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Abstract: Herein, we describe pH and magnetism dual-responsive liquid paraffin-in-water Pickering
emulsion stabilized by dynamic covalent Fe3O4 (DC-Fe3O4) nanoparticles. On one hand, the Pick-
erinfigureg emulsions are sensitive to pH variations, and efficient demulsification can be achieved
by regulating the pH between 10 and 2 within 30 min. The dynamic imine bond in DC-Fe3O4 can
be reversibly formed and decomposed, resulting in a pH-controlled amphiphilicity. The Pickering
emulsion can be reversibly switched between stable and unstable states by pH at least three times.
On the other hand, the magnetic Fe3O4 core of DC-Fe3O4 allowed rapid separation of the oil droplets
from Pickering emulsions under an external magnetic field within 40 s, which was a good extraction
system for purifying the aqueous solution contaminated by rhodamine B. The dual responsiveness
enables Pickering emulsions to have better control of their stability and to be applied more broadly.

Keywords: Pickering emulsion; dynamic covalent bond; pH-responsive; magnetism-responsive;
extraction efficiency

1. Introduction

Pickering emulsions, which were stabilized by solid particles, have gained much
attention thanks to the low toxicity and long-term stability [1,2]. The outstanding stability
of Pickering emulsions is required in the field of cosmetic formulations, food storage, and
so on [3]. However, in some fields like heterogeneous catalysis [4,5], emulsion polymer-
ization [6], and oil transportation and recovery [7–9], temporary stabilization is required.
Chemical or physical methods are used in the industry to achieve demulsification, which
are often energy-intensive or require extra complex additives, leading to increased eco-
nomic and environmental costs [10,11]. Thus, stimuli-responsive Pickering emulsions
are desired in the above applications because the stability of the emulsions can be easily
controlled by external stimuli [12].

Recently, stimuli-responsive Pickering emulsions have received much attention [13–17].
So far, the stimuli of the Pickering emulsions include pH [18–20], magnetism [21–23],
CO2 [24], temperature [25], light irradiation [26], redox state [27], specific ion concentra-
tion [28], and so on. Under outside stimuli, stable Pickering emulsions can be phase sepa-
rated because of the inactivation of the stabilizer. There is merit in combining two stimuli to
widen the controllable range or improve the degree of precision [16]. Pickering emulsions
responding to dual triggers such as temperature–pH [29], CO2–temperature [16], CO2–
magnetism [14,30], and redox–magnetism [9] have been investigated. For CO2-stimulated
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systems, a long time and high ventilation are needed [31]. Light-stimulated systems are
difficult to achieve because of the cloudy appearance of the Pickering emulsions [32].
Temperature-stimulated systems are energy-demanding [31]. Among these stimuli, pH is
readily implementable and magnetism is non-invasive and reversible [2,7,10,32,33]. There-
fore, pH and magnetism dual-responsive Pickering emulsions have promising applications.

Magnetism-responsive Pickering emulsions have received considerable attention be-
cause of their application as extractors for dye molecules, such as Rhodamine B, methylene
blue, and Nile blue [9]. Yang et al. [34] prepared a kind of magnetism-responsive Pickering
emulsion using amphiphilic Fe3O4 particles as a stabilizer, which could be used as an extrac-
tor to remove methyl orange from the aqueous solution. Therefore, magnetism-responsive
Pickering emulsion can be an attractive tool to remove dye molecules in water.

In the present study, dynamic covalent Fe3O4 (DC-Fe3O4) was prepared through pH
sensitive dynamic imine bond (DIB) formation between amino-Fe3O4 (Fe3O4-NH2) and
benzaldehyde. The amphiphilicity of DC-Fe3O4 nanoparticles could be modulated by
pH because of the pH-responsiveness of DIB. The prepared amphiphilic DC-Fe3O4 could
achieve effective emulsification of the oil phase at pH 10, while the following demulsifica-
tion process could be completed by decreasing the pH from 10 to 2. Moreover, the droplets
move in the direction of the magnet. The magnetism-responsive Pickering emulsion could
be used as an extractor to adsorb Rhodamine B (RhB) from aqueous solution at least three
times. This novel pH and magnetism dual-responsive Pickering emulsion has potential
applications in oil recovery, emulsion polymerization, and dye extraction.

2. Experimental
2.1. Materials

Iron sulfate heptahydrate (FeSO4·7H2O, AR), ferric chloride (FeCl3, AR), sodium
hydroxide (NaOH, AR), (3-aminopropyl) triethoxysilane (APTES, 98%), Nile red (≥95.0%),
and Rhodamine B (RhB, AR) were obtained from Aladdin Reagents of China. Benzaldehyde
(AR), liquid paraffin (AR), and hydrogen chloride (36.5 wt%) were supplied by Sinopharm
Chemical Reagent Co. Ltd., Shanghai, China. All of the chemicals were used as received
without any further purification.

2.2. Synthesis of DC-Fe3O4 Nanoparticles

Fe3O4 was synthesized using the co-precipitation method [35]. FeSO4 solution with
a concentration of 0.5 M and FeCl3 solution with a concentration of 1 M were prepared
using 0.2 M HCl (aq), respectively, as solvent. During preparation, 400 mL of 1.5 M NaOH
(aq) was poured into the three flasks and heated to 82 ◦C, and then the mixture of FeSO4
solution (40 mL, 0.5 M) and FeCl3 solution (40 mL, 1 M) was added to the three flasks
dropwise within 30 min under the atmosphere of N2 at 82 ◦C. As soon as the mixture
turned to black, it was allowed to cool down to 25 ◦C under mechanical stirring. Then,
the resultant black nanoparticles were washed with ethanol four times with the help of a
magnet. The obtained product Fe3O4 nanoparticles were dried under a vacuum for 16 h.

The amino modified Fe3O4 (Fe3O4-NH2) nanoparticles were obtained by surface
silanization of Fe3O4 nanoparticles (Figure 1a). In detail, 0.5 mL APTES and 0.95 g Fe3O4
were added into 25 mL ethanol at 25 ◦C. After stirring for 24 h, the obtained Fe3O4-NH2
was washed with ethanol four times with the help of a magnet and then dried under
vacuum for 16 h.

To prepare dynamic covalent Fe3O4 (DC-Fe3O4), Fe3O4-NH2 (1.0 g) and benzaldehyde
were mixed in methanol (20 mL) under mechanical stirring for 1 h; the molar ratio of -NH2
and -CHO was 1. A schematic illustration of the synthesis of DC-Fe3O4 is presented in
Figure 1b. The product was collected and then washed with ethanol four times with the
help of a magnet. The product DC-Fe3O4 nanoparticles were dried under vacuum for 16 h.
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Figure 1. Schematic illustration of the synthesis of Fe3O4-NH2 (a) and DC-Fe3O4 (b).

2.3. Preparation of Pickering Emulsions

For Pickering emulsions’ preparation, water, DC-Fe3O4 nanoparticles, and liquid
paraffin were placed into a glass bottle. The concentration of DC-Fe3O4 varied from 0.1 to
2.0 wt%. The water and liquid paraffin were in an equal volume ratio. Then, the mixture
was homogenized using a JY88-IIN sonicator with a 6 mm probe at 50 W twelve times
(5 s, 5 s off) to obtain Pickering emulsions. The Pickering emulsions were kept at room
temperature for 1 month to observe the storage stability.

2.4. Characterization of DC-Fe3O4 Nanoparticles

DC-Fe3O4 nanoparticles were dispersed in water at a concentration of 0.05 wt%.
Approximately 20 µL of the above DC-Fe3O4 dispersion was loaded onto a copper grid.
The DC-Fe3O4 sample was allowed to dry and imaged using a transmission electron
microscope (Hitachi HT7700).

The composition of the Fe3O4, Fe3O4-NH2, and DC-Fe3O4 was investigated by FTIR
spectrometer (Bruker Optics, Germany). The morphology of DC-Fe3O4 was characterized
using TEM (Hitachi HT7700). For solid/air/water three-phase contact angle measurement,
samples of the Fe3O4, Fe3O4-NH2, and DC-Fe3O4 were compressed into films.

For three-phase (solid/air/water) contact angle measurements, samples of the Fe3O4,
Fe3O4-NH2, and DC-Fe3O4 nanoparticles were compressed into films using a table press
(Shimadzu Press). The contact angle was measured using the contact angle goniometer
(DataPhysics Instruments GmbH, Filderstadt, Germany). The contact angle was recorded
by placing a droplet of water with a volume of 3.0 µL onto the film in the air. When the
water was in contact with the film, the image of the morphology of the water droplet on
the film surface was recorded and later analyzed by the software Photoshop to obtain the
contact angle.

2.5. Characterization of Pickering Emulsions

To conform the emulsion type, liquid paraffin was stained with Nile red. The Pickering
emulsion droplets were detected with a confocal fluorescence microscope (Carl Zeiss,
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Oberkochen, Germany). The micrographs of the Pickering emulsions were observed with
an A1Pol optical microscope (ZEISS, Oberkochen, Germany).

2.6. pH Modulation of Pickering Emulsion

The pH modulation (between pH 10 and 2) of the Pickering emulsion was achieved
by alternately adding 1 M HCl or 1 M NaOH, followed by stirring for 30 s and standing for
30 min.

2.7. Magnetic Modulation of Pickering Emulsion

The magnetism-responsive character of the Pickering emulsion was carried out by
applying an NdFeB permanent magnet (Jiangsu Lingxi Magnetic Industry Co., Suzhou,
China) with a size of 60 × 40 × 5 mm.

2.8. Extraction of RhB from the Aqueous Solution

The RhB-polluted aqueous solution (4 mg/L) was prepared by dissolving RhB in
water. Pickering emulsion (1 mL) was added to RhB-polluted aqueous solution (5 mL) to
extract RhB. After standing for 20 min, the purified water was separated over a magnet
and poured out. Prior to and after extraction, the concentration of RhB was determined
using a UV/Vis spectrophotometer at 553 nm. According to the following equation, the
extraction efficiency (E) can be calculated:

E =
C0−Ce

C0
(1)

where C0 (mg/L) and Ce (mg/L) are the concentrations of RhB aqueous solution before
and after extraction, respectively. In addition, Pickering emulsion could be obtained again
by washing with water, and the extraction process could be repeated at least three times.

3. Results and Discussion
3.1. Characterization of Dynamic Covalent Fe3O4

The preparation of DC-Fe3O4 nanoparticles through DIB formation between amino-
Fe3O4 (Fe3O4-NH2) and benzaldehyde is presented in Figure 1. FTIR was performed to
prove the successful fabrication of DC-Fe3O4 nanoparticles. As shown in Figure 2, the bond
at 580 cm−1 in the Fe3O4 FTIR spectra was the characteristic peak of the Fe-O functional
groups. Just like the peak presented in Fe3O4, the Fe-O absorption peak (580 cm−1) also
appears in the spectra of Fe3O4-NH2 and DC-Fe3O4, suggesting the presence of Fe3O4 in
Fe3O4-NH2 and DC-Fe3O4. The FTIR spectrum of Fe3O4-NH2 shows sp3 C-H asymmetric
and symmetric stretching vibration at 2974 and 2900 cm−1, respectively, demonstrating the
presence of aminopropyl groups in Fe3O4-NH2. For DC-Fe3O4, the presence of aromatic
stretching vibrations at 3134, 1624, and 633 cm−1, as well as the imine bond (C=N) stretching
vibration at 1645 cm−1, confirmed the formation of DC-Fe3O4 between Fe3O4-NH2 and
benzaldehyde via DIB. The morphology DC-Fe3O4 nanoparticles were characterized by
TEM (Figure S1). The TEM image shows that the DC-Fe3O4 nanoparticles have a nearly
spherical shape with a mean diameter of about 17 nm. The DC-Fe3O4 nanoparticles exhibit
an instant magnetic response to the external magnetic field and can be separated completely
from their liquid dispersions within 30 min. When the magnetic field is removed, the DC-
Fe3O4 nanoparticles can be dispersed again by shaking.
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Figure 2. FTIR spectra of Fe3O4, Fe3O4-NH2, and DC-Fe3O4 nanoparticles.

The stabilization of two immiscible phases was related to the wettability of particles
at their interface, which was measured by contact angle [36–38]. Therefore, contact angle
measurement was carried out for Fe3O4, Fe3O4-NH2, and DC-Fe3O4, respectively. Fe3O4
was found to have a contact angle of roughly 17◦ (Figure 3a), which was too hydrophilic for
stabilizing Pickering emulsions; a similar result was reported by Sun et al. [9]. When Fe3O4
nanoparticles were modified by APTES, Fe3O4-NH2 nanoparticles also exhibit a hydrophilic
character with a contact angle of about 25◦ (Figure 3b), which was also too hydrophilic for
stabilizing Pickering emulsions. By modifying Fe3O4-NH2 nanoparticles with relatively
hydrophobic benzaldehyde through DIB formation, the contact angle of modified Fe3O4
nanoparticles (DC-Fe3O4) increased to about 48◦ (Figure 3c). The improved amphiphilicity
of DC-Fe3O4 is desirable to the formation of stable Pickering emulsions. It is well-known
that the particle contact angle determines the type of Pickering emulsion [39,40]. If the
contact angle of particles is less than 90◦, they are located preferentially in the water phase,
and the resulting curvature favors O/W Pickering emulsions. In contrast, if the contact
angle exceeds 90◦, the particles will reside primarily in the oil phase, which will lead to
W/O Pickering emulsions [41]. Hence, amphiphilic DC-Fe3O4 nanoparticles with a contact
angle of about 48◦ are expected to prepare O/W Pickering emulsions.
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The amphiphilicity of DC-Fe3O4 can be further proved by the dispersion behavior of
DC-Fe3O4 on the liquid paraffin–water two phases. The DC-Fe3O4 nanoparticles straddle
on the liquid paraffin–water interface instead of the aqueous phase even after shaking
(Figures S2 and 4a), indicating the amphipathic nature of the DC-Fe3O4 nanoparticles,
consistent with the contact angle measurement.
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3.2. Preparation of Pickering Emulsions Stabilized by DC-Fe3O4 Nanoparticles

The liquid paraffin-in-water Pickering emulsion could not be stabilized by Fe3O4
or Fe3O4-NH2 alone for 30 min at the particle concentration of 1.0 wt% (a rather high
concentration in Pickering emulsion preparation, Figure S3). The reason that Fe3O4 or
Fe3O4-NH2 nanoparticles could not be used as the Pickering emulsifier might be attributed
to the high hydrophilicity of Fe3O4 and Fe3O4-NH2, as proven by the result of the contact
angle (Figure 3).

Based on the discussion of the contact angle, we presume that the amphiphilic DC-
Fe3O4 nanoparticles with a contact angle of about 48◦ are anticipated to prepare O/W
Pickering emulsions. The ability of DC-Fe3O4 nanoparticles to stabilize the Pickering
emulsions was investigated; the preparation process of Pickering emulsions is presented
in Figure 4. In the control experiment, we have proved that no emulsion was prepared
without DC-Fe3O4 nanoparticles (Figure S4). With 0.1 wt% DC-Fe3O4 nanoparticles, no
homogeneous Pickering emulsion could be prepared because of insufficient DC-Fe3O4
nanoparticles on the oil–water interface (Figure 5). Satisfactorily, when the DC-Fe3O4
nanoparticle concentrations were equal to or exceeding 0.25 wt%, stable Pickering emul-
sions were prepared (Figure 5), which might due to the effective adsorption of amphiphilic
DC-Fe3O4 nanoparticles at the liquid paraffin–water interface (Figure 4b). The CLSM
measurement shows that the labeled liquid paraffin is surrounded by the unlabeled water
(Figure 6), indicating that O/W Pickering emulsion was formed.

The morphology of Pickering emulsions was observed by optical microscopy
(Figure 7a–e). As shown in Figure 7a–e, small and spherical droplets were observed.
According to the statistic, droplets became smaller with increasing DC-Fe3O4 nanoparticle
concentrations: the mean droplet sizes of Pickering emulsions with a DC-Fe3O4 nanoparti-
cle concentration of 0.25, 0.5, 1.0, 1.5, and 2.0 wt% were 107, 22, 18, 13, and 8 µm, respectively
(Figure 7f). This was because more particles were able to stabilize larger interfaces at a
constant oil–water ratio, which is a common feature for Pickering emulsions [10,17]. In this
study, it was found that the size of Pickering emulsion droplets can be easily adjusted by
choosing a suitable DC-Fe3O4 nanoparticle concentration.
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Figure 7. Optical microscopes of the oil-in-water Pickering emulsions stabilized by DC-Fe3O4

nanoparticles at different concentrations with an equal volume of liquid paraffin and water. From
(a–e), the DC-Fe3O4 concentration is 0.25, 0.5, 1.0, 1.5, and 2.0 wt%, respectively. The images were
taken at 24 h preparation. (f) Droplet size distribution of Pickering emulsion stabilized DC-Fe3O4

nanoparticles at different concentrations. The liquid paraffin and water were in an equal volume ratio.

The Pickering emulsions showed almost no change in appearance after one month
of storage, and no clear oil phase could be observed (Figure 5a,b), indicating the high
stability of Pickering emulsions. Meanwhile, even after 1 month of storage, the droplet
size of the Pickering emulsions remained nearly unchanged (Figure 8), further confirming
their long-term stability. It was found that Pickering emulsions were stable for a long time
because of the irreversible adsorption of DC-Fe3O4 nanoparticles at the O/W interface.
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3.3. pH-Responsive Behavior of the Pickering Emulsions

On the basis of the above discussions, we can conclude that stable Pickering emulsions
were obtained using the amphiphilic DC-Fe3O4 nanoparticles as a stabilizer. Considering
the dynamic character of DIB to pH [42–46], the amphiphilicity of DC-Fe3O4 nanoparticles
may be changed by transforming pH. To verify this, contact angle measurement for the
DC-Fe3O4 film with acidic water (pH 2) was conducted. The contact angle of the DC-Fe3O4
nanoparticle film decreased from about 48◦ to about 25◦ after adding water droplets with a
pH of 2 (Figure S5), indicating the dissociation of amphiphilicity DC-Fe3O4 into hydrophilic
Fe3O4-NH2 and benzaldehyde in the acidic environment. That is to say, the amphiphilicity
of DC-Fe3O4 nanoparticles could be changed by changing the pH.

In light of the change in amphiphilicity of DC-Fe3O4 nanoparticles when the pH is
changed, we speculated that the pH could be used to adjust the stability of the obtained
Pickering emulsions. To validate this hypothesis, liquid paraffin-in-water Pickering emul-
sion stabilized by 1.0 wt% DC-Fe3O4 nanoparticles was used as the representative sample.
At pH 10, DC-Fe3O4 nanoparticles can be used as a stabilizer to prepare O/W Picker-
ing emulsions because of the effective adsorption of amphiphilic DC-Fe3O4 at the liquid
paraffin–water interface (Figure 9a and Scheme 1a). By decreasing the pH from 10 to 2,
complete phase separation was achieved within 30 min (Figure 9b and Scheme 1b). At pH 2,
the amphiphilic DC-Fe3O4 nanoparticles decomposed into hydrophilic Fe3O4-NH2 and
inactive benzaldehyde, both of which were desorbed from the oil–water interface, causing
demulsification (Figure 9b and Scheme 1b). The hydrophilic Fe3O4-NH2 nanoparticles par-
ticipated in the aqueous phase (Scheme 1b). Additionally, benzaldehyde is surface-inactive
and cannot stabilize emulsions effectively, as reported by our previous study [17]. We
estimate that about 53% of the benzaldehyde migrates into the liquid paraffin phase based
on the UV/Vis results (Scheme 1b). Moreover, after increasing the pH from 2 to 10, stable
Pickering emulsion was reformed after re-sonication because of the re-formation of am-
phiphilic DC-Fe3O4 nanoparticles through DBI formation between hydrophilic Fe3O4-NH2
and surface inactive benzaldehyde (Figure 9a and Scheme 1a). Furthermore, pH-induced
reversible emulsification and demulsification can be repeated up to three times without
loss of efficacy (Figure 9a,b and Scheme 1a,b). Additionally, after three emulsification and
demulsification cycles, the size of a newly formed Pickering emulsion shows a negligible
increase compared with the original Pickering emulsion (13.1 µm vs. 13.5 µm, Figure S6).
Emulsification and demulsification of the Pickering emulsion are determined by the pH
responsiveness of the imine bond.
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3.4. Magnetism-Responsive Behavior of the Pickering Emulsions

According to the reports, Pickering emulsion droplets stabilized by Fe3O4 nanoparti-
cles can move in the direction of a magnet, or even coalesce when subjected to magnetic
fields [9,23]. Upon exposure to a magnet, the DC-Fe3O4-coated Pickering emulsion droplets
showed an instantaneous response with unidirectional movement toward the magnet, as
demonstrated in Figure 9c and Scheme 1c, which was attributed to the superparamagnetic
property of DC-Fe3O4 (magnetic saturation value, 43 emu/g). The time needed to remove
all of the droplets was 40 s.

Magnetism-responsive Pickering emulsions have been widely used in extracting
organic pollutants from aqueous solutions [9,34]. Here, we discuss the possibility of using
the magnetism-responsive Pickering emulsion to extract a pollutant. The pink color could
be seen in photos of the RhB solution (Figure S7a). Nonetheless, the pink color in RhB
aqueous solution nearly disappeared after Pickering emulsion was added for 20 min,
which suggested that RhB molecules were efficiently removed from the aqueous solution
(Figure S7d). Based on the standard curve for RhB solution (Figure S8), the extraction
efficiency for RhB adsorption was 97.5% (Figure S9). A similar adsorption experiment
was conducted using only DC-Fe3O4 nanoparticle aqueous dispersion or liquid paraffin
as an adsorbent in order to explore the adsorption mechanism. After adding DC-Fe3O4
nanoparticle aqueous dispersion or liquid paraffin into RhB aqueous solution for 1 h,
the pink color did not disappear (Figure S7b,c). Compared with DC-Fe3O4 nanoparticle
aqueous solution or liquid paraffin, Pickering emulsions have a higher specific surface area.
Therefore, the high specific surface area of Pickering emulsions played an important role
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in the adsorption of RhB from the water phase into the oil–water interface. Besides, by
replacing DC-Fe3O4 with conventional surfactant sodium lauryl polyoxyethylene ether
sulfate (AES) without a phenyl ring, the pink color did not disappear either, indicating
that the AES-stabilized emulsion cannot be used to adsorb the RhB from the aqueous
solution (Figure S7e). The results demonstrate that the π–π stacking between benzene in
RhB and phenyl ring in DC-Fe3O4 also played important roles for the adsorption of RhB
into the oil–water interface. Pickering emulsions have good magnetic responsiveness and
high stability, so emulsion droplets adsorbed by RhB can be regenerated upon washing
and used to extract RhB again. Even after three times, the extraction efficiency was still
above 78%. During extraction, the efficiency of the extraction decreased owing to the
adsorption of residual RhB molecules at the droplet interface, which were difficult to
remove. Pickering emulsions can potentially serve as extraction systems for dye molecules
(such as RhB) because of their high efficiency through simple, yet rapid magnetic separation.
Furthermore, the Pickering emulsions could be reused for extraction by washing. This
simple magnetic separation method broadens the application of magnetism-responsive
Pickering emulsions.

4. Conclusions

To summarize, this work has developed a dual-responsive oil-in-water Pickering
emulsion prepared using dynamic covalent Fe3O4 (DC-Fe3O4) as a stabilizer. At pH 10,
the hydrophobic functionalization with benzaldehyde through dynamic imine bond (DIB)
allowed DC-Fe3O4 nanoparticles to reach the oil–water interface, forming stable Pickering
emulsions. By reducing the pH from 10 to 2, DBI is decomposed so that amphiphilic
DC-Fe3O4 breaks into highly hydrophilic Fe3O4-NH2 and surface-inactive benzaldehyde,
resulting in a phase separation of the Pickering emulsion. Besides, Pickering emulsion
stabilized by DC-Fe3O4 nanoparticles was also magnetically responsive. The magnetism-
responsive Pickering emulsion could be used for the extraction of RhB-polluted aqueous
solutions with a high extraction efficiency, and Pickering emulsion droplets can be used
for extraction at least three times after washing, thanks to their magnetic responsiveness
and the high stability of Pickering emulsion. The feasible and unique dual-responsiveness
enrich the intelligent control of Pickering emulsions’ stability and broaden the applications
of Pickering emulsion in field wastewater treatments.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nano12152587/s1, Figure S1. TEM image of DC-Fe3O4, Figure S2.
Photograph of DC-Fe3O4 nanoparticles partitioning at oil-water interface. The aqueous phase
was stained with RbB, Figure S3. Photographs of liquid paraffin in water Pickering emulsions
stabilized by 1.0 wt% Fe3O4 (a), 1.0 wt% Fe3O4-NH2 (b) at pH 10, taken 30 min after preparation,
Figure S4. Photograph of the liquid paraffin and water after sonication for 2 min without DC-Fe3O4
nanoparticles, Figure S5. Image of contact measurement of acidic water droplet (pH = 2) on the
DC-Fe3O4 film, Figure S6. Optical micrographs of initial Pickering emulsion and after 3 cycles are
shown in (a) and (b), respectively. Pickering emulsion was prepared with 1.0 wt% DC-Fe3O4 at pH
10. The liquid paraffin and water were in an equal volume ratio, Figure S7. Photographs of 4 mg/L
rhodamine B solution (a), the extraction of rhodamine B solution with DC-Fe3O4 nanoparticles (b),
the extraction rhodamine B solution with liquid paraffin (c), extraction of rhodamine B solution with
DC-Fe3O4 stabilized oil in water Pickering emulsion (d), and extraction of rhodamine B solution with
AES stabilized oil in water emulsion (e), Figure S8. Standard curve of rhodamine B, Figure S9. The
change of RhB concentration with standing time after adding 1 mL Pickering emulsion into 4 mL RhB
aqueous solution. The initial concentration of RhB is 4 mg/L. The Pickering emulsion was stabilized
by 1 wt% DC-Fe3O4 and the volume ratio of liquid paraffin and water is 1:1.
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