMO.024 Retinitis pigmentosa	Yes AD/AR	Old age (57 years)	PRPH2	c. 660_654el, p.(Pro221_Cys224el)	Het. LP	Absent/Absent	PMI, PM2, PM4	ornutinemia Macular dystrophy Retinitis pigmentosa type Retinitis punctata albescen Choroidal dystrophy,	AD 's	Non-syndromic
ıFTALMO.029 Retinitis pigmentosa	Not reported \mathbf{XR}^{\dagger}	NA	RPGR (ORFI5,) c.2284delG, p.(Glu762Lysfs*53)	Hem. LP	Absent/Absent	PVSI, PM2	central areolar type <i>2</i> Retinitis pigmentosa type Cone-rod dystrophy type	3 XR	Non-syndromic
FTALMO.031 Retinitis	Not reported AD/ AR	Youth	RPI	c.1625C>G, p.(Ser542*)	Het. Het. LP	DM/Absent	PM2, PM3_S PM1, DM2_DM3_DD3	Retinitis pigmentosa type	1 AR	Non-syndromic
FTALMO.033 Retinitis	Not reported AD/ AR	Adulthood	CERKL	c.356G>A, p.(Gly119Asp)	Hom. LP	DM/Absent	PM1, PM2, PM3_S,	Retinitis pigmentosa type	AR	Non-syndromic
FTALMO.041 Malformative syndrome, suspicion of Bardet- Biedl syndrome. Retinitis pigmentosa, mil mental retardation, patent foramen ovale, polydactyly in hand sand feet,	Yes AR	Childhood (10 years)	BBSA	c2274_23 + 930del	Hom. LP	Absent/Absent	PVS1, PM2, PM3_P	Bardet-Biedl syndrome	AR	Pretest syndro
gential hypoplasia, ren: dysplasia, obesity, hymertension	a									
FTALMO.046 Retinitis	Not reported AR [*]	Youth (18 years)	ARL6	c.36_39dupCCTG, p.(Lys14Profs*15) c.499G>A, p.(Gly167Arg)	Het. Het. P Ll	P Absent/Absent Absent/Absent	PVS1, PM2, PM3_S, PP1 PM1, PM2, PM3 S PP1 PP3	Retinitis pigmentosa type 55	AR	Non-syndromi
FTALMO.047 Retinitis pigmentosa	Not reported AD/AR	Childhood (4 vears)	IHDHI	c.933C>G, p.(Asp311Glu)	Het. LP	Absent/Absent	PS2_M, PM1, PM2, PP3	Retinitis pigmentosa type 10	AD	Non-syndromi
FTALMO.052 Retinitis pigmentosa	Not reported AD/ AR	Y outh (29 years)	USH2A	c.9304C>T, p.(Gin3102*) c.2276G>T, p.(Cys759Phe)	Het. Het. P L	P DM/P Absent/P	PVS1, PM2, PM3_P PM1, PM3_S, PP1, PP3_RS1_P	Retinitis pigmentosa type 39	AR	Non-syndromic
FTALMO.054 Usher syndrome	Not reported AR	Adulthood (49 years)	PEXI	c.3077T>C, p.(Leu1026Pro) c.1548delT, p.(Leu517Cysfs*2)	Het. Het. LP LP	DM/Absent Absent/Absent	PMI, PM2, PP1, PP3 PVS1, PM2	Heimler syndrome	AR	Pretest syndror
FTALMO.060 Nystagmus. Complete atrophy of the optic nerve. Retinitis piementosa.	Not reported AD/AR	Congenital (at birth)	KIF11	c.2548-2A>G	Het. P	Absent/Absent	PVSI, PM2, PP3	MLCRD syndrome: Microcephaly with or without chorioretinopathy, lymphedema or	AD	Hidden syndro

.

Table 2. (Coi	ntinued)										
Case ID	Pretest phenotype	Pretest Previous inheritance genetic study pattern	e Age at diagnosis	Gene	Allele variant	Variant ACMG zveosity classification	Clasificación n HGMD/ClinVar	Fulfilled ACMG pathogenicity criteria	Gene-associated phenotype	Gene- associated phenotyp inheritand pattern	Pretest syndrome, hidden syndrome e or non- syndromic
	Macular atrophy. Mental										
OFTALMO.063	retardation 8 Macular atrophy with perimacula 'flecks' compatible with Stargardt's	Not reported AD/ AR	Childhood	ABCA4	c.5819T>C, p.(Leu1940Pro) c.3386G>T, p.(p.Arg1129Leu)	Het. P P	DM/P DM/LP	PM2, PM3_VS, PP1, PP3 PS4, PM1, PM2 PM3_S, PM5, PP3	Stargardt disease type 1 Fundus flavimaculatus	AR	Non-syndromic
OFTALMO.068	disease 8 Retinitis pigmentosa. Atrophy of the optic nerve. Deafness,	Not reported AD/ AR [†]	Childhood (8 years)	USH2A	c.2276G>T, p.(Cys759Phe) c.12093delC, p.(Tyr4031*)	Het. Het. LP LP	DM/P DM/ Absent	PMI, PM3_S, PP1, PP3, BS1_P PVS1, PM2	Usher syndrome type 2A	AR	Pretest syndrome
OFTALMO.072	hypertension and Retinitis pigmentosa. Atrophy of the optic nerve.	d Not reported AR [†]	Adulthood (40 years)	ABCA4	c.5882G>A, p.(Gly1961Glu)	Hom. P	¶∕Md	PS3_P, PS4, PM3_VS, PP3, BA1	Stargardt disease type 1 Fundus flavimaculatus Retinitis pigmentosat type 19 Cone-rod dystrophy type 3	AR	Pretest syndrome
OFTALMO.076	right ear 6 Macular dystrophy in pattern with	Not reported \mathbf{AR}^{\dagger}	Old age (67 years)	ABCA4	c.3056C>T, p.(Thr1019Met) c.6718A>G, p.(Thr2240Ala)	Het. Het. LP LP	DM/P DM?/ Absent	PMI, PM2, PM3, PP3 PM2, PM3_S, PP3	Stargardt disease type 1 Fundus flavimaculatus	AR	Non-syndromic
OFTALMO.077	ruccks pigmentosa with macular edema. Mean myopia. Bilateral moderate non-	Not reported AR	Youth (15 years)	USH2A	c.8917_8918delCT, p.(Leu2973Lysfs*7; c.9119G>A (p.Trp3040*))) Het. Het. P P	DM/Absent DM/Absent	PVSI, PM2, PM3_S PVSI, PM2, PM3, PPI	Usher syndrome type 2A	AR	Pretest syndrome
OFTALMO.081	hearing loss Retinitis pigmentosa. Tapetoretinian dystrophy	Not reported AD/ AR	Old age (66 years)	PRPH2	c.422delA, p.(Tyr141Serfs*12)	Het. LP	Absent/Absent	PVSI, PM2	Macular dystrophy Retinitis pigmentosa type 7 Retinitis punctata albescen: Choroidal dystrophy,	AD s	Non-syndromic
OFTALMO.082	1 Infectious choroiditis (25 years). Macular	Not reported \mathbf{AR}^{\dagger}	Old age (65 years)	PRPH2	c.421T>C, p.(Tyr141His)	Het. LP	DM/Absent	PMI, PM2, PM5, PPI_S, PP3	central arcolar type 2 Macular dystrophy Retinitis pigmentosa type 7 Retinitis punctata albescen: Choroidal dystrophy,	AD s	Non-syndromic
OFTALMO.087	degeneration Nystagmus and visual deficit	Yes AR [†]	Congenital (3 months)	CEP290	c.384_387delTA GA, p.(Asp128Glufs*3 c.7341_734dunACTT, p.(Ser2449Thrfs*8)	4) Het. Het. P P	DM/P Absent/Absent	PVSI, PM3_S, BAI PVSI, PM2, PM3	central arcolar type 2 Leber congenital amaurosis type 10 Senior-Loken syndrome type 6	s AR	Non-syndromic
OFTALMO.093	Bilateral atrophy, diabetes and hypertension	. Not reported AD^{\dagger}	Adulthood (40 years)	PRPH2	c.537G>A, p.(Trp179*)	Het. LP	Absent/Absent	PVSI, PM2	Joubert syndrome type 5 Macular dystrophy Retinitis pigmentosa type 7 Retinitis punctata albescen: Choroidal dystrophy, contral oroolar two 2	AD s	Non-syndromic
OFTALMO.094	H Bull's eye maculopathy.	Not reported AD/AR^{*}	Youth (12 years)	ABCA4	c.982G>T, p.(Glu328*) c.5882G>A, p.(Gly1961Glu)	Het. Het. P P	DM/Absent DM/ P		Example a second type z Stargardt disease type 1 Fundus flavimaculatus	AR	Non-syndromic

Case ID Pretest phenotyp	Pretest Previous inheritance e genetic study pattern	: Age at diagnosis	Gene	Allele variant	Variant zygosity	ACMG classification	Clasificación HGMD/ClinVar	Fulfilled ACMG pathogenicity criteria	Gene-associated phenotype	Gene- associated 1 phenotype 1 inheritance 6 pattern 5	Pretest syndrome, iidden syndrome or non- iyndromic
Possible macule dystrophy	IL							PVS1, PM2, PM3 PS3_P, PS4, PM3_VS, PP3, BA1			
OFTALMO.095 Macular atrophy with perimacult fleeks	/ Not reported AD/ AR ar	Childhood (15 years)	ABCA4	c.338G>T, p.(Arg1129Leu) c.6006-2A>G	Het. Het	. P LP	DM/LP Absent/Absent	PS4, PM1, PM2, PM3_S, PM5, PP3 PVS1_S_PM2	Stargardt disease type 1 Fundus flavimaculatus	AR	Von-syndromic
OFTALMO.097 Retinitis pigmentosa, diabetic retinopathy, deafness,	Not reported AD/ AR	Childhood (8 years)	PRPSI	c.292G>A, p.(Asp98Asn)	Het.	LP	A bsent/Absent	PMI, PM2, PM6_P, PP3	Syndromic retinitis pigmentosa (ocular asymmetry, hearing loss and neurological disorders)	QX	Oretest syndrome
epuepsy OFTALMO.098 Optical and macular atroph	Not reported AD^{\dagger} y	Youth (15 years)	OPAI	c.1847 + 1G>T	Het.	LP	DM/LB	PVSI, PM2	Optic atrophy 1 Optic atrophy plus syndrome	AD 1	Von-syndromic

Table 2. (Continued)

Ľ, a. ava D I paunogeme; LIKELY 7 Ę, DG LIKELY q nomozygous; HOM Heterozygous; Ш Het Hemizygous; autosomal dominant; AR = autosomal recessive; Hemprovided; P = Pathogenic; XD = X-linked dominant.Family history of eye disease. AU =

ACTA OPHTHALMOLOGICA 2020 -

of the probe design region known to not be affected by these type of variants, yielding a specificity of 0.9996. (936684/937048; >99.95%). The accuracy of v3 for determining the allelic frequencies of SNVs and indels with expected allelic frequencies ≥ 0.1 was 0.03 ± 0.06 (Table S8). The sensitivity, specificity and accuracy of v4, calculated as described above for v3, were 0.9917, 0.9995 and 0.033 ± 0.055 , respectively (Table S9).

Orthogonal validation of sequencing results

All variants considered responsible for the IRDs phenotypes of the probands (Table 2) were successfully validated by approaches alternative to NGS. These included 48 instances of SNVs or indels (validated by PCR and Sanger sequencing) and 1 CNV: 1 homozygous deletion of *BBS4* exon 1 (validated by breakpoint-specific PCR).

Performance at challenging regions: RPGR ORF15

Certain regions in the genome represent a major challenge for short-reading NGS technologies. Of the genes included in the OFTALMOgenics designs, RPGR poses the highest difficulties. RPGR encodes several isoforms, but only isoform С (NM 001034853), also known as RPGR ORF15, is highly expressed in the retina and, consequently, involved in the pathogenesis of retinitis pigmentosa (Vervoort et al. 2000). Several regions of RPGR ORF15 bear low complexity, causing sequence а decrease in base quality at the end of NGS reads. This, combined with the highly repetitive nature of the RPGR ORF15 reference sequence, leads to low mapping quality, limiting NGS-based RPGR ORF15 analysis. As a result, many laboratories analyse RPGR ORF15 using traditional Sanger sequencing (Chiang et al. 2015). Being aware of these difficulties, and as we observed that 92.7% of R&D cases (51/55) showed regions with less than 100% of their bases covered by ≥ 20 reads, we increased sequencing coverage and dedicated a larger number of capture probes to this conflictive region in the design of the panel, reaching 100% of the RPGR target region covered by 20 or more reads in v4 cases (Table S10). Of note, one of the cases in our series had a causative variant detected by the NGS pipeline in *RPGR* affecting *ORF15* (NM_001034853.1: c.2284delG; p.(Glu762Lysfs*53); corresponding with c.1905 + 379delG according to the main NM_000328.2 *RPGR* RefSeq), demonstrating the ability of the test to identify these challenging mutations.

Analysis of causative variants and diagnostic yield

Of 100 cases with low vision caused by alterations in the vitreous, choroid, retina and/or optic nerve, a genetic cause for their vision loss phenotype was found in 45 (45%) after identifying 49 different pathogenic/likely pathogenic variants in 26 genes (Fig. 1, Table 2 and Table S6). Causative mutations were found in 31.2% (5/16) of cases in which the existence of a previous genetic study, with negative results, had been reported before OFTALMOgenics testing (Table 2 and Table S11). No causative mutation could be identified in 55 patients (55%) (Table S11). These are likely to be a pool of patients without a genetic aetiology, with mutations in genes not included in the panel or with mutations in genes included in the panel but not detectable by the methodology used. The commonest causative genes in our population were ABCA4 (8 patients), PRPH2 (4 patients) and USH2A (4 patients). 1 pathogenic variant in IMPDH1 was de novo (after confirmation of maternity and paternity). The post-test inheritance patterns of the molecularly diagnosed patients were autosomal recessive (AR) in 75.5% (34/45) of cases, autosomal dominant (AD) in 17.8% (8/45), and X-linked in 6.5% (3/46) (Fig. 2 and Table 2).

CNV analysis identified a causative variant in 1 of the 45 molecularly diagnosed patients (2.2%): a homozy-gous *BBS4* exon 1 deletion in a patient with suspected Bardet–Biedl syndrome (retinitis pigmentosa, mild mental retardation, polydactyly in hands and feet, genital hypoplasia, renal dysplasia, obesity and hypertension). As no heterozygous CNVs were detected by our NGS platform, we analysed by MLPA a group of five genes included in our panel and previously described to be affected by pathogenic deletions/ duplications (including *USH2A*, *EYS*,

PRPF31, *RHO* and *RPE65*) on a subset of 31 cases without a genetic diagnosis from our series. This analysis identified no homozygous or heterozygous alterations (Table S13).

Two of the 49 causative variants (ABCA4 c.5882G>A and CEP290 c.384_387delTAGA) are present in one control population each with allele frequencies above 0.005, the threshold we used for the application of the BA1 (benign-standalone) ACMG criterion to recessive variants: 0.005054 (613/ 121302) in ExAC for ABCA4 c.5882G>A and 0.01074 (122/11360) in GO-ESP for CEP290 c.384 387del-TAGA. Their respective GnomAD frequencies are 0.00350 (110/31396) and 0.00003 (1/31362), below the BA1 threshold and compatible with disease incidence in the general population. Moreover, the 0.01074 (122/11360) frereported for *CEP290* auencv c.384 387delTAGA in GO-ESP does not match those of the same variant in other databases mentioned by dbSNP, all with higher numbers of alleles analysed [0.000056 (14/249068) in GnomAD_exome, 0.000104 (13/125568) in TOPMED and 0.00074 (58/78700) in PAGE STUDY] and is suspiciously high for a truncating variant in a gene in which inactivating mutations have consistently been shown to be pathogenic. Taking these data altogether and considering that, otherwise, both of these variants meet ACMG criteria for pathogenicity, we propose that they should be part of the exclusion list for application of the BA1 criterion, to avoid false negatives caused by automatic filtering based on allele frequency.

In total, 1081 variants in tier 1 genes and 119 variants in tier 2 genes were identified and evaluated in the full cohort of 100 patients. 476/1081 (44%) and 81/119 (68.1%) of the identified tier 1 and tier 2 variants, respectively, were absent from the HGMD professional and ClinVar databases (hereafter 'clinical databases'). No tier 2 variant was considered responsible for the IRD phenotype. Eighteen of the variants absent from the clinical databases (all from tier 1) were classified as pathogenic or likely pathogenic and responsible for the IRD. Globally, those 18 variants were considered responsible for the IRD phenotype in 18 cases. As a result, 40% of the genetically diagnosed cases (18/45)

were explained by variants not described in the clinical databases (Table 2). In addition, 31 non-redundant variants were identified that explained positive cases: 30 of these were classified as pathogenic (DM) by HGMD and/ or pathogenic/ likely pathogenic by ClinVar for ophthalmological phenotypes, and 1 (ABCA4 c.6718A>G, p.(Thr2240Ala)) absent in ClinVar and 'questionable' (DM?) in HGMD for a phenotype of retinal dystrophy (Table 2). We found 363 variants of uncertain significance (VUS) that appeared a total of 412 instances considering all patients (Table S12). These results highlight the importance of manual interpretation and curation for the clinical classification of variants.

Increased clinical sensitivity and specificity by jointly analysing non-syndromic and syndromic genes

For 7 of the 45 patients in which a genetic diagnosis was obtained, the phenotypes associated with the genes affected by causative variants either did not match the pretest clinical features/ diagnoses or corresponded to syndromes not previously diagnosed in the proband's personal and familial medical records (hereafter 'hidden syndromes'; Table 2):

Two patients, male and female, both with a pretest diagnosis of non-syndromic RP, shared the same homozygous mutation in IFT140 (c.874G>A, p.(Val292Met)). The IFT140 gene had been associated with recessive syndromic (Mainzer-Saldino and Jeune syndromes) (Perrault et al. 2012; Schmidts et al. 2013) and non-syndromic phenotypes (RP80 and Leber Congenital Amaurosis) (Xu et al. 2015). Posttest clinical assessment of the male patient revealed renal hypertension and two collapsed vertebrae, both sings compatible with Mainzer-Saldino syndrome (RP, renal and skeletal dysplasia). Thus, a hidden syndrome explained the phenotype. The clinical diagnosis of the female remained as non-syndromic RP post-test. Interestingly, in our two cases, the same variant (IFT140 c.874G>A; p.(Val292-Met)) was associated with a syndromic and a non-syndromic phenotype.

A male patient with a pretest diagnosis of RP was affected by a homozygous pathogenic variant in *BBS1* (c.1169T>G, p.(Met390Arg)). *BBS1* alterations have been associated with recessive non-syndromic (Estrada-Cuzcano et al. 2012; Sharon & Banin 2015) and syndromic RP (Bardet-Biedl syndrome -RP, diabetes-linked obesity, polydactyly, kidney abnormalities and intellectual disability-). Upon post-test revaluation of the case, the patient was found to have pancreas divisum and unilateral postaxial polydactyly emerging from the fifth toe (right foot). However, no intellectual disability, nor renal or hormonal alterations were detected.

A female patient with a pretest diagnosis of RP had a novel canonical splicing mutation in *MCOLN1* (c.878-1G>A) in homozygosis. *MCOLN1* inactivation has only been associated with type 4 mucolipidosis, characterized by neurologic and ophthalmologic abnormalities (Boudewyn & Walkley 2019). Post-test clinical review of the case revealed that the patient had psychomotor delay, intellectual disability and a corneal lesion with microcystic epithelial oedema, suggestive of corneal dystrophy.

A male with nystagmus, macular atrophy, typical RP, retinal ischaemia, complete optic nerve atrophy and mental retardation that had not been clinically matched to any specific syndrome pretest, had a heterozygous pathogenic KIF11 variant (c.2548-2A>G). This gene has been associated with exudative familial vitreoretinopathy and with microcephaly with or without chorioretinopathy, lymphedema or mental retardation (MLCRD), both dominant phenotypes (Robitaille et al. 2014). Post-test revaluation of the case confirmed that the phenotype matched MLCRD syndrome.

A male patient with a clinical diagnosis of Usher syndrome was found to be affected by two likely pathogenic compound heterozygous variants affecting the PEX1 gene (c.1548delT, p.(Leu517Cysfs*2) and c.3077T>C, p.(Leu1026 Pro)). The PEX1 gene has been associated with peroxisome biogenesis disorders types 1A and 1B, as well as with Heimler syndrome, all with recessive inheritance (Ratbi et al. 2015). Heimler syndrome combines the hearing loss and retinal dystrophy phenotypes typical of Usher syndrome with enamel hypoplasia of the secondary dentition and nail abnormalities, which may be overlooked. Therefore, genetic assessment increased the specificity of the diagnosis.

Finally, a female patient with hearing loss, diabetes and RP without a specific syndromic diagnosis pretest was affected by a missense, likely pathogenic, heterozygous PRPS1 variant (c.292G>A, p.(Asp98Asn)). Pathogenic variants in this gene have been associated with three X-linked conditions involving blindness: Charcot-Marie-Tooth disease type 5, Arts syndrome and syndromic retinitis pigmentosa (ocular asymmetry, hearing loss and neurological alterations). The latter has only been described in females with missense variants and shows a dominant mode of inheritance (Fiorentino et al. 2018).

Aside from these seven cases, another female patient with a pretest diagnosis of non-syndromic RP and a blind sister had two compound heterozygous variants affecting ARL6 [p.(Lys14Profs*15), pathogenic and p.(Gly167Arg), likely pathogenic]. This gene has been associated both with non-syndromic RP and with Bardet-Biedl syndrome. Clinical review of the family post-test revealed that, while the patient had no extraophthalmic manifestations, her sister was born with an extra toe that was later removed by surgery. Although the sister has not been genetically analysed so far, this likely represents another case of a single genotype causing syndromic and non-syndromic hereditary blindness, in this case within the same family.

In total, 28.9% of the genetically diagnosed patients (13/45) had syndromic visual impairment (Table 2). Of those, 30.8% (4/13) had a previously unrecognized (hidden) syndrome: Mainzer-Saldino (1 patient), Bardet-Biedl type 1 (1 patient), mucolipidosis type IV (1 patient) and MLCRD (1 patient). Likewise, 23.1% (3/135) had different syndromic manifestations, but they did not have a specific clinically diagnosed syndrome before the test was performed: Usher type 2A (2 patients) and syndromic retinitis pigmentosa caused by mutations in the PRPS1 gene (1 patient). Additionally, one patient with Heimler syndrome according to the test results had previously been imprecisely diagnosed as an Usher case based on clinical features (2.2%; 1/45) (Table 2). In contrast, of the 55 patients without a genetic diagnosis, only 5 (9.1%) had potentially syndromic features (Table S11). These findings demonstrate that comprehensive genomic diagnosis not only increases diagnostic performance (sensitivity and specificity), but also provides information with high clinical relevance.

Genomic diagnosis identifies potential gene therapy options for a considerable proportion of IRD patients

Thirteen gene therapy clinical trials aimed at compensating genetic defects responsible for hereditary blindness of patients genetically diagnosed by our platform were open as of November 2019 or had been open for a period of time during this study (Table 3). Of the genes targeted by these clinical trials, ABCA4 is the one altered by variants responsible for blindness in most patients of our series (8 patients), followed by USH2A (2 patients), CHM (2 patients), MYO7A (2 patients) and RPGR (1 patient) (Table 3). In total, 33.3% of the genetically diagnosed patients (15/45) and 15% of the genetically evaluated patients (15/100) could have potentially benefited from therapeutic approaches with curative potential in this time window (Table 3).

Discussion

Out of the different outputs of this work, the most appealing one is probably the confirmation of the utility of comprehensive genomic diagnosis of blind patients for the identification of potential therapeutic options matching their genetic profile in a relatively large proportion of them. Nonetheless, the advantages of testing hundreds of blindness genes in parallel reach far beyond therapeutic guidance. Thus, in the diagnostic setting, because the complex genetic heterogeneity of retinal dystrophies makes very hard predicting the genetic alteration based on the clinical characterization of the patient only, and mutation of a single gene may cause a broad range of different clinical manifestations, comprehensive testing is particularly useful (Hafler 2017).

In fact, the ability to perform phenotype-agnostic testing is providing a growing body of evidence in support of the concept of phenotypic expansion,

Fig. 1. Genes considered responsible for hereditary visual impairment in our cohort and their associated phenotypes. Ellipses represent phenotypes (black characters) involving vision loss caused by alterations in the retina, vitreous, choroid and/or optic nerve and consistently associated to defects in the genes (blue characters) they contain. For genes with causative alterations affecting more than one patient in our cohort, the number of affected patients is shown in brackets below. Phenotype acronyms: CMTX5: Charcot-Marie-Tooth disease, X-linked recessive, 5; MLCRD: microcephaly, lymphoedema, chorioretinal displasia syndrome.

by means of the identification of disease-causing mutations in genes not previously related to the proband's clinical phenotype (Bowne et al. 2011; Nishiguchi et al. 2014; Consugar et al. 2015). This approach can also tackle the diagnostic dilemmas appearing when phenotypic variability is observed within the same family, a common situation in inherited retinal dystrophies (Consugar et al. 2015). Moreover, as phenotypes evolve over time, comprehensive testing reduces the possibility that the causative gene is not evaluated because the proband's symptoms do not match the phenotype associated to it at the moment of testing. Finally, as visual impairment may be the presenting symptom of a systemic syndrome, an accurate molecular diagnosis may be critical for identifying a so far not revealed and wider health problem. Apart from its informative value with regard to prognosis, because some of these syndromes can cause significant morbidity, prompt identification and referral for systemic assessment and monitorization may secure early intervention and a better outcome (Werdich et al. 2014).

A total of 15.6% (7/45) of the patients for which a genetic diagnosis was obtained in our study corresponded to cases whose clinical diagnoses pretest did not match the phenotypes associated with the affected genes at the time of reporting the results to the requesting clinician, involving the following genes: BBS1, IFT140 (2x), KIF11, MCOLN1, PEX1 and PRPS1. Post-test reassessment revealed that four of these cases represented hidden syndromes [cases with BBS1, IFT140 (1 of the 2 cases), KIF11 and MCOLN1 causative variants]. Of the remaining three, one of them is a case of phenotypic expansion (the second IFT140 case), other had been diagnosed as syndromic pre-test, but without a specific diagnosis (the PRPS1 case) and the remaining one corresponded to misdiagnosis of a Heimler syndrome (caused by a PEX1 variant) as an Usher syndrome. These results reinforce the utility of using phenotype-agnostic panels for the genomic diagnosis of vision loss.

The two *IFT140* cases from our series, caused by the same mutation, showed very different phenotypes: the

male had a phenotype matching Mainzer–Saldino syndrome whereas the female had non-syndromic RP. Similarly, the non-syndromic patient with two causative variants affecting ARL6 had a sister (not genetically tested) with polydactyly, which is strongly suggestive of Bardet–Biedl syndrome. These are clear examples of phenotypic heterogeneity that further reinforce the difficulty to predict the affected genes from clinical assessment and, as a result, the convenience of using comprehensive gene panels.

So far, the clinical application of NGS to the molecular diagnosis of hereditary blindness has followed two main paths: exome sequencing and panel While sequencing. exome sequencing has the advantage of being able to identify variants in any gene (thus not depending on gene selection and being able to discover novel genes not previously related to vision loss), this advantage is actually more useful in the research setting than in the clinical setting, where a solid molecular diagnosis, based on existing published gene-phenotype associations and able guide patient management, is to

OFTALMO ID	Date of report	Sex	Gene	Causative mutations	Zigosity	Clinical trial title	Web links to trial details	Phase
OFTALMO.002 OFTALMO.019 OFTALMO.021	26/02/201 06/04/201 21/04/201	9 E F F 6 F F 6 F F 6 F F F 6 F F F F F F	ABCA4	c.868C/T, p.(Arg20Trp) c.6449 G>A, p.(Cys2150Tyr) c.6444 G>A, p.(Cys2150Tyr) c.9044 _058delGTTGCCATCTGCGTG, p.(Val1682_Val1686del)/ c.3943CT,	Homozygous Homozygous Compound heterozygous	A Phase I/IIa Study of SAR422459 in Patients With Stargardt's Macular Degeneration	https://www.clinicattrialsregister.eu/ctr-search/trial/ 2010-023111-34/IT/	l, 2a
OFTALMO.063	31/01/201	7 M		p.(Gln1315*) c.5819T>C, p.(Leu1940Pro)/ c.3386G>T,	Compound heterozygous			
OFTALMO.072 OFTALMO.076	19/05/201 24/08/201	7 M		p.(Arg1129Leu) c.5882G>A, p.(Gly1961Glu) c.3056C>T, p.(Thr1019Met)/ c.2828G>A,	Homozygous Compound heterozygous			
OFTALMO.094	28/03/201	9 M		p.(Thr2240Ala) c.982G>T, p.(Glu328*)/ c.5882G>A,	Compound heterozygous			
OFTALMO.095	08/04/201	9 F		p.(Giy1961Giu) c.3386G>T, p.(Arg1129Leu)/ c.6006-2A>G	Compound heterozygous			-
OFTALMO.008	07/03/201	9 W		c.1514delT, p.(LeuS05Trpfs*4)		satety and Dose Escatation Study of AAY2-hCHM in Subjects With CHM (Choroideremia) Gene Mutations Long-term Safety and Efficacy Folow-up of AAV2-REPI for the Transmission of Choroidanemic SCO CTFCF)	https://clinicaltriats.gov/ct2/show/NC10254180/ https://clinicaltriats.gov/ct2/show/NCT03584165	1, 2
						A Safety Study of Retinal Gene Therapy for Choroideremia	https://clinicaltrials.gov/ct2/show/NCT03507686	5
OFTALMO.020	20/04/201	6 M	CHM	c.340G>T, p.(Glu114*)	Hemizygous	Choridential Choroiderenia Gene Therapy Clinical Trial An Open Label Clinical Trial of Retinal Gene Therapy for Choroid-termia	https://clinicaltrials.gov/ct2/show/NCT02553135 https://clinicaltrials.gov/ct2/show/NCT02077361	2 1, 2
						Efficacy and Safety of AAV2-REP1 for the Treatment of Choroideremia (STAR)	https://clinicaltrials.gov/ct2/show/NCT03496012	ŝ
OFTALMO.017 OFTALMO.018	31/03/201 04/04/201	ы X 9	MY 07A	 c.6025delG, p.(Ala2009Prof5*32) c.397C>T, p.(His133Tyr) 	Homozygous Homozygous	Study of SAR421869 in Patients With Retinitis Pigmentosa Associated With Usher Syndrome Type 1B Gene Therapy for X-linked Retinitis Pigmentosa (XLRP)	https://clinicaltrials.gov/ct2/show/NCT01505062 https://clinicaltrials.gov/ct2/show/NCT03252847	1, 2a 1, 2
			RPGR			Retinitis Pigmentosa GTPase Regulator (RPGR) A Clinical Trial of Retinal Gene Therapy for X-linked	https://clinicaltrials.gov/ct2/show/NCT03116113	1, 2, 3
OFTALMO.029	27/07/201	6 M	(ORF15) c.2284delG, p.(Glu762Lysfs*53)	Hemizygous	Returns Figurentosa (ALRUC5) Safety and Efficacy of rAAV21FF-GRK1-RPGR in Subjects With X-linked Retinitis Piementosa Caused hy RPGR-	https://clinicaltrials.gov/ct2/show/NCT03316560	1, 2
						Gene Therapy Trial for People with Retinitis Pigmentosa (progressive reduction in vision) due to a gene defect on	https://globalclinicaltrialdata.com/trial/GCT022016-003967-21	1, 2
OFTALMO.052 OFTALMO.068	02/11/201 18/05/201	6 F 7 F	USH2A	c.9304C-T.p.(Gln3102*)/ c.2276G>T, p.(Cys759Phe) c.2276G>T, p.(Cys759Phe)/ c.12093delC,	Compound heterozygous Compound heterozygous	Study to Evaluate Safety and Tolerability of QR 421a in Subjects With RP Due to Mutations in Exon 13 of the USH2A Gene (Stellar)	https://clinicaltrials.gov/ct2/show/NCT03780257	1, 2

Fig. 2. Modes of inheritance of the genetic conditions considered responsible for hereditary vision loss in our cohort. From outer to inner rings, affected genes, associated phenotypes and modes of inheritance are shown. The area of each sector is proportional to the number of cases represented within it. For genes with causative alterations affecting more than one patient, the number of affected patients is shown in brackets. AD: autosomal dominant; AR: autosomal recessive; X-linked recessive, 5; LCA: Leber congenital amaurosis; MLCRD: microcephaly, lymphoedema, chorioretinal displasia syndrome; RP: retinitis pigmentosa; SM: Saldino–Mainzer syndrome; XD: X-linked dominant; XR: X-linked recessive.

required. In fact, this advantage is deemed to be less and less relevant with time, as a recent study shows that the discovery of novel genes associated to recessive IRD approaches saturation (Patel et al. 2018). As a result, up-todate panels including both genes with strong/moderate association with inherited blindness and recently discovered candidate genes, as the one presented herein, should minimize this theoretical advantage of exome sequencing.

Consugar et al. concluded that focusing the sequencing and interpretation efforts in a panel with a limited subset of genes consistently associated with blindness phenotypes outperforms exome-based sequencing strategies (Consugar et al. 2015). This outperformance was based on improved detection rates (attributable to a probe design better tailored to genes associated with IRD, as probes for aprox.

10% of the regions targeted by their panel were missing from commercially available exome capture kits) and reduced turnaround times. Time reduction does not only apply to laboratory geneticists, but also to clinicians, as exome sequencing demands from them additional time for the informed consent process (including discussions about incidental secondary findings), for interpreting laboratory reports and for reviewing results (many of which refer to conditions they are likely not familiar with) with patients (Biesecker & Green 2014; Gillespie et al. 2014). A more recent study, aimed at evaluating the performance of exome sequencing in the clinical context, concludes that the current standard of 120x average read depth may be insufficient for consistent breadth of coverage across all relevant genes (Kong et al. 2018).

Our test includes genes with all modes of inheritance in a single gene

panel. An advantage of this is the possibility of detecting dominant *de novo* or incomplete penetrance mutations in families with apparent recessive patterns of disease transmission. In total, in our series, 6 of the 45 cases (13.3%) with a genetic diagnosis have causative variants in genes associated with dominant phenotypes and, however, do not have a family history of IRDs (Table 2). Of note, a recessive IRD panel would not have detected these dominant causative variants.

As any diagnostic technique, panel sequencing has its difficulties and limitations. The ability of our panel to detect SNVs and indels with high analytical sensitivity and specificity has been validated in this study. However, certain variant types, such as trinucleotide expansions and CNVs, as well as those affecting highly homologous or repetitive regions, can be missed. Nonetheless, these limitations are not exclusive of panel sequencing, but extensive to other NGS approaches, such as exome or, to a lower extent, genome sequencing (Bamshad et al. 2011; Schrijver et al. 2012). One relevant IRD gene affected by such limitations is RPGR, specifically in its ORF15 variant isoform (Audo et al. 2012). Although we initially observed difficulties in the capture, sequencing and/or alignment of sequences from this region, optimization of our capture probe has allowed us to overcome them in the current clinical version of the panel (v4) (Table S10).

The ability of our methodology to detect CNVs from panel data has previously been evaluated for a panel of 199 deafness-related genes (Cabanillas et al. 2018). In that case, our NGS pipeline was able to correctly detect all homozygous and heterozygous whole gene CNVs previously found by qPCR and MLPA affecting STRC (a particularly challenging gene because of its highly homologous STRCP1 pseudogene). However, detection of partial gene deletions/duplications by NGS is even more challenging. The lack of homozygous or heterozygous deletions/duplications in the five genes we evaluated by MLPA in a subset of 31 patients without a genetic diagnosis from our current blindness series is encouraging. However, we do not rule out the possibility that these and other patients from this study without a

genetic diagnosis have causative variants in genes that were investigated, either because of the aforementioned limitations or because the regions affected by the variants were not included in the design and, thus, were not captured and sequenced.

It is also possible that some of the patients from the current study tested with the earlier versions of the probe have causative variants in genes included in the later versions. These are not likely to represent a large fraction of the cases, though, as all causative variants in our series affected genes present in all panel versions. Nonetheless, a limitation of the panel approach is that, if no causative variants are detected in the patient and a new disease-associated gene is discovered, that gene cannot be retrospectively evaluated from the available sequence. As mentioned before, exome data could provide this information with no extra sequencing.

The gene most frequently found to be responsible for the visual impairment phenotype in our series is ABCA4 (8/46 cases, 17.4%) followed by USH2A and PRPH2 (4/46 cases, 8.7%, each), CNGB1 (3/46, 6.5%) and CHM, IFT140, MYO7A and RP1 (2/46, 4.3%, each). The remaining 18 cases (40%) were each caused by variants in one of 18 different genes (Figs 1 and 2). The high prevalence of ABCA4, USH2A and CHM variants is in agreement with a recent and large retrospective analysis done by Motta et al. that evaluated 549 patients with IRD genetic testing in Brazil (Motta et al. 2018). Of the other four genes highlighted by Motta and collaborators as very prevalent disease-causing genes (CEP290, CRB1, RPGR and CHM), three of them (CEP290, RPGR and CHM) are also affected by causative mutations in our series, although not recurrently (Figs 1 and 2).

Of the 100 cases evaluated in our series, 15 (15%) could potentially benefit from clinical trials aimed at correcting their genetic defects, including those affected by mutations in *ABCA4* (8 cases), *USH2A* (2 cases), *CHM* (2 cases), *MYO7A* (2 cases) and *RPGR* (1 case). Thus, our results suggest that potential eligibility from a gene-corrective clinical trial with curative purposes is not a rare possibility for IRD patients. Moreover, this data, combined with the four cases in which a hidden syndrome was revealed, indicate that the proportion of genetically diagnosed patients in which comprehensive genetic testing identified clinically relevant insights was at least 42.2% (19/45).

Genetic diagnosis is the key eligibility criterion for clinical trials and treatments based on gene therapy. With the advent of CRISPR/Cas9 technologies the possibility to correct not just the mutated genes but also their specific pathogenic variants has become a reality. This is the case of the *CEP290* c.2991 + 1655A>G intronic mutation, targeted by the EDIT-101 investigational new drug for type 10 Leber congenital amaurosis (Maeder et al. 2019). In this scenario, comprehensive genomic characterization should soon be a must in the clinical management of blind patients. Hopefully, a substantial proportion of the ongoing clinical trials will boost the approval of more therapies that, combined with appropriate genomic testing, will provide life-changing options for those affected by such highly disabling conditions.

References

- Audo I, Bujakowska KM, Leveillard T et al. (2012): Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet J Rare Dis 7: 8.
- Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA & Shendure J (2011): Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12: 745–755.
- Biesecker LG & Green RC (2014): Diagnostic clinical genome and exome sequencing. N Engl J Med 370: 2418–2425.
- Boudewyn LC & Walkley SU (2019): Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem. 148, 669–689.
- Bowne SJ, Humphries MM, Sullivan LS et al. (2011): A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement. Eur J Hum Genet 19: 1074–1081.
- Cabanillas R, Dineiro M, Castillo D et al. (2017): A novel molecular diagnostics platform for somatic and germline precision oncology. Mol Genet Genomic Med **5**: 336–359.
- Cabanillas R, Dineiro M, Cifuentes GA et al. (2018): Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med Genomics **11**: 58.

- Chiang JP, Lamey T, McLaren T, Thompson JA, Montgomery H & De Roach J (2015): Progress and prospects of next-generation sequencing testing for inherited retinal dystrophy. Expert Rev Mol Diagn **15**: 1269–1275.
- Consugar MB, Navarro-Gomez D, Place EM et al. (2015): Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genet Med **17**: 253–261.
- Costa KA, Salles MV, Whitebirch C, Chiang J & Sallum JMF (2017): Gene panel sequencing in Brazilian patients with retinitis pigmentosa. Int J Retina Vitreous **3**: 33.
- Estrada-Cuzcano A, Koenekoop RK, Senechal A et al. (2012): BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to Bardet-Biedl syndrome. Arch Ophthalmol **130**: 1425–1432.
- Fiorentino A, Fujinami K, Arno G et al. (2018): Missense variants in the X-linked gene PRPS1 cause retinal degeneration in females. Hum Mutat **39**: 80–91.
- Gillespie RL, Hall G & Black GC (2014): Genetic testing for inherited ocular disease: delivering on the promise at last? Clin Exp Ophthalmol **42**: 65–77.
- Hafler BP (2017): Clinical progress in inherited retinal degenerations: gene therapy clinical trials and advances in genetic sequencing. Retina **37**: 417–423.
- Jauregui R, Cho GY, Takahashi VKL, Takiuti JT, Bassuk AG, Mahajan VB & Tsang SH (2018): Caring for hereditary childhood retinal blindness. Asia Pac J Ophthalmol (Phila) 7: 183–191.
- Kong SW, Lee IH, Liu X, Hirschhorn JN & Mandl KD (2018): Measuring coverage and accuracy of whole-exome sequencing in clinical context. Genet Med **20**: 1617– 1626.
- Lee K & Garg S (2015): Navigating the current landscape of clinical genetic testing for inherited retinal dystrophies. Genet Med **17**: 245–252.
- Maeder ML, Stefanidakis M, Wilson CJ et al. (2019): Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med **25**: 229–233.
- Motta FL, Martin RP, Filippelli-Silva R, Salles MV & Sallum JMF (2018): Relative frequency of inherited retinal dystrophies in Brazil. Sci Rep 8: 15939.
- Nishiguchi KM, Avila-Fernandez A, van Huet RA et al. (2014): Exome sequencing extends the phenotypic spectrum for ABHD12 mutations: from syndromic to nonsyndromic retinal degeneration. Ophthalmology **121**: 1620–1627.
- Patel N, Alkuraya H, Alzahrani SS et al. (2018): Mutations in known disease genes account for the majority of autosomal recessive retinal dystrophies. Clin Genet **94**: 554–563.

- Perrault I, Saunier S, Hanein S et al. (2012): Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet **90**: 864–870.
- Ratbi I, Falkenberg KD, Sommen M et al. (2015): Heimler syndrome is caused by hypomorphic mutations in the peroxisomebiogenesis genes PEX1 and PEX6. Am J Hum Genet 97: 535–545.
- Richards S, Aziz N, Bale S et al. (2015): Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405–424.
- Robitaille JM, Gillett RM, LeBlanc MA et al. (2014): Phenotypic overlap between familial exudative vitreoretinopathy and microcephaly, lymphedema, and chorioretinal dysplasia caused by KIF11 mutations. JAMA Ophthalmol **132**: 1393–1399.
- Russell S, Bennett J, Wellman JA et al. (2017): Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet **390**: 849–860.
- Sadagopan KA (2017): Practical approach to syndromic pediatric retinal dystrophies. Curr Opin Ophthalmol 28: 416–429.
- Schmidts M, Frank V, Eisenberger T et al. (2013): Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat 34: 714–724.
- Schrijver I, Aziz N, Farkas DH et al. (2012): Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn **14**: 525–540.
- Sharon D & Banin E (2015): Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Mol Vis **21**: 783–792.
- Stone EM, Aldave AJ, Drack AV, Maccumber MW, Sheffield VC, Traboulsi E & Weleber RG (2012): Recommendations for genetic testing of inherited eye diseases: report of the American Academy of Ophthalmology task force on genetic testing. Ophthalmology 119: 2408–2410.
- Valdes-Mas R, Bea S, Puente DA, Lopez-Otin C & Puente XS (2012): Estimation of copy number alterations from exome sequencing data. PLoS ONE 7: e51422.
- Verbakel SK, van Huet RAC, Boon CJF et al. (2018): Non-syndromic retinitis pigmentosa. Prog Retin Eye Res **66**: 157–186.

- Vervoort R, Lennon A, Bird AC et al. (2000): Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet **25**: 462–466.
- Werdich XQ, Place EM & Pierce EA (2014): Systemic diseases associated with retinal dystrophies. Semin Ophthalmol **29**: 319–328.
- Xu M, Yang L, Wang F et al. (2015): Mutations in human IFT140 cause nonsyndromic retinal degeneration. Hum Genet 134: 1069–1078.

Received on December 20th, 2019. Accepted on April 29th, 2020.

Correspondence: Juan Cadiñanos, PhD and Ruben Cabanillas, MD, PhD IMOMA Avda. Richard Grandío s/n, 33193 Oviedo Spain Tel: + 34985250300 Ext. 266 (JC) Tel: + 34985250300 Ext. 700 (RC) Fax: + 34985272166 Emails: jcb@imoma.es (JC); rcabanillas@imoma.es (RC)

Acknowledgements: We are grateful to all participating patients and their families. Work performed at IMOMA has been supported by Fundación María Cristina Masaveu Peterson.

Conflict of interest: The following authors are or have been employed by IMOMA, the owner of the OFTALMOgenicsTM platform: MD (Clinical Molecular Geneticist), RaC (Molecular Biologist), GAC (Biotechnologist), AO (Genetic Counsellor), AS (Bioinformatitian), NSD (Lab. Technician), RA (Lab Technician), RuC (Director of the Area of Precision Medicine) and JC (Director of the Laboratory of Molecular Medicine). The authors declare no other conflicts of interests.

Ethics approval and consent to participate: The study was approved by the Comité de Ética de Investigación del Principado de Asturias (research project #74/14). Consent was obtained from all patients or their parents.

Author's contributions: MD performed most of the experimental work and contributed to results analysis and interpretation and writing of the manuscript. RaC contributed to results interpretation and data analysis. GAC contributed to experimental work and results interpretation. BF-V, EV, AO, MV-D, IH and AF-V provided patient samples and associated clinical data. AS contributed to results analysis. PCP, DC and GRO performed bioinformatics analyses. NSD, RA and CGL contributed to experimental work. RuC and JC participated in study design, interpretation of results and writing of the manuscript. All authors commented on the manuscript and approved the submitted version.

Data Availability Statement: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

[Correction added on 10 June 2020, after first publication: the acknowledgements section has been updated with funding information in this version.]

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. List of phenotypes potentially related to visual impairment used as keywords for initial query on HGMD professional.

Table S2. Tier 1 and tier 2 genesincluded in v1 of the panel.

Table S3. Tier 1 and tier 2 genesincluded in v2 of the panel.

Table S4. Tier 1 and tier 2 genesincluded in v3 of the panel.

Table S5. Cases analyzed with eachversion of the panel.

Table S6. Primers used to validate causative variants (pathogenic and likely pathogenic variants considered responsible for the ophthalmologic phenotype).

Table S7. Coverages[¥] and callabilities[#] for every tier 1 and tier 2 gene on v4 samples (n = 6).

Table S8. SNV and indel sensitivity,specificity and accuracy of theOFTALMOgenics v3 platform.

Table S9. SNV and indel sensitivity, specificity and accuracy of the OFTALMOgenics v4 platform.

Table S10. RPGR target regions with <100% bases covered by ≥10 reads or ≥20 reads in R&D, clinical v3 and clinical v4 cases.

Table S11. Clinical characteristics ofcases without causative mutations.

 Table S12. Variants of uncertain significance identified in this study.

Table S13. Results from MLPA analysis on 31 cases from this study with nocausative variants identified.