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Abstract

New treatments for diseases caused by antimicrobial-resistant microorganisms can be

developed by identifying unexplored therapeutic targets and by designing efficient drug

screening protocols. In this study, we have screened a library of compounds to find ligands

for the flavin-adenine dinucleotide synthase (FADS) -a potential target for drug design

against tuberculosis and pneumonia- by implementing a new and efficient virtual screening

protocol. The protocol has been developed for the in silico search of ligands of unexplored

therapeutic targets, for which limited information about ligands or ligand-receptor structures

is available. It implements an integrative funnel-like strategy with filtering layers that

increase in computational accuracy. The protocol starts with a pharmacophore-based virtual

screening strategy that uses ligand-free receptor conformations from molecular dynamics

(MD) simulations. Then, it performs a molecular docking stage using several docking pro-

grams and an exponential consensus ranking strategy. The last filter, samples the confor-

mations of compounds bound to the target using MD simulations. The MD conformations

are scored using several traditional scoring functions in combination with a newly-proposed

score that takes into account the fluctuations of the molecule with a Morse-based potential.

The protocol was optimized and validated using a compound library with known ligands of

the Corynebacterium ammoniagenes FADS. Then, it was used to find new FADS ligands

from a compound library of 14,000 molecules. A small set of 17 in silico filtered molecules

were tested experimentally. We identified five inhibitors of the activity of the flavin adenylyl

transferase module of the FADS, and some of them were able to inhibit growth of three bac-

terial species: C. ammoniagenes, Mycobacterium tuberculosis, and Streptococcus pneumo-

niae, where the last two are human pathogens. Overall, the results show that the integrative

VS protocol is a cost-effective solution for the discovery of ligands of unexplored therapeutic

targets.
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Author summary

Developing cures for antimicrobial-resistant microorganisms is a pressing necessity.

Addressing this problem requires the discovery of novel therapeutic targets -for example,

bacterial proteins with no human homologues- and the development of cost-effective

drug screening protocols. In this work, we tackled the problem on both sides. We devel-

oped an efficient and successful integrative computational protocol for screening inhibi-

tory-molecules for unexplored targets. We used it to discover five novel inhibitors of

flavin-adenine dinucleotide synthase (FADS), a promising protein target of pathogens

causing tuberculosis and pneumonia.

Introduction

Given the growing incidence of infections caused by antimicrobial resistant pathogens, inter-

national institutions, such as the World Health Organization [1], have informed about the lack

of potential therapeutic options for these pathogens, and have named a list of pathogens for

which is critical to develop novel antimicrobial agents. The development of such treatments

should involve efficient drug design protocols and the discovery of new molecular targets to

fight antimicrobial resistance. A straightforward and effective way to increase the chances of

success of the drug-screening pipeline is through the implementation of efficient virtual

screening (VS) protocols. These methods provide powerful tools to reduce the costs of drug

discovery by reducing the number of compounds to be tested in experimental trials [2–5].

Moreover, VS protocols increase the success rate (i.e., active compounds found) and reduce

the false negatives in high-throughput compound screening [2, 3, 6–12].

Efficient VS protocols have to be able to screen large compound libraries in short computa-

tional times. Therefore, these protocols usually implement a funnel-like strategy, which start

from fast but less accurate methods (where a large number of molecules are filtered) and more

accurate and time-consuming tools are used in the last steps [13–15]. Usually, pharmaco-

phore-based tools are implemented in the first stages of VS, given their ability to quickly screen

large compounds libraries [16–18]. While more sophisticated tools such as docking or molecu-

lar dynamics (MD) are implemented in the latter steps to predict ligand affinities [11, 13, 19–

26].

Special attention deserve the tools used in the first steps of the VS, because these impact the

ability of the protocol to explore large compound libraries and the chemical space of the com-

pounds, such as the pharmacophore-based strategies [16–18, 27–30]. Despite the usefulness of

these methods, which accelerate the first steps of the VS, these strategies have some limitations.

Several pharmacophore-based methods require knowing ligands or ligand-receptor structures

for their training, limiting the chemical space of the filtered molecules to that associated with

the training set [16]. Recently, the flexi-pharma method, a VS strategy that uses pharmacho-

phores from MD conformations was developed to overcome these limitations [31]. However,

in general, new protein targets, which have limited structural information available, such as

the bifunctional enzyme flavin-adenine dinucleotide synthase (FADS), are challenging for the

funnel-like VS strategies.

FADS is a potential target for drug design against antimicrobial-resistant organisms, such

as the human pathogens Mycobacterium tuberculosis and Streptococcus pneumoniae. FADS is a

bi-functional and bi-modular enzyme that catalyzes the synthesis of two essential co-factors:

flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD). These are essential for

a large number of proteins participating in energy transformation or metabolic processes, in
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prokaryotic and eukaryotic organisms [32–34]. For FADS, the synthesis of FMN occurs at the

C-terminal module (the RKF module) and that of FAD at the N-terminal module (FMNAT

module) [35–38]. The RFK module has a similar structure and sequence to the equivalent

enzyme in eukaryotic organisms. However, because the FMNAT module lacks both sequence

and structural similarity with the equivalent enzymes in eukaryotic systems, the prokaryotic

FADSs have emerged as potential antimicrobial targets [35, 39–41].

The most characterized FADS is the enzyme of Corynebacterium ammoniagenes (CaFADS),

which is considered a good representative model for the FADS of the human pathogen M.
tuberculosis (MtFADS) [40, 41]. However, limited structural information about this enzyme is

available. Moreover, no experimental structures of the FADS-FMNAT module in complex

with substrates are reported. The only ligand-CaFADS FMNAT module structures correspond

to theoretical or computational models [35, 42].

The objective of this work is to discover molecules able to inhibit the FMNAT activity of

FADS using a novel integrative VS protocol. This promising protocol addresses some of the

limitations found with traditional VS, for example, it does not require knowledge of ligands or

ligand-receptor structures, and its attributes enable a better exploration of the chemical space

of large compound libraries.

This manuscript is organized as follows. First, we describe the integrative computational

protocol, which includes several filtering layers: i) flexi-pharma screening [31], ii) consensus

docking screening [43], iii) MD sampling and scoring, and iv) compound activities measured

by experimental assays. The protocol is tested and optimized using a library of 1993 com-

pounds from which 39 compounds are true ligands of the CaFADS [41]. Subsequently, the

optimized protocol is implemented over a library of 14000 compounds. A final list of 17 fil-

tered compounds is tested experimentally. We discover that six molecules are able to inhibit

the FMNAT-FADS activity, five bind to the FMNAT-FADS and five present growth inhibitory

activity against C. amoniagenes,M. tuberculosis or S. pneumoniae. We conclude that the VS

protocol and the new inhibitory compounds can contribute to further development of novel

therapeutic strategies against antimicrobial-resistant pathogens such asM. tuberculosis and S.
pneumoniae.

Materials and methods

Computational methods

FAD structure. The Cartesian coordinates of the FMNAT module (M1-H186) of CaFADS

were taken from the crystal structure with PDB code 2X0K [35]. These were used for the MD

simulations in the flexi-pharma or molecular docking stage.

Flexi-pharma method. The flexi-pharma protocol [31] has three substages: run an MD

simulation of the receptor target, generate a set of pharmacophores from each ligand-free

receptor MD conformation, and assign a vote to each molecule every time it matches at least

one pharmacophore from each MD conformation.

First, an MD simulation of receptor was performed. For CaFADS, we used the results from

a simulation of this system performed in a previous work [42]. Specifically, we used 600 equi-

distant ligand-free CaFADS conformations from 60 ns of MD at 300.15K (for details about the

MD parameters see ref. [42]). To generate the pharmacophore set from each ligand-free MD

conformation, we used Autogrid4.2 [44] to calculate the affinity maps of several atom-types:

hydrogen-bond donor, hydrogen-bond acceptor, hydrophobic, aromatic and charged atoms.

Some atom-type affinity grids were first discarded if they show a flat distribution of the affinity

values of the map (for this work, the affinity maps that have a histogram with kurtosis larger

than 3). Then, we defined a grid-percentage threshold to determine the hotspots (clusters of
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grid-cells) for each atom type. The threshold is a percentage of the total number of cells in the

grid with negative affinity energy. We clustered the selected cells to generate a pharmacophoric

feature (given by a center, a radius of gyration, an atom type and in some cases a direction). A

pharmacophore was built by combining three features. The pharamcophore set consists of all

possible combinations of triplets of features from different active spaces (i.e., centers of the

affinity grids) together with a volume exclusion term. The Pharmer [45] program was used to

screen the compound library with the created pharmacophore set. An example of the pharma-

cophore mapping is shown in S1 Fig.

Flexi-pharma gives a score to each compound by means of a voting strategy. If a molecule,

from the compounds library, matches any pharmacophore obtained from a specific MD

frame, then the molecule obtains a vote. The total number of votes is used as a score of the

molecule. For more details about the flexi-pharma method see ref. [31].

Molecular docking. The molecular docking was carried out using the programs: Auto-

dock4.2 [44, 46, 47], Vina [48], and Smina [49]. All programs used the same molecule input

format that was AutoDock pdbqt. The protonation state for each molecule was determined

from the compound libraries. Also for these programs, the sampling space was defined using a

grid box of 15 × 15 × 15 Å centered at the oxygen of the amide group of the catalytic residue

ASN125 [50]. The number of requested poses was 50.

Autodock4.2 [44, 46, 47] was used with a grid spacing of 0.25 Å. The search was performed

using the Lamarckian genetic algorithm implemented in Autodock, with a starting population

of 50 individuals, using 25000000 energy evaluations and 27000 generations. The resultant

poses were clustered using the RMSD of the atomic positions, with a tolerance of 2.0 Å, using

the default clustering method. In addition, to the sampling space and the number of poses,

Vina [48] and Smina [49] were used with the default parameters. For Smina, the Vinardo [51]

scoring function was used.

Molecular dynamics simulations. The best pose for each compound from the docking

stage, obtained with the Autodock4.2 program, was used as the initial conformation for the

MD simulation. Since, the output poses from Autodock4.2 do not contain aliphatic protons,

we use Open Babel [52] to protonate those atoms as in the original database (Prestwick or

Maybridge). The PROPKA [53] module from the PDB2PQR software package [54, 55] was

used to determine the protonation state of all ionizable groups at pH 7.0. The final models

were solvated with a dodecahedral water box, centered at the geometric center of the complex.

To neutralize the systems, Na+ ions were added when necessary. The AMBER99SB-ILDN [56]

force field was used to model the protein with the TIP3P water model [57]. The GAFF force

field [58] parameters were obtained for the compounds using Antechamber [58, 59]. ACPYPE

[60] was used to change the topology files from amber to GROMACS [61, 62], which was used

for all the MD simulations. The systems were minimized until the maximum force was� 1000

kJ/mol�nm with the steepest descent algorithm. MD simulations were carried out with periodic

boundary conditions. A spherical cutoff of 1.2 nm for the non-bonded interactions was applied

together with a switch function acting between 1.0 and 1.2 nm. The non-bonded pair list was

updated every 20 steps. The particle mesh Ewald method was used to compute long-range elec-

trostatic force terms, and the leapfrog algorithm to propagate the equations of motion. All

bond lengths and angles involving hydrogen atoms were constrained using the LINCS algo-

rithm [63]. Equilibration consisted of 100 ps of NVT followed by 100 ps of NPT simulation at

310 K, with a time step of 2 fs. During equilibration the coordinates of protein and of ligand

heavy atoms were restrained using a constant force of 100 kJ/mol�nm. Finally, MD simulations

between 5—15 ns were carried out using the GROMACS 5.1.3 program [61, 62] with a time

step of 2 fs, without restraints, in an isothermal-isobaric (NPT) ensemble at 310.15 K and 1

atm.
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Exponential consensus ranking. A consensus methodology was used to combine the

results from different scoring functions both for the docking and MD VS stages. We used an

exponential consensus ranking (ECR) methodology [43]. This method assigns a score pðrjiÞ to

each molecule i for each scoring function j using an exponential function pðrjiÞ ¼ exp � rji
a

� �
=a,

which depends on the rank of the molecule ðrjiÞ given by each individual docking program. α is

the expected value of the exponential distribution, which we have set to 50% of the total mole-

cules at each stage. The final score P(i) is defined as the sum of the exponential functions for all

of the programs, PðiÞ ¼
P

jpðr
j
iÞ ¼

1

a

P
j exp

� rji
a

� �
.

Validation metrics. The enrichment factor (EFx%) is a measure of the change on the

ligand/decoys proportion in a molecular dataset, after filtering it to the x%. EFx% is defined as

the ratio between ligands (Hits) found at a certain threshold (x%) of the best ranked com-

pounds and the number of compounds at that threshold (Nx%) normalized by the ratio

between the hits contained in the entire dataset (Hits100%) and the total number of com-

pounds N100%:

EFx ¼
Hitsx%

Nx%
�

N100%

Hits100%
: ð1Þ

Values of EFx% higher than 1 indicate an enrichment of the compound library.

The enrichment plot (EP) measures the performance of a filtering method at different levels

of a compound library reduction. In an EP, the percentage of ligands found in the top x% of

ranked compounds vs the top x% of filtered compounds is plotted [64].

To asses to the error of the flexi-pharma EPs, a bootstrapping analysis with replacement

was used. The selected MD frames were iteratively re-sampled with replacement 100 times.

Thus, 100 EPs were obtained for each trajectory. From these the average and the error of the

EPs were calculated (similarly as in ref. [31]).

Experimental methods

Chemicals. The selected compounds were acquired from Molport and dissolved in

100% DMSO to prepare stock solutions at 50 mM and 10 mM. According to the manufacter

indications, the purity of the compounds was >95%, and had been determined by high perfor-

mance liquid chromatography (HPLC), thin layer chromatography (TLC), NMR, IR or basic

titration.

Protein purification and quantification. CaFADS was produced as a recombinant pro-

tein in Escherichia coli BL21(DE3) and purified as previously described in ref. [40]. Protein

purity was tested by 15% SDS-PAGE. Protein content in pure samples (in 20 mM PIPES, pH

7.0) was quantified using the theoretical extinction coefficient (�) 279 nm = 27.8 mM−1�cm−1.

Differential scanning fluorescence. Interaction of compounds with CaFADS was evalu-

ated using fluorescence thermal denaturation, on the bases of the shifts in denaturation mid-

points of thermal curves of the protein [65]. Denaturations were performed in a Stratagene

Agilent Mx3005p qPCR instrument (Santa Clara, US) following SYPR Orange (ThermoFisher

Scientific) emission fluorescence (excitation at 492 nm and emission at 610 nm), which greatly

increases when this probe binds to protein hydrophobic regions becoming solvent exposed

upon thermal unfolding. Solutions containing 2 μM CaFADS with the studied compound in

an increasing 5-250 μM concentration range (2% residual final concentration of DMSO) and

5xSYPR Orange in 20 mM PIPES pH 7.0, 10 mM MgCl2, with a 100 μL total volume were dis-

pensed into 96-well microplates (BRAND 96-well plates pure grade™). After an initial 1 min

incubation at 25 ˚C within the equipment, unfolding curves were registered from 25 to 100 ˚C
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at 1 ˚C�min−1. Control experiments with CaFADS samples with/without DMSO were rou-

tinely performed in each microplate. For those compounds shifting midpoint denaturation

temperature, Tm, the dissociation constant, Kd, was predicted by fitting the data to the equation

[66]

DTm
Tm
¼
NRT0

m

DH0

ln 1þ
½L�
Kd

� �

; ð2Þ

which estimates the extent of the ligand-induced protein stabilization/destabilization.

DTm ¼ jTm � T0
mj with T0

m and Tm being the midpoint denaturation temperatures in the

absence and the presence of ligand, respectively, and ΔH0 the unfolding enthalpy of the protein

in the absence of ligand.

Evaluation of the compound’s ability to inhibit the CaFADS enzymatic activity. To

determine the compound’s ability to inhibit the RFK and/or the FMNAT activities of CaFADS,

both enzymatic activities were quantitatively measured in the absence and presence of the

compounds following previously described protocols [41]. Reaction mixtures contained 50

μM ATP, 5 μM RF in 20 mM PIPES, pH 7.0, 0.8 mM MgCl2, when assaying the RFK activity,

and 50 μM ATP, 10 μM FMN in 20 mM PIPES, pH 7.0, 10 mM MgCl2 when measuring the

FMNAT reaction. Each compound was tested at 250 μM (0.5% residual final concentration of

DMSO) for each of the two enzymatic reactions. The samples were pre-incubated at 25 ˚C, the

reaction was then initiated by the addition of� 40 nM CaFADS (final concentration) and

allowed for 1 min. Finally, the reaction was stopped by boiling the samples for 5 min and the

denatured protein was eliminated through centrifugation. The transformation of RF into

FMN and FAD (RFK activity) and of FMN into FAD (FMNAT activity) was evaluated through

flavins separation by HPLC (Waters), as previously described [37]. All the experiments were

performed in triplicate. To evaluate the potency of compounds as inhibitors, we took advan-

tage of the decrease in quantum yield of fluorescence when FMN is transformed into FAD,

which allows to follow such transformation in a continuous system. Measurements were car-

ried out using a microplate reader Synergy HT multimode plate reader (Biotek) with BRAND

96-well plates pure Grade. Reaction mixtures contained 5 μM RF or FMN, and 50 μM ATP in

20 mM PIPES, pH 7.0, 10 mM MgCl2, and the inhibitor compound in a 5-250 μM concentra-

tion range (2% residual final concentration of DMSO). Reactions were initiated through addi-

tion of 0.4 μM CaFADS, being the final reaction volume 100 μL. Flavin fluorescence

(excitation at 440 nm and emission at 530 nm) was registered at 25 ˚C, every 50 s during 15

min. The fluorescence change per time unit (ΔF/Δt) was calculated as the slope of the resulting

fluorescence decays recorded between 0 and 6 min (linear decay of the fluorescence). Controls

which contained the reaction mixture without the enzyme and without any potential CaFADS

inhibitory compound were included in the assay and referred as the 0% and 100% of enzy-

matic activity, respectively. IC50 was calculated as the concentration of compound required for

a 50% inhibition of the enzymatic activity.

Determination of the antibacterial activity of the compounds. The minimum inhibitory

concentration (MIC) of the inhibitors was determined by the resazurin serial broth microdilu-

tion method [67] according to the Clinical and Laboratory Standards Institute guidelines.

Compounds were tested against a panel of bacterial strains including Gram positives, Gram

negatives and acid fast bacteria (see S3 Table). Serial 2-fold dilutions of the inhibitors were per-

formed in cation-adjusted Mueller-Hinton broth (Difco) in 96-well polypropylene flat-bottom

plates, with a final volume of 100 μL per well. Subsequently, liquid cultures of the bacterial

strains in logarithmic phase were adjusted to 106 CFU/ml in Mueller-Hinton broth, and 100

μL of this suspension were added to each well, resulting in a final inoculum of 5�105 CFU/ml.
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Plates were incubated for 18 hours at 37 ˚C. Then, 30 μL of 0.4 mM filter-sterilized resazurin

(Sigma-Aldrich) was added to each well, and results were revealed after 4 h of further incuba-

tion at 37 ˚C. When testing the compounds against mycobacteria, Middlebrook 7H9 (Difco)

supplemented with 10% ADC (0.2% dextrose, 0.5% V fraction BSA and 0.0003% bovine cata-

lase) (BD Difco) and with 0.5% glycerol (Scharlau) was used as culture media, and plates were

incubated 4 days forMycobacterium smegmatis and 7 days forM. tuberculosis. Resazurin

(blue) is an indicator of bacterial growth, since metabolic activity of bacteria reduces it to

resorufin (pink). The minimum inhibitory concentration (MIC) is the lowest concentration of

compound that does not change the resazurin colour from blue to pink.

Evaluation of the cytotoxicity of the compounds in eukaryotic cell lines. The (4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine

the effect of the compounds in cell growth and viability of HeLa (ATCC CCL-2) and A549

(ATCC CCL-185) eukaryotic cell lines. Both cell lines were routinely cultured in high-glucose

DMEM (Lonza) supplemented with 10% fetal bovine serum, 4 mM glutamine GlutaMAX™
(Gibco) and 1x non-essential amino acids (Gibco), under 5% CO2 at 37 ˚C in a humidified

atmosphere. For the MTT assay, cells were initially seeded in 96-well flat-bottom plates at a

density of 104 cells per well and cultured for 24 h. Cultures were routinely tested for myco-

plasma presence. The compounds were dissolved in fresh culture medium, added in a 4-512

μM concentration range (1% DMSO final concentration), and incubated with the cells for 24

h. Finally, formazan crystals were dissolved with pure DMSO and MTT absorbance was mea-

sured at 570 and 650 nm. Untreated cells were included as control of 100% viability. Assays

were done in quadruplicate.

Results and discussion

Virtual screening protocol

The VS protocol aims to find active compounds, from large compound libraries, towards

receptors for which little or no information about ligands or ligand-receptor structures is avail-

able. This is the case of the CaFADS. To achieve this goal, we implemented a funnel-like proto-

col with four filtering stages (Fig 1). It includes three main VS stages plus an experimental

stage. In the following, we present the principal ideas for the integrative VS protocol.

Flexi-Pharma: Pharmacophore filtering from ligand-free receptor conformations.

Pharmacophore-based VS strategies are computationally efficient. These strategies are able to

explore large compound libraries using pharmacophores: an ensemble of physico-chemical

features that ensure the optimal interactions within the active site of a specific biological target

[16]. Therefore, the first stage of the protocol implements a phamacophore-based VS strategy

[31]. The method flexi-pharma defines pharmacophores from ligand-free receptor conforma-

tions from MD simulations. It implements a rank-by-vote strategy, assigning a vote to each

compound that matches an MD conformation. The use of multiple conformations allows for a

better exploration of the pharmacophoric space. The voting strategy enables the filtering of the

molecules at any percentage of the dataset. Details for the flexi-pharma strategy are presented

in the Methods and in ref. [31].

ECR-docking: Exponential consensus ranking of docking VS. The second stage of the

protocol consists of a docking-based VS. Molecular docking aims to find the most favorable

binding conformation of a molecule (i.e., pose) upon binding to a pocket of a protein target

[68, 69], and assigns a docking score to each molecule. The docking score is an empirical or

physics-based estimation of the affinity of the molecule towards the biological target. There-

fore, with molecular docking, it is possible to screen and rank molecules from compound

libraries. However, it has been shown that the docking results might be system or structure

PLOS COMPUTATIONAL BIOLOGY In silico and biological discovery of ligands of FADS, a promising antimicrobial target

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007898 August 14, 2020 7 / 24

https://doi.org/10.1371/journal.pcbi.1007898


dependent [43, 70], possibly due to algorithm-parameterization biases, which are trained over

particular benchmark systems. To overcome this limitation, we use a consensus strategy that

combines the results from different docking programs to obtain a consensus rank using a sum

of exponential functions (ECR method) [43]. Below, in the S1 Text and S2 Fig, we describe

the different docking-scoring alternatives that we used to find the optimal enrichment for the

FMNAT-FADS ligand screening.

MD-ranking VS. MD simulations were used to estimate the compound affinities and the

stability of the predicted complexes filtered from the docking stage. The MD starting configu-

ration was selected from the best pose obtained with Autodock4.2 [44, 46, 47] in the previous

stage. Inspired by conformational-prediction tools that take into account flexibility [71, 72],

we used two measures for the stability and affinity of the ligand bound to the receptor in the

MD ensemble. The first measure generates a consensus rank using multiple scoring functions

Fig 1. Main stages of the funnel-like VS protocol. The protocol consists of four stages: i) flexible pharmacophore-

based VS (flexi-pharma) [31], ii) docking and exponential consensus ranking (ECR-docking) [43], iii) MD simulations

with consensus ranking -that includes a new Morse-based ligand-flexibility score-, and iv) biological experimental

binding and activity assays. At each stage, the compound library was filtered. The protocol was optimized and

validated over a library of 1993 compounds, which was previously tested over CaFADS [41]. On the left, we show an

example of the reduction of this library going from 100% to 0.25% through the successive steps.

https://doi.org/10.1371/journal.pcbi.1007898.g001
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over the MD conformations. We called this scoring function-based rank (see below for

details). The second measure is based on the root mean square deviation (RMSD) of the

ligand’s atomic positions along the MD trajectory. This is used with a Morse potential to define

a score that measures the ligand’s flexibility (see below for details). Finally, the scoring func-

tion-based rank and the Morse-based rank are combined using the ECR method. We use this

analysis to select the percentage of best-ranked molecules for the activities assays. In the fol-

lowing, we describe the scoring function-based rank and the Morse-based rank.

Scoring function-based rank. We used four scoring functions: Autodock4.2 [44, 46, 47],

Vina [48], Vinardo [51] and CY score [73], which were calculated over each MD conforma-

tion. For each scoring function, an average score over all the conformations is calculated for

each molecule. This can then be used to rank the molecules. The ranks from the four scoring

functions are used with the ECR method [43] to obtain a consensus rank by combining their

individual ranks.

Morse-based rank. We used the standard deviation of the RMSD of the ligand’s atomic

positions around the binding site as an indicator of the ligand’s flexibility. Those ligands show-

ing a small standard deviation of the RMSD at the binding site indicate a very rigid complex,

which leads to a conformational penalization. On the other hand, molecules with high RMSD

standard deviation, indicate a dissociation tendency, which leads to an affinity penalization.

These behaviors can be characterized using a Morse potential (Eq 3 and Fig 2)

VMðrÞ ¼ oð1 � exp � aðr� r0ÞÞ2; ð3Þ

where ω is the depth of the well, r0 is the position of the minimum, a ¼
ffiffiffiffi
k

2o

q
and k is a constant

that defines the width of the well. For the Morse-base score, we used VM(r) from Eq 3, where

the dependent variable r is the standard deviation of the RMSD along the MD trajectory, and

r0 is the standard deviation corresponding to a normal distribution with null entropy (i.e., r0 =

0.242 Å). The Morse potential was implemented with a force constant k = 1 kcal/mol.nm2 and

a depth of the well ω = 1 kcal/mol. Thus, RMSD values lower or higher than 0.242 Å are penal-

ized with Morse-based score. We used this to rank the molecules according to the VM(r) score.

We note that most molecules have a RMSD standard deviation greater than 0.242 Å, therefore,

the parameters k and ω used in the score do not have a great impact in the final Morse-based

rank.

VS parameter dependence. Although the presented VS protocol is sufficiently general to

be applied over any receptor target, there are several parameters and setups that can be opti-

mized. Moreover, because -in its complete form- it has not been tested, we considered it

necessary to first validate and optimize the VS protocol over a benchmark library with known

inhibitors of the CaFADS—FMNAT activity [41]. The results are presented in the following

section.

VS protocol FADS validation: Prestwick Chemical Library

To validate and optimize the VS protocol for screening potential ligands of CaFADS, a molec-

ular library (Prestwick Chemical Library) was used. A previous study showed that 39 of its

1993 compounds are able to bind to the CaFADS with FMNAT inhibitory activity [41]. To

study the performance, we measure the enrichment factor (EF) and the enrichment plots (EP)

[64] (see the Methods). In the following, we present the results for each stage of the VS proto-

col applied over the Prestwick Chemical Library.

Flexi-pharma FADS optimization and validation. In Fig 3, we present the EP obtained

after the application of the flexi-pharma stage over the Prestwick compound library. Since the
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flexi-pharma method uses MD conformations of the ligand-free receptor, we used 600 equidis-

tant frames from 60 ns of MD of the ligand-free CaFADS, which was carried out in a previous

study [42]. We applied the flexi-pharma VS as described in the Methods. We find an enrich-

ment of the compound library, showing that the data (black line) are better than a random EP

(red line). The vertical violet line shows the percentage of molecules selected to pass to the next

stage. The selected list of compounds consists of 600 potential ligands (�30% of the initial

compound library) with 24 actual ligands, resulting in a EF of 2.0 for this stage. These results

support the usefulness of flexi-pharma to enrich the Prestwick compound library.

The EPs showed in the Fig 3 involved several parameters, such as the affinity grid threshold

value (i.e., percentage of grid points with lowest grid energies), the active spaces and the num-

ber of features used to define the pharmacophores (see ref. [31]). In that work, it was shown

that the results are almost independent of the affinity-grid threshold. However, a large thresh-

old implies a large number of features, which increases the pharmacophore set and the compu-

tational time to carry out the VS. Therefore, a good computational efficiency is obtained with

small threshold values, while maintaining the performance. For this study, the threshold value

of 0.1% is used. Because of the large size of the FMNAT active site, the pharmacophores were

obtained from 7 active spaces (centered at NE2-H31, NE2-H57, CA-E108, CG-L110,

ND2-N125, OG-S164 and CZ-R168 [50]).

ECR-docking FADS optimization and validation. The second stage of the VS protocol

uses a docking-based strategy. Docking generates an optimal molecule-bound conformation

Fig 2. Morse-based score. A score that uses a Morse potential (Eq 3) was implemented for scoring the flexibility of the

ligand inside the pocket using MD simulations. The input variable is the standard deviation of the RMSD of the

ligand’s atomic positions around the binding site. Ligands that show large RMSD variations are considered very

flexible -with dissociation tendencies (i.e., unstable)- and their behavior is penalized (right of vertical black dashed

arrow). Ligands with small RMSD fluctuations are considered rigid leading to a conformational penalization (left of

black vertical dashed arrow). The Morse potential was implemented with a force constant k = 1 kcal/mol.nm2, a depth

of the well of ω = 1 kcal/mol, and the minimum is localized at r0 = 0.242 Å.

https://doi.org/10.1371/journal.pcbi.1007898.g002
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with a corresponding score. However, some docking-program outcomes depend on the system

of study [43, 70]. Thus, a particular docking software can show good results for a receptor,

however, it can show bad results for other receptors. For an untested receptor it is impossible

to know, in advance, which docking software generates the best outcome. To overcome this

limitation, we implement a modified version of the exponential consensus rank (ECR) strategy

[43] using several docking programs.

The top 600 molecules of the Pretswick library filtered from the flexi-pharma stage were

docked, using several programs, to the FMNAT module using the crystallographic structure

(PDB 2X0K) of CaFADS. After several attempts (see the S1 Text), we found that the best EP

was obtained by using the best pose from Autodock4.2 and re-scoring it with Autodock4.2 [44,

46, 47], Vina [48], Vinardo [51] (a function scoring implemented in Smina [49])) and CYscore

[73] scoring functions. The molecules that did not have the best Autodock4.2 pose within the

FMNAT-FADS active site (less than 5 Å of H31 and N125) [50] were discarded, reducing the

list to 467 molecules (including 23 confirmed inhibitors). The ranks from each scoring func-

tion were combined in using an ECR methodology to obtain a consensus rank. The enrich-

ment plot after this analysis is shown in the Fig 4 and S2 Fig. The top 100 molecules from this

analysis contained 9 confirmed ligands, which represents a global EF% (i.e., the EF% normal-

ized to the initial compound library) of 4.6, showing a clear enrichment.

MD-ranking FADS optimization and validation. MD simulations of potential ligand-

receptor complexes allows for a more accurate sampling of their conformational space. The

Fig 3. Flexi-pharma VS stage over the Pretswick library. Average enrichment plot of the Pretswick library using the

flexi-pharma stage over MD conformations of ligand-free CaFADS. The affinity-grid threshold value is 0.1% and 600

equidistant frames obtained from an MD of 60 ns were used [42]. The flexi-pharma number of votes for each molecule

was used as a score to calculate the EPs. Bootstrapping analysis was performed by sampling with replacement 100 times

to obtain the average EP and its standard deviation. The violet line shows the screening threshold (�30%) for the

selection of molecules to be filtered and passed onto the second stage.

https://doi.org/10.1371/journal.pcbi.1007898.g003
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stability of these conformations should give an estimate of the affinity of the potential ligand

towards the receptor. As mentioned previously, the starting conformation was chosen from

the best docking pose from Autodock4.2 obtained from the previous stage. For the Pretswick

library, we found that by dividing the MD stage into two substages according to the simulation

time (MD-ranking 1 and MD-ranking 2), there is a good trade-off between computational

costs and performance. In the MD-ranking 1, we ran 5 ns for all the compounds filtered from

the docking stage. We used the two measures over the MD conformations, scoring function-

based and Morse-based, to rank of the potential ligands to the CaFADS. The two results were

combined using an ECR to obtain the EPs shown in Fig 5 (black line). Our results indicate that

it is possible to obtain an enrichment of the library compound using MD and combining the

two measures using an ECR methodology. We note that, although the EP from the Morse-base

rank shows better outcome than the EP from the ECR scoring functions-based (ECR-SF) (blue

and green lines, respectively, in Fig 5), the use of both measures is relevant. The logic behind

combining the two stability measures, lies in that the Morse-based rank gives only information

about the conformational stability of the ligand but it does not contain direct information

about any physico-chemical interactions. Whereas the scoring functions, e.g., Autodock4.2 or

Vina, include physics-based interactions which are relevant. Therefore, the scoring functions-

based rank supplies an empirical contribution to the enthalpy and global entropy in the bind-

ing process. Thus, the two strategies should complement each other.

We selected the top 50 molecules to be screened in the MD-ranking 2 stage. For this filtered

set, we extended the MD time to 15 ns for each complex. These new conformations are scored

Fig 4. ECR-docking VS stage over the Pretswick library. Enrichment plot using the ECR (black line) from the best

Autodock4.2 pose that is re-scored with four scoring functions (Autodock4.2, Vina, Vinardo and CYscore). The

shaded area encloses the best and worst behaviors for the individual scoring functions. The enrichment plot is

normalized by the initial database values (39-ligands and 1993 compounds). The violet line shows the threshold for the

selection of molecules for the third VS stage.

https://doi.org/10.1371/journal.pcbi.1007898.g004
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similarly as before (i.e., ECR combined scoring function-based and Morse-based ranking) and

we select the top 5 molecules. The EFs for all the stages of the protocol are shown in Table 1.

These results confirm that all stages of the VS protocol increase the enrichment while saving

computational resources.

VS protocol FADS application: Maybridge database

Once the efficiency of the VS protocol was optimized with the Prestwick library, the protocol

was implemented over the Maybridge compound library that contains 14000 molecules. A

description of the VS protocol for this library is shown in S3 Fig. For the flexi-pharma filtering

we selected 3000 molecules. Then, the best 600 were selected using the ECR-docking stage. For

the second MD-ranking VS stage, we tested the best 300 molecules. In S4 Fig, we present the

Fig 5. MD-ranking 1 VS stage over the Pretswick library. Enrichment plot obtained using an ECR methodology

(black) from the combination of the ECR scoring function-based rank (ECR-SF) (green) and Morse-based rank (blue).

5 ns of MD for 100 complexes were carried out. We used 200 equidistant frames from the last 2 ns of MD simulation.

The enrichment plot is normalized to the initial database (39-ligands and 1993 compounds). The violet line shows the

threshold for the molecule selection for the MD-ranking 2 stage.

https://doi.org/10.1371/journal.pcbi.1007898.g005

Table 1. EFs obtained for each VS stages using the Prestwick library.

Stage Stage EF Global EF Ligands Molecules filtered

Flexi-pharma 2.0 2.0 24 600

ECR-Docking 2.3 4.6 9 100

MD-ranking 1 1.3 6.1 6 50

MD-ranking 2 1.7 10.2 1 5

Stage EF is the enrichment factor relative to the previous step, while the Global EF is the enrichment factor normalized to the initial database (39-ligands and 1993

compounds).

https://doi.org/10.1371/journal.pcbi.1007898.t001
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rank obtained from each individual scoring function in comparison to the ECR, which was

used to select the top 30 molecules. We note that the difference in the screening between the

Maybridge library with respect to the Prestwick library is the percentage of molecules selected

at each step. These numbers were changed to optimize the computational efficiency, since for

just the MD-ranking stages 6 μs of MD simulation time were used.

Experimental evaluation of the affinity and the inhibitory activity of

selected molecules

Considering a range of properties for the 30 best VS-ranked compounds that relate to their

potential drug-likeness, shown in S1 Table [74, 75], as well as their commercial availability, 17

compounds were chosen as virtual screening hits (VSH) to experimentally evaluate their per-

formance. From the experimental assays 5 compounds were found as true ligands of CaFADS.

Table 2 and Fig 6 show the dissociation constant (Kd) values in the range of 1.7—41 μM.

Since binding of small molecules to a protein usually alters its thermal conformational sta-

bility, shifting the midpoint temperatures (Tm) of thermal denaturation curves [65], displace-

ments in Tm induced by the different VSH appeared as a feasible approach to experimentally

identify those binding CaFADS [76]. 5 compounds, out of the 17 selected, produced a dose-

response Tm shift, Δ Tm, indicative of interaction with CaFADS (Fig 6A). Compounds C6 and

C9 increased Tm by more than 3 degrees, indicating binding to the protein. In addition, C3,

C5 and C18 shifted it to lower values (up to 2 and 6 degrees, respectively), suggesting that

they produced a ligand-induced perturbation consistent with binding and destabilization of

CaFADS. Fitting of the corresponding dose-response data to Eq 2 that relates them to the

binding affinity, allowed to estimate the corresponding Kd values (Fig 6B, second column in

Table 2). The data pointed to C5, C9 and C18 as the stronger binders. In addition, postulated

the C5 >C18>C9 >C3 >C6 affinity ranking with Kd values in the 1.7-41 μM range. The pre-

vious results support that compounds C5, C6, C9, C18 and C3 are actual ligands of CaFADS,

highlighting the capacity of the VS protocol to find protein ligands for receptor targets.

As our VS was directed towards the FMNAT active site of CaFADS, we then rated the

power of the 17 VSHs as inhibitors of CaFADS ability to transform FMN into FAD. Hits were

evaluated in terms of concentration of compounds causing 50% enzyme inhibition (IC50), as

Table 2. In vitro performance of VS hits over the FMNAT and RFK+FMNAT CaFADS activities.

Compound Kd (μM)a FMNAT

IC50(μM)b
FMNAT

% Res. act. 250 μM

RFK+FMNAT

IC50(μM)b
RFK+FMNAT

% Res. act. 250 μM

C2 >95 88 ± 2

C3 18 ± 8 238 ± 7 48 ± 3 248 ± 3 48 ± 5

C5 1.7 ± 0.7 53 ± 1 6.0 ± 1.4 83 ± 2 14 ± 1.3

C6 41 ± 3 96 ± 6 48 ± 6 57 ± 3

C7 >95 82 ± 7

C9 6.4 ± 1.2 56 ± 6 76 ± 3

C18 3.0 ± 0.9 143 ± 4 35 ± 4 147 ± 4 35 ± 4

C26 72 ± 6 84 ± 4

The table includes dissociation constant (Kd) for the compounds altering thermal stability of CaFADS, concentration of compound causing 50% enzyme inhibition

(IC50) and residual activity at 250 μM of compound for the FMNAT and RFK+FMNAT activities of CaFADS. Thermal stability and activity experiments were carried

out in 20 mM PIPES, pH 7.0, 10 mM MgCl2. CaFADS activities were assayed at 25 ˚C. All samples contained 2% DMSO. (n = 3, mean± SD).
a Obtained from differential scanning fluorescence data and
b kinetic measurements. For details see the Methods.

https://doi.org/10.1371/journal.pcbi.1007898.t002
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well as of the percentage of remaining activity at the highest compound concentration assayed

(250 μM) (Fig 6C, third and fourth columns in Table 2). 6 out of the 17 VSHs produced some

inhibitory effect on the FMNAT activity. These were compounds C3, C5, C6, C9, C18 and

C26. Among them, C5 and C6 yielded IC50 values below 100 μM, C5 IC50 = 53±1 μM and C6

IC50 = 96±6 μM, with C5 inhibiting over 90% the FMNAT activity of CaFADS at the maximal

compound concentration assayed. The structure of these compounds is shown in S5 Fig.

CaFADS is a bifunctional enzyme that in addition to the FMNAT N-terminal module holds

an RFK C-terminal module that transforms riboflavin (RF) into FMN, producing the substrate

of the FMNAT activity. The presence of this second module was not considered in our VS pro-

tocol, where only the ATP/FMN binding pocket of the FMNAT module was used as the active

site. Nonetheless, since the RFK module also comprises an active site binding adenine and

Fig 6. In vitro assessment of VSHs ability to bind and to inhibit CaFADS. A) Thermal denaturation curve for CaFADS (2 μM)

observed by differential scanning fluorescence and Tm shifts observed in the presence of the compounds at 250 μM. Thermal stability

curves are plotted against the normalized fluorescence signal. Experiments were carried out in 20 mM PIPES, pH 7.0, 10 mM MgCl2,

2% DMSO. B) Dependence of Δ Tm on the VSH concentration and data fit to Eq 2. C) Dose-response curves for the FMNAT activity

of CaFADS in the presence of representative VSHs. Experiments performed at 25 ˚C in 20 mM PIPES, pH 7.0, 10 mM MgCl2, 2%

DMSO, with 5 μM FMN and 50 μM ATP. Values derived from these representations are included in Table 2, such as the IC50 and %

of remaining activity at 250 μM of the VSH. D) Comparison of the effects of the VSHs on the RFK and FMNAT activities of

CaFADS. All the experiments were carried out at 25 ˚C, in 20 mM PIPES pH 7.0, MgCl2 (10 mM when assaying FMNAT activity

and 0.8 mM when assaying RFK activity) at saturating concentrations substrates and in the presence of 250 μM of the VSH (2%

DMSO, final concentration). Compound color code: Protein in the absence of VSH is shown in light gray, C3 is violet, C5 is red, C6

is green, C9 is blue, C12 is black (shown as control, neither binder nor inhibitor) and C18 is orange. Note that not all molecules are

shown in all panels. In panel D, compounds different from the above mentioned are indicated in dark gray and calculated activity

percentages are relative to the corresponding ones in absence of compounds. (n = 3, mean ± SD).

https://doi.org/10.1371/journal.pcbi.1007898.g006
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flavin nucleotides, its RFK activity might also been affected by the VSHs. Therefore, we also

evaluated the ability of CaFADS to transform RF into FMN and subsequently into FAD. Fig

6D, compares the effect of the VSHs on both individual activities of CaFADS, RFK and

FMNAT, showing that, under the assay conditions, the 17 hits produced minor effects on the

RFK activity. In agreement, when evaluating the overall CaFADS activity the effect of the

VSHs follows a similar trend to that when individually evaluating the FMNAT activity.

To assess the effect of VSHs on the growth of different bacteria, we determined their MIC

(Table 3 and S2 Table). Bacterial cells of C. ammoniagenes, Corynebacterium glutamicum,

Corynebacterium diphteriae,M. tuberculosis,M. smegmatis, S. pneumoniae, E. coli, Listeria
monocytogenes, Pseudomonas aeruginosa, Salmonella thyphimurium, Staphylococcus aureus
and Bacillus spp. were grown in the presence of increasing concentrations of the selected

VSHs. Among the VSHs, C2, C5, C6, C18 and C27 produced a detectable inhibition in the

growth of C. ammoniagenes, being C5 (MIC = 32 μM) the compound producing the largest

antibacterial effect followed by C2 (MIC = 64 μM). Interestingly, C5 is also the hit exhibiting

the lowest IC50 for the FMNAT activity of CaFADS (Table 2). The five VSHs exhibiting anti-

bacterial activity against C. ammoniagenes also had activity on the other Corynebacterium spe-

cies analyzed, being particularly relevant the effects of C1 and C5 on C. glutamicum as well as

of C5 and C18 on C. diphteriae. Four of these five compounds, C2, C5, C6 and C27, as well as

C3, had also antibacterial effect in the growth ofMycobaterium species, although they were in

general less potent. In addition, C18 and C27 produced moderate MIC values (64 μM) for L.
monocytogenes growth, C6 for S. pneumoniae, and C27 for S. aureus. It is also worth to note

the inhibition of Baccillus spp. growth caused by C5 and C27 (MIC = 32 μM).

In general, we observed that the VSHs showing inhibitory activity against CaFADS also

inhibit the growing of Corynebacterium species. Thus, we can hypothesize that the growing

inhibition effect should be caused by the CaFADS inhibition. In addition, those VSHs also

inhibit the growing of the Mycobacterium species, supporting CaFADS as a representative

model of the FADS ofM. tuberculosis. The fact that the compounds identified through VS

have demonstrated some antimicrobial activity is an important result, even when this antimi-

crobial activity is moderate; historically, potential enzyme inhibitors identified through in sil-
ico or in vitro protein-binding assays are mostly devoted of any antimicrobial activity, due to

their inability to cross the high permeability barrier posed by the bacterial envelope [77].

Finally, we evaluated for the effect of VSHs on eukaryotic cell growth and viability. Com-

pounds C2, C5 and C6 were not cytotoxic in HeLa and A549 cell lines, with IC50 (concentra-

tion of compounds causing the 50% inhibition of the cellular viability) above the maximal

concentration evaluated (512 μM). In contrast, C18 and C27 showed moderate cytotoxicity in

both cell lines but only in the 256-512 μM range, with complete viability being retained at

Table 3. In vivo performance of VS hits.

Compound MIC (μM)

C. ammoniagenes
MIC (μM)

M. tuberculosis

C2 128 256

C3 >256 256

C5 32 128

C6 128 128

C27 128 256

VSHs which minimal inhibitory concentration (MIC) against C. ammoniagenes and M. tuberculosis is lower than 256

μM.

https://doi.org/10.1371/journal.pcbi.1007898.t003
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lower concentrations. Thus, the compounds do not show high cytotoxic effects against eukary-

otic cells, highlighting their potential use against prokaryotic pathogens.

Binding pocket VSHs interactions

Fig 7 shows the main interactions between the VSHs (from Table 2) and CaFADS. According

to the simulations, most hits interact with the ATP binding site (C2, C3, C5, C6, C7 and C9).

Only two compounds (C18 and C26) interact with the binding site of both natural substrates

(ATP and FMN). Detailed interactions between the VSHs and the CaFADS are represented in

S6 Fig. A global view of the VSHs inside the binding pocket is shown in S7 Fig. It is worth to

note that all the ligands show direct interactions with key residues in the FMAT binding

pocket. Compounds C2, C3, C5, C6, C7, C9 and C18 interact with N125, which is considered

the key catalytic residue for the FMNAT activity. In addition, all compounds show direct inter-

actions with highly conserved residues, particularly those responsible for the stabilization of

the phosphates of the ATP (H28, H31, H57, S164 and R168).

Conclusion

We developed a VS protocol that is able to find ligands of an enzyme which does not require

previous knowledge of ligands or ligand-receptor structures. The protocol is computationally

efficient allowing for the screening of large compound libraries with moderate computational

resources. The protocol was implemented over CaFADS, an enzyme that is considered a good

model for FADSs of bacterial species that cause tuberculosis and pneumonia [40, 41].

The VS protocol involves a funnel-like strategy with filtering stages that increase in accu-

racy. In the first stage, we used the flexi-pharma method [31], a pharmacophore filtering

strategy with ligand-free receptor conformations from MD. In the second stage, we used a con-

sensus docking strategy to combine the results from different docking programs using the

exponential consensus ranking (ECR) method [43]. In the third stage of MD-ranking, we

Fig 7. Docking poses showing the main interactions of the VSHs and CaFADS. These were obtained with Autodock4.2 and were used as the starting

conformation for the MD stage.

https://doi.org/10.1371/journal.pcbi.1007898.g007
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developed a new score for the ligand’s flexibility using a Morse potential. This score is com-

bined with other scoring functions using the ECR method over the MD ensemble.

The protocol was optimized and validated over an experimentally-tested compound library

with known ligands of the CaFADS. We implemented the VS strategy over a unexplored com-

pound library, resulting in a list of 17 compounds that were tested experimentally. Notably, we

discovered five compounds able to bind to the CaFADS. One of these compounds shows sig-

nificant inhibition of the FMNAT activity of CaFADS. In comparison to previous work [41],

the computational protocol gives an enrichment of around 8 for the experimental stage. In

addition, some of the new compounds show growth inhibitory activity against Corynebacte-
rium,Mycobacterium or Streptococcus species, supporting the use of the integrative VS proto-

col for the initial stages of drug discovery.

Although our final results show a good experimental enrichment, we note that the generali-

zation of the entire protocol (shown in Fig 1) is still to be optimized, and validated for multiple

systems with diverse active sites.

Supporting information

S1 Fig. Example of the Flexi-pharma pharmacophore mapping. The green, red and gray

spheres represent hydrogen-bond acceptor, negatively charged and aromatic features, respec-

tively.

(TIF)

S2 Fig. Enrichment plot for the different ECR-docking strategies. The violet line shows the

EP from ECR combination of Autodock4.2, Vina and Smina docking results using the best

pose from each program (as was done in ref. [43]). We also studied the outcome when using

the best pose for each molecule from the different programs: from Autodock4.2 (black), Vina

(green) and Smina (blue), then re-scored it with Autodock4.2, Vina, Vinardo and CYscore,

and these new scores were combined using an ECR methodology. We find that using the

Autodock4.2 pose and re-scoring it with the other programs produces the best outcome.

(TIF)

S3 Fig. Funnel-like protocol implemented for the Maybridge compound library. The

number of filtered molecules is shown on the left. The computational protocol has several

stages: first, a pharmacophore-based VS (flexi-pharma), then ECR-Docking, afterwards two

MD stages (that depended on the simulation time) were used for ranking the compounds

with a Morse-based score and an ECR combination of scoring functions. In the physico-

chemical stage, we assessed a range of properties for the 30 best VS-ranked compounds that

relate to their potential drug-likeness (S1 Table), as well as their commercial availability,

selecting 17 compounds for the experimental assays. 5 compounds were found to be ligands

of CaFADS.

(TIF)

S4 Fig. Ranks for the individual scoring functions and the ECR method for the MD-rank-

ing stage 2 using 300 molecules filtered from the Maybridge compound library. The best

ranked molecules by the ECR are also well ranked for the majority of the programs but not

necessarily for all. The top 30 molecules given by the ECR are selected for the following stage.

(TIF)

S5 Fig. Structure of the active VSHs towards CaFADS or the organisms tested. C3, C5, C6,

C9 and C18 are able to bind to CaFADS. C3, C5, C6 and C18 cause 50% of FMNAT activity

inhibition (IC50) at concentration lower than 250 μM. C3, C5 and C18 cause 50% RFK-
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FMNAT activity inhibition (IC50 at concentration lower than 250 μM. C3, C5, C6, C9, C18

and C26 have FMNAT residual activity < 95% at 250 μM of compound. C2, C3, C5, C6, C7,

C9, C18 and C26 have RFK+FMNAT residual activity < 95% at 250 μM of compound. C2, C5,

C6 and C27 have MIC values lower than 256 μM against C. ammoniagenes, and or C2, C3, C5,

C6 and C27Mycobacteriumspecies.

(TIF)

S6 Fig. 2D representation of interactions between VSHs and CaFADS found in the docking

stage. The Autodock pose obtained in the docking stage was used to observe the interactions

with CaFADS. Compounds C2, C3, C5, C6, C7 and C9 interact with the ATP binding site

and compounds C18 and C26 show interactions with the binding site of both ATP and FMN.

Almost all compounds interact with key residues in the binding pocket: H28, H31, H57, N125,

S164 and R168.

(TIF)

S7 Fig. Global view of the CaFADS receptor with VSHs. A global view of the receptor struc-

ture with the superposition of the Autodock poses of the VSHs compounds. The docked com-

pounds cover a wide range of the receptor binding pocket.

(TIF)

S1 Text. Description of the different ECR-docking FADS optimization strategies.

(PDF)

S1 Table. Summary of properties for the CaFADS best ranked VS compounds. The table

shows the VS rank, the Zinc and Maybridge Codes, the names and summary of physico-chem-

ical criteria (values at pH 7.0) to evaluate their potential drug-likeness. Preferred criteria values

are indicated on the top in green. Favorable criteria for each compound are highlighted in a

green background, those in the limit are in a yellow background and those violating the criteria

are in a red background. Compounds selected for experimental evaluation as virtual screening

hits (VSH) are highlighted in red font in the first four columns.

(PDF)

S2 Table. Minimal Inhibitory Concentration (MIC) of VSHs against different microorgan-

isms. Compounds were, in most cases, assayed in the 0-256 μM concentration range. In some

cases, they were assayed only in the 0-64 μM concentration range, and if no effect was observed

in these cases> 64 is shown. Best performing compounds are colored from red, orange, yellow

to green.

(PDF)

S3 Table. Bacterial strains tested for VSH antibacterial activity.

(PDF)
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Aı́nsa, Milagros Medina, Pilar Cossio.

Visualization: Isaias Lans, Ernesto Anoz-Carbonell, Karen Palacio-Rodrı́guez.

Writing – original draft: Isaias Lans, Ernesto Anoz-Carbonell, Karen Palacio-Rodrı́guez, José
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