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Abstract: Background and Objectives: To assess ovarian cysts with texture analysis (TA) in magnetic
resonance (MRI) images for establishing a differentiation criterion for endometriomas and functional
hemorrhagic cysts (HCs) that could potentially outperform their classic MRI diagnostic features.
Materials and Methods: Forty-three patients with known ovarian cysts who underwent MRI were
retrospectively included (endometriomas, n = 29; HCs, n = 14). TA was performed using dedicated
software based on T2-weighted images, by incorporating the whole lesions in a three-dimensional
region of interest. The most discriminative texture features were highlighted by three selection methods
(Fisher, probability of classification error and average correlation coefficients, and mutual information).
The absolute values of these parameters were compared through univariate, multivariate, and receiver
operating characteristic analyses. The ability of the two classic diagnostic signs (“T2 shading” and
“T2 dark spots”) to diagnose endometriomas was assessed by quantifying their sensitivity (Se) and
specificity (Sp), following their conventional assessment on T1-and T2-weighted images by two
radiologists. Results: The diagnostic power of the one texture parameter that was an independent
predictor of endometriomas (entropy, 75% Se and 100% Sp) and of the predictive model composed
of all parameters that showed statistically significant results at the univariate analysis (100% Se,
100% Sp) outperformed the ones shown by the classic MRI endometrioma features (“T2 shading”,
75.86% Se and 35.71% Sp; “T2 dark spots”, 55.17% Se and 64.29% Sp). Conclusion: Whole-lesion MRI
TA has the potential to offer a superior discrimination criterion between endometriomas and HCs
compared to the classic evaluation of the two lesions’ MRI signal behaviors.
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1. Introduction

Endometriosis is defined as the presence of functional endometrial tissue outside the uterine
cavity [1]. Endometriomas are the most common form of endometriosis, being produced by repeated
hemorrhage from an ectopic endometrium located in the ovaries [2]. They present in the form of cysts
resulting from cyclic bleeding over months [3], being responsible for almost 17% of infertility cases in
women [4]. On the other hand, functional hemorrhagic ovarian cysts (HCs) occur primarily during
ovulation [5] as a result of bleeding in a luteal or follicular cyst, and are often asymptomatic [6].

Correctly identifying the two lesions is crucial to eschew unneeded surgery [7], but also because
endometriomas are a marker of the presence of other endometriotic lesions at the pelvic and
intestinal level, which can cause a series of complications [8]. Thus, the imaging differentiation
of the two entities can influence the course of both medical and surgical treatment [9]. Transvaginal
ultrasonography (TVUS) is the primary diagnostic tool in the diagnosis of endometriomas. In most
cases, this technique can provide sufficient information for adequate preoperative planning [10].
Other imaging investigations, such as magnetic resonance imaging (MRI), are performed in selected
cases, according to the TVUS results and the severity of symptoms. The pelvic MRI examination allows
complete lesion mapping, showing a high detection rate for both anterior and especially posterior
lesions, where TVUS shows a decreased sensitivity [11].

Since first described by Nishimura and colleagues [12] in 1987, the “T2 shading” sign has become
a classic MRI feature of endometriomas. This sign describes an adnexal cyst that exhibits a high
signal for T1-weighted images (T1WI) and a low signal for T2-weighed images (T2WI) [13]. Initially,
it was thought that this appearance was very characteristic of endometriomas, with Togashi et al. [14]
reporting a high sensitivity (98%) and specificity (96%). The signal decrease in T2WI can be partially
attributed to the high concentration of blood products and proteins usually found in this type of
lesion [13]. However, because sometimes HCs may contain a large quantity of blood, this phenomenon
can also manifest, mimicking the “T2 shading” sign [2]. Recent studies that aimed to discriminate
endometriomas from other adnexal lesions complicated by bleeding (including HCs) observed that the
“T2 shading” sign has a lower diagnostic ability than was previously thought (68–93% sensitivity, 45–93%
specificity) [2,13,15]. The reported shortcomings of this diagnostic sign evoke the subjective nature
of its assessment [16] and its occurrence in other adnexal cysts complicated by hemorrhage [3,17,18].
A relatively newly introduced MRI feature of endometriomas is the “T2 dark spots” that represent
imaging manifestations of chronic retracted blood clots [2]. Although blood clots can also form
in simple hemorrhagic cysts, they do not have time to lose free water and build up hemosiderin
concentrations (due to the short-lived nature of these cysts), and therefore they do not produce focal
T2 shortening [2]. Corwin et al. [2] claimed that these “dark spots” have a high specificity (93%) but a
low sensitivity (36%) for distinguishing endometriomas from non-endometriotic hemorrhagic cystic
lesions. A common limitation of both signs is given primarily by the absence of defined imaging
criteria for their identification.

The pathological analysis shows important differences in cellularity and physical and biochemical
features between endometriomas and HCs [19,20]. It is theorized that these features can also have
an impact on the pixel intensity and distribution within MRI images, but that their influence is too
subtle to be assessed by the routine evaluation of these examinations. Textures represent the intrinsic
and intuitive properties of surfaces such as roughness, granulation, and regularity. Texture analysis
(TA) is a technique based on the extraction and processing of image-specific parameters that provides
an objective description of image content by quantifying the distribution patterns and intensity of
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the pixels [21]. Due to the numerous applications involving medical images, this method has been
integrated as a core component of computer-aided diagnosis [22].

In the present research, TA was used to quantify the imaging features of endometriomas and
functional hemorrhagic cysts. The aim was to determine if texture parameters can provide additional
information that can be used for distinguishing between the two entities, thus exploring the possibility
of a new non-invasive diagnosis approach for ovarian hemorrhagic lesions that could outperform the
classic MRI diagnosis signs.

2. Materials and Methods

2.1. Patients

This Health Insurance Portability and Accountability Act for a compliant, single-institution,
and retrospective pilot study has been approved by the institutional review board (ethics committee
of the “Iuliu Hat,ieganu” University of Medicine and Pharmacy Cluj-Napoca; registration number,
50; date, 11.03.2019), and a waiver consent was obtained owing to its retrospective nature. In our
radiology database, reports of pelvic MRI scans were searched from January 2017 to February 2020
using the keywords: “endometriosis”, “endometrioma/s”, “hemorrhagic cyst/s”, and “ovarian cyst/s”.
The original search yielded 162 reports. Each report was then analyzed and those studies in which
the keyword in the report did not refer to the presence of an ovarian hemorrhagic cyst were excluded
(n = 47). The medical records of the remaining 115 patients were retrieved from the archive of our
healthcare unit and investigated for disease-related data. The other exclusion criteria were: other benign
or malignant ovarian lesions complicated by bleeding (n = 8), lesions with a diameter of less than
15 mm (n = 19), the presence of artifacts within the T2WI (n = 6), patients without a final clinical or
pathological diagnosis of the lesion (n = 21), or patients who did not undergo gynecological follow-up
(n = 18).

2.2. Pathological Analysis

In the case of endometriomas, 26 patients underwent surgery followed by the pathological
confirmation of the disease (mean time from MRI examination to surgery, 22.6 days; range, 12–43 days).
Three lesions were diagnosed by clinical and imaging methods, followed by gynecologists via TVUS
for at least four months (mean follow-up period, 168.4 days; range 129–231 days). All the HCs
represented incidental findings on MRI, with the patients being investigated for another pelvic
pathology. Eight cysts were surgically removed through oophorectomy and underwent pathological
analysis along with the underlying disease. Six HCs underwent gynecological follow-up, and their
remission in time was noted at the following US examinations (time from MRI to remission as seen on
TVUS: mean, 72.3; range, 44–83 days).

The surgical samples were fixed overnight in 10% buffered formalin and then were automatically
embedded in paraffin, using tissue processors, according to the usual protocol of the pathological
anatomy laboratory. The resulting blocks were sectioned at 5 µm, and the slides were stained
with hematoxylin and eosin. All the slides were examined by a pathologist with experience in
gynecological pathology. Additional immunohistochemical staining was rarely necessary to confirm
the presence of endometrial tissue in the histological sections. Immunohistochemical staining was
used for pan-cytokeratin AE1/AE3 and CK7 to identify glandular epithelial cells, for CD10 to identify
the endometrial stromal component, and sometimes for Ki67 to assess the proliferation index of
lesions. Following this diagnostic workflow, in all the cases examined it was possible to histologically
distinguish between the two entities.

2.3. MRI Protocol

All the MRI scans were performed on the same unit (SIGNA™ Explorer, 1.5 Tesla, Waukesha,
WIS, USA) under a routine pelvic protocol. All the subjects were instructed not to move and to
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maintain expiratory apnea according to instructions. The protocol included: axial T1-weighted
fast spin-echo (FSE) sequence with a large field of view (FOV), sagittal T2-weighted (T2W) with
periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER), oblique
axial T2W fast relaxation fast spin-echo (FR-FSE) at high resolution (HR), oblique coronal T2 FR-FSE HR,
axial diffusion-weighted sequences (DWI) with 3 b values (50,400, 1000 s/mm2), and contrast-enhanced
T1 fat-suppressed. The acquisition protocol varied in the four-year-range from which the examinations
were selected, but each protocol consisted of an oblique axial T2 FR-FSE HR sequence, which was
the only sequence used for texture analysis. The parameters of this sequence were: repetition time,
4556 ms; echo time, 109 ms; bandwidth, 83.333 Hz/pixel; FOV, 240 mm; matrix, 320 × 320; section
thickness, 4 mm; and slice gap, 0.4 mm. No routine antiperistaltic drugs were used, but instead a
narrow band around the abdomen was applied to diminish the intestinal peristalsis.

2.4. Image Interpretation

On a dedicated workstation (General Electric, Advantage workstation, 4.7 edition), all the
examinations were reviewed by one radiologist and one gynecologist (C.S.M. and A.M.M.), who were
aware of the patients’ final pathological and clinical outcomes. When multiple bleeding cysts were
observed within the same examination, the images were cross-referenced with the pathological and
TVUS results and other medical data to ensure the selection of lesions that were previously documented.
Only one lesion from each patient was selected and marked.

The “T2 shading” and the “T2 dark spots sign” of the selected lesions were evaluated by two
radiologists (C.C. and A.L., each with at least 10 years of experience in pelvic MRI), blinded to the
clinical and pathological outcome, and the results were recorded by consensus. The “T2 shading” was
assessed according to the protocol proposed by Dias et al. [13], being considered when an ovarian cyst
showed a complete or partial loss of signal intensity between T1 and T2WI. The “T2 dark spots” were
assessed as specified in the research by Corwin et al. [2], according to which they present on T2WI as
hypointense well-defined foci within the cysts but not within the wall.

2.5. Texture and Statistical Analysis

The radiomics approach consisted of three steps: image segmentation using regions of interest,
feature extraction, and feature selection. Images of the previously selected lesions from the oblique axial
T2W sequence were anonymized and retrieved in Digital Imaging and Communications in Medicine
(DICOM) format. A third radiologist (P.A.S.), blinded to the final diagnosis, imported each image
set into a texture analysis software, MaZda version 5 [23]. The image segmentation step consisted
of incorporating each cystic lesion into a three-dimensional (3D) region of interest (ROI) (Figure 1).
A semi-automatic level-set technique was used for the definition and positioning of each ROI using
gradient and geometry coordinates. Since this technique does not require the manual delineation of
the structure of interest contours, the inter-and intra-observer reproducibility was not assessed in this
study. By applying a limitation of dynamics to µ ± 3σ (µ = gray-level mean; σ = gray-level standard
deviation), the gray level was normalized to reduce the influence of contrast and brightness that could
affect the true image textures [24].

The feature extraction step was automatically performed by the MaZda program. Over 300
texture parameters were generated from the analysis of each ROI, parameters which originated from
the grey-level histogram, co-occurrence matrix, run-length matrix, absolute gradient, Haar wavelet
transformation, and autoregressive model. Since such a large amount of data is difficult to be analyzed
by conventional statistical methods, the MaZda software allows its reduction by the use of selection
methods. Each of these methods provides a set of 10 features that are best suited for discriminating
between the vector groups. Three reduction techniques were applied based on the Fisher coefficients (F,
the ratio of between-class to within-class variance), the probability of classification error and average
correlation coefficients (POE+ACC), and mutual information (MI) [25].



Medicina 2020, 56, 487 5 of 13

Medicina 2020, 56, x FOR PEER REVIEW 4 of 13 

 

HR, axial diffusion-weighted sequences (DWI) with 3 b values (50,400, 1000 s/mm2), and contrast-

enhanced T1 fat-suppressed. The acquisition protocol varied in the four-year-range from which the 

examinations were selected, but each protocol consisted of an oblique axial T2 FR-FSE HR sequence, 

which was the only sequence used for texture analysis. The parameters of this sequence were: 

repetition time, 4556 ms; echo time, 109 ms; bandwidth, 83.333 Hz/pixel; FOV, 240 mm; matrix, 320 × 

320; section thickness, 4 mm; and slice gap, 0.4 mm. No routine antiperistaltic drugs were used, but 

instead a narrow band around the abdomen was applied to diminish the intestinal peristalsis. 

2.4. Image Interpretation 

On a dedicated workstation (General Electric, Advantage workstation, 4.7 edition), all the 

examinations were reviewed by one radiologist and one gynecologist (C.S.M. and A.M.M.), who were 

aware of the patients’ final pathological and clinical outcomes. When multiple bleeding cysts were 

observed within the same examination, the images were cross-referenced with the pathological and 

TVUS results and other medical data to ensure the selection of lesions that were previously 

documented. Only one lesion from each patient was selected and marked. 

The “T2 shading” and the “T2 dark spots sign” of the selected lesions were evaluated by two 

radiologists (C.C. and A.L., each with at least 10 years of experience in pelvic MRI), blinded to the 

clinical and pathological outcome, and the results were recorded by consensus. The “T2 shading” 

was assessed according to the protocol proposed by Dias et al. [13], being considered when an ovarian 

cyst showed a complete or partial loss of signal intensity between T1 and T2WI. The “T2 dark spots” 

were assessed as specified in the research by Corwin et al. [2], according to which they present on 

T2WI as hypointense well-defined foci within the cysts but not within the wall.  

2.5. Texture and Statistical Analysis  

The radiomics approach consisted of three steps: image segmentation using regions of interest, 

feature extraction, and feature selection. Images of the previously selected lesions from the oblique 

axial T2W sequence were anonymized and retrieved in Digital Imaging and Communications in 

Medicine (DICOM) format. A third radiologist (P.A.S.), blinded to the final diagnosis, imported each 

image set into a texture analysis software, MaZda version 5 [23]. The image segmentation step 

consisted of incorporating each cystic lesion into a three-dimensional (3D) region of interest (ROI) 

(Figure 1). A semi-automatic level-set technique was used for the definition and positioning of each 

ROI using gradient and geometry coordinates. Since this technique does not require the manual 

delineation of the structure of interest contours, the inter-and intra-observer reproducibility was not 

assessed in this study. By applying a limitation of dynamics to μ ± 3σ (μ = gray-level mean; σ = gray-

level standard deviation), the gray level was normalized to reduce the influence of contrast and 

brightness that could affect the true image textures [24]. 

 

Figure 1. (A) Oblique axial T2-weighted image of a 32-year-old patient with pathologically confirmed 

endometrioma (green arrow) and (B) the region of interest (red area) used for texture analysis. 

Figure 1. (A) Oblique axial T2-weighted image of a 32-year-old patient with pathologically confirmed
endometrioma (green arrow) and (B) the region of interest (red area) used for texture analysis.

A univariate analysis test (Mann–Whitney U) was conducted to compare the absolute values
of each texture parameter highlighted by the three selection methods. The statistical significance
level was set at a p-value of below 0.0016 after applying the Bonferroni correction (which implied
dividing the standard 0.05 value to 31 variables; 30 variables were represented by the parameters
highlighted by each selection method, plus one variable corresponding to the patients’ age). A receiver
operating characteristic (ROC) analysis was performed, with the calculation of the area under the
curve (AUC) with 95% confidence intervals (CIs) for the parameters showing statistically significant
results at the univariate analysis. Furtherly, a multiple regression analysis using an “enter” input
model was conducted to identify which of the texture parameters that showed statistically significant
results in the univariate analysis are also independent predictors of endometriomas. The coefficient
of determination (R-squared) was computed, and the diagnostic value of the prediction model was
evaluated using ROC analysis.

The ability of the two classic diagnostic signs (“T2 shading” and “T2 dark spots”) to diagnose
endometriomas was assessed by quantifying their accuracy (expressed as the percentage of correctly
classified lesions), sensitivity (true positive rate), and specificity (true negative rate). Statistical analysis
was performed using a commercially available dedicated software, MedCalc version 14.8.1 (MedCalc
Software, Mariakerke, Belgium).

The feature name generated by the MaZda software contains abbreviations of feature characteristics
produced by the extraction algorithm. The outermost symbol from the left indicates the first imaging
processing procedure. The first letter indicates the color channel (“C” implies that a black and grey
image was computed, “R” identities the red color channel). The second symbol stands for image
normalization (N), after which follows the encoding for the method used—in this case, “S” represents
image normalization using the limitation of dynamics to µ ± 3σ. The following number indicates that
the feature was quantized to use that number of bits per pixel. The direction is coded using letters:
H (horizontal), V (vertical), Z (45◦), and N (135◦). The next group of letters identities the extraction
algorithm (e.g., Wav, Haar wavelet transformation). The feature name is usually the last group of
letters (LngREmph, long-run emphasis; ShrtREmp, short-run emphasis; En, energy) [26].

3. Results

Of the 162 patients who were referred to our department during the study period, 43 were
included in the study after applying the inclusion and exclusion criteria (mean age, 34.6; range,
21–39 years). The subjects were divided according to the final pathological and/or clinical diagnosis in
the endometrioma (n = 29) and HCs group (n = 14). The conventional imaging evaluation showed that
22 endometriomas and 9 HCs demonstrated the “T2 shading” sign. Sixteen endometriomas and 5 HCs
demonstrated “T2 dark spots”. The diagnostic power of these signs in identifying endometriomas is
shown in Table 1.
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Table 1. The diagnostic power of the classic magnetic resonance imaging (MRI) signs in the diagnosis
of endometriomas. Between the brackets, values correspond to the 95% confidence interval (CI).

Diagnostic Sign Endometriomas HCs Accuracy (%) Sensitivity (%) Specificity (%)

“T2 shading” n = 22 n = 9 62.79 (46.73–77.02) 75.86 (56.46–89.7) 35.71 (12.76–64.86)
“T2 dark spots” n = 16 n = 5 58.14 (42.13–72.99) 55.17 (35.69–73.55) 64.29 (35.14–87.24)

Two variations of the wavelet energy parameter (WavEn) computed from the low-low (LL)
frequency band within the first (s-1) and second (s-2) decomposition levels were highlighted by all
three classification methods. Alongside these parameters, seven variations of entropy, three of the
angular second moment (AngScMom), one of the sum entropy (SumEntrp), and one of the histogram’s
variance (Variance) showed statistically significant results in the univariate analysis (Table 2). The ROC
results of the parameters that showed statistically significant results in the univariate analysis are
displayed in Table 3 and Figure 2.

Table 2. The parameters highlighted by each selection method, the univariate analysis (Mann–Whitney
U test) results, and the median values obtained by these parameters in the case of endometriomas and
hemorrhagic cysts (HCs).

Parameter Coefficient p-Value Endometriomas HCs

Fisher

WavEnLL_s-1 4.4737 <0.0001 17,748.26 (17,365.55–18,027.58) 15,355.26 (14,043.69–16,607.25)
WavEnLL_s-2 3.4413 0.0001 17,373.98 (16,457.74–18,525.13) 12,582.52 (10,020.4–15,096.37)
CV4S6Entropy 2.6443 0.0006 2.74 (2.55–2.93) 2.1 (1.87–2.55)
CV5S6Entropy 2.634 0.0005 2.76 (2.55–2.93) 2.09 (1.7–2.57)
CV3S6Entropy 2.4381 0.0004 2.66 (2.54–2.93) 2.1 (1.97–2.49)

CV5S6SumEntrp 2.4259 0.0014 1.79 (1.73–1.83) 1.52 (1.22–1.75)
CN3S6Entropy 2.4018 0.001 2.76 (2.58–2.92) 2.09 (2.01–2.56)
CN2S6Entropy 2.3572 0.0006 2.69 (2.53–2.92) 2.13 (2.07–2.49)
CV2S6Entropy 2.3346 0.0007 2.62 (2.49–2.88) 2.17 (2.06–2.4)
CN4S6Entropy 2.2939 0.0008 2.79 (2.52–2.92) 2.1 (1.87–2.59)

POE + ACC

Perc99 0.249 0.0219 33,336 (132–33,579.5) 148 (123.5–166.7)
WavEnLL_s-1 0.2857 <0.0001 17,748.26 (17,365.55–18,027.58) 15,355.26 (14,043.69–16,607.25)
WavEnLL_s-2 0.34 0.0001 17,373.98 (16,457.74–18,525.13) 12,582.52 (10,020.4–15,096.37)

CV1S6AngScMom 0.3407 0.002 0.003 (0.002–0.006) 0.01 (0.007–0.013)
RHS6RLNonUni 0.3413 0.0025 1651.2 (410.94–2727.26) 158.82 (78.83–995.16)

Variance 0.3478 0.0008 2401.3 (328.5–5182.46) 120.51 (40.09–238.33)
CV5S6AngScMom 0.3483 0.0002 0.002 (0.001–0.003) 0.009 (0.003–0.021)

Perc90 0.3854 0.024 33,270.5 (111 to 33,500) 135 (114.5–157.25)
CN5S6AngScMom 0.397 0.0006 0.001 (0.001–0.003) 0.012 (0.003–0.02)
CH1S6AngScMom 0.4135 0.0032 0.003 (0.002–0.007) 0.008 (0.066–0.01_

Mutual Information

CV2S6SumAverg 0.6806 0.54 64.58 (64.07–65.04) 65.83 (62.5–66.99)
CN2S6SumAverg 0.6235 0.6189 64.5 (64.16–65.02) 66.2 (62.39–67.89)
CV3S6SumAverg 0.5879 0.4996 64.56 (63.82–65.13) 66.27 (62.36–67.06)
CZ1S6SumAverg 0.5412 0.7223 64.64 (64.3–64.87) 66.19 (62.54–67.5)
CN1S6SumAverg 0.5045 0.6698 64.62 (64.22–64.9) 65.76 (62.33–67.26)

WavEnLL_s-2 0.4639 0.0001 17,373.98 (16,457.74–18,525.13) 12,582.52 (10,020.4–15,096.37)
WavEnLL_s-1 0.4525 <0.0001 17,748.26 (17,365.55–18,027.58) 15,355.26 (14,043.69–16,607.25)

CH2S6SumAverg 0.431 0.7223 64.75 (64.18–64.97) 66.31 (62.22–68.19)
CV2S6AngScMom 0.426 0.0006 0.002 (0.001–0.004) 0.008 (0.006–0.018

CZ5S6Correlat 0.4086 0.0252 0.586 (0.048–0.757) 0.21 (0.466–0.269)

HCs, hemorrhagic cysts; WavEn, wavelet energy; Entropy, entropy; SumEntrp, sum entropy; Perc99, 99% percentile;
Perc 90, 90% percentile; AngScMom, angular second moment; RLNonUni, run-length nonuniformity; Variance,
histogram’s variance; SumAverg, sum average; Correlat, correlation; POE + ACC, probability of classification
error and average correlation coefficient. Values in bold are statistically significant. Between the brackets,
values correspond to the interquartile range.
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Table 3. The receiver operating characteristic analysis results of the texture parameters that showed
statistically significant results at the univariate analysis for the diagnosis of endometriomas. Between the
brackets, values correspond to the 95% CI.

Parameter AUC Sign.lvl. J Cut-Off Se (%) Sp (%)

WavEnLL_s_1 0.939 (0.804–0.992) <0.0001 0.7917 >17,177.882 79.17 (57.8–92.9) 100 (71.5–100)
WavEnLL_s_2 0.932 (0.793–0.989) <0.0001 0.7917 >16,321.281 79.17 (57.8–92.9) 100 (71.5–100)
CV4S6Entropy 0.867 (0.710–0.958) <0.0001 <0.0001 >2.6335 66.67 (44.7–84.4) 100 (71.5–100)
CV5S6Entropy 0.871 (0.715–0.960) <0.0001 0.625 >2.6625 62.5 (40.6–81.2) 100 (71.5–100)
CV3S6Entropy 0.875 (0.719–0.962) <0.0001 0.6667 >2.5915 66.67 (44.7–84.4) 100 (71.5–100)
CV2S6Entropy 0.86 (0.701–0.954) <0.0001 0.75 >2.4921 75 (53.3–90.2) 100 (71.5–100)
CN3S6Entropy 0.852 (0.692–0.949) <0.0001 0.5606 >2.4254 83.33 (62.6–95.3) 72.73 (39–94)
CN2S6Entropy 0.867 (0.710–0.958) <0.0001 0.6591 >2.5666 75 (53.3–90.2) 90.91 (58.7–99.8)
CN4S6Entropy 0.856 (0.696–0.951) <0.0001 0.5947 >2.1539 95.83 (78.9–99.9) 63.64 (30.8–89.1)

CV5S6AngScMom 0.902 (0.753–0.976) <0.0001 0.75 ≤0.0032 75 (53.3–90.2) 100 (71.5–100)
CN5S6AngScMom 0.864 (0.705–0.956) <0.0001 0.5947 ≤0.0083 95.83 (78.9–99.9) 63.64 (30.8–89.1)
CV2S6AngScMom 0.867 (0.710–0.958) <0.0001 0.7917 ≤0.0043 79.17 (57.8–92.9) 100 (71.5–100)
CV5S6SumEntrp 0.841 (0.678–0.942) <0.0001 0.5947 >1.5482 95.83 (78.9–99.9) 63.64 (30.8–89.1)

Variance 0.856 (0.696–0.951) <0.0001 0.7083 >769.4818 70.83 (48.9–87.4) 100 (71.5–100)

AUC, area under the curve; Sign.lvl., significance level; J, Youden index; Se, sensitivity; Sp, specificity; WavEn,
wavelet energy; Entropy, entropy; AngScMom, angular second moment; SumEntrp, sum entropy; Variance,
histogram’s variance.
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Figure 2. Receiver operating characteristic curve of wavelet energy variations (A), entropy variations
computed for the 135◦ direction (B), entropy variations computed for vertical directions (C),
angular second moment variations (D), sum entropy and variance (E), and (F) the entropy parameter
that represents an independent predictor of endometriomas (CV2S6Entropy) and the prediction model
itself. WavEn, wavelet energy; Entropy, entropy; AngScMom, angular second moment; SumEntrp,
sum entropy; Variance, histogram’s variance.

The multiple regression analysis indicated that CV2S6Entropy was the only parameter
independently associated with the presence of endometriomas (Table 4). The prediction model
consisting of all the parameters that showed statistically significant results in the univariate analysis
was able to identify endometriomas with a sensitivity of 100% (CI, 85.8–100%) and a specificity of 100%
(CI, 71.5–100%). The AUC displayed by the prediction model was 1 (CI, 0.9–1) and the significance
level was < 0.0001 (Figure 2).
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Table 4. Multivariate analysis of parameters independently associated with the presence
of endometriomas.

Independent Variable Coefficient Standard Error p-Value VIF

CN2S6Entropy −8.2967 4.3623 0.0717 1027.045
CN3S6Entropy 15.6427 7.5443 0.0513 3669.47
CN4S6Entropy −8.1976 4.398 0.0771 1673.578

CN5S6AngScMom −5.4068 6.6826 0.428 31.822
CV2S6AngScMom 93.1964 59.4064 0.1324 28.594

CV2S6Entropy 9.3644 2.5189 0.0014 306.535
CV3S6Entropy −12.7996 4.4433 0.0092 1125.262
CV4S6Entropy 5.4712 6.3882 0.4019 2655.577

CV5S6AngScMom 23.9864 63.1998 0.7083 127.429
CV5S6Entropy 0.1952 4.8106 0.968 1932.615

CV5S6SumEntrp 2.0136 1.2166 0.1135 31.504
Variance 0.00002574 0.00001358 0.0727 1.521

WavEnLL_s_1 0.0001645 0.0001153 0.1693 16.494
WavEnLL_s_2 −0.00002706 0.00005094 0.6011 15.087

Sign.lvl. 0.0007
R2 0.7724

R2 adjusted 0.6131
M.R. Coef. 0.8789

VIF, Variance Inflation Factor; R2, coefficient of determination; R2 adjusted, coefficient of determination adjusted
for the number of independent variables in the regression model; Sign.lvl., significance level of the multivariate
analysis; M. R. Coef., multiple regression coefficient. Bold values are statistically significant.

4. Discussion

The MRI appearance of endometriomas has been extensively evaluated before. Unfortunately,
very few studies have aimed to differentiate them from HCs or even from other adnexal lesions
complicated by bleeding (Table 5).

Table 5. Research involving endometrioma diagnosis classic MRI features.

Imaging Feature Author Diagnostic Value

“T2 dark spots” * Corwin et al. [2] 36% (19.8–51.3%) Se; 93%
(83.9–100%) Sp.

* Lee et al. [3] 95.2% Se; 14.3% Sp.

Morphological and signal features
(including the “T2 shading “sign)

* Corwin et al. [2] 93% (84–100%) Se; 45%
(27.8–61.9%) Sp.

Togashi et al. [14] 90% Se; 98% Sp.

Sugimura et al. [27] 82% Se; 91% Sp for lesions > 1 cm
11% Se; 98% Sp for lesions < 1 cm

Scout et al. [28] 92% Se; 91% Sp.
Lee et al. [3] 89.8% Se; 14.2% Sp.

* Outwater et al. [15] 68% Se; 76% Sp.

* Dias et al. [13] 73% (56.8–85.2%) Se; 93%
(89.3–95.5%) Sp.

ADC values
* Lee et al. [2] 100% Se; 92% Sp.

* Balaban et al. [29] 77.6% Se; 76.2% Sp.

MRI, magnetic resonance imaging; Se, sensibility; Sp, specificity; ADC, apparent diffusion coefficient; * studies that
aimed to differentiate endometriomas from other hemorrhagic ovarian cystic entities.

The difference between the two entities has also been investigated through more advanced
MRI techniques, such as diffusion-weighted imaging, via the measurement of the apparent diffusion
coefficient (ADC). Two studies investigated the restriction of water molecules inside endometriomas
and HCs, and although these measurements had a very good diagnostic ability, the absolute measured
values for each entity were opposed in the two studies [2,29]. Although the “T2 dark spot” sign
was described as more characteristic of endometriomas [2] the sensitivity and specificity reported in
previous studies [2,3] showed contradictive results. Additionally, in our study only almost half of
these lesions exhibited this MRI signal behavior.
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The previous reports show that for every imaging feature there is a wide range of diagnostic
values, which partially may be due to physicians assessing these features only qualitatively. Moreover,
there are no criteria defined about how wide the T2 shortening must be to represent an accurate
diagnostic sign, apart from the fact that it is only subjectively assessed. These limitations create the need
for more information to be extracted from medical images and to develop quantitative benchmarks for
the diagnosis of these lesions.

Texture analysis includes a wide variety of feature categories, each reflecting certain aspects of
pixel intensity and patterns. The wavelet decomposition represents a multiresolution technique that
intends to transform images into a representation in which both spatial and frequency information is
present, which can be accomplished by the multiple direction filtering of an image. This technique
decomposes the image information in the horizontal, vertical, and diagonal directions, each direction
being described using specific texture parameters. The values of the wavelet energy parameter reflect
the variations in pixel intensity within an image [30]. Our results show lower values of both WaveEn
parameters for the HCs, most likely because the HCs have a more uniform content, thus providing
lower signal variation rates.

Entropy measures the degree of the disorder among pixels within an image, being inversely
correlated with uniformity [31]. A high degree of randomness within an image produces high entropy
levels, while sum entropy represents an indicator of the complexity of pixel values distribution within
an image [32]. Our results showed higher median values of all the entropy and sum entropy parameters
in endometriomas, probably due to their multiple types of cell populations and heterogeneous
biochemical components compared to the relative plainness of functional cyst content [20]. Additionally,
a variation of entropy (CV2S6Entropy) was the only one reported as being an independent predictor of
endometriomas (p = 0.0014)

The variance parameter represents the sum of the squares of the differences between the intensity
of the central pixel and its neighbors [33]. The angular second moment measures the local uniformity
of an image, having high values when the grey level distribution has either a constant or a periodic
form [34]. Our results showed higher values of the AngScMom parameter and lower values of variance
for the HCs group, indicating a more uniform content for these lesions. Considering these observations,
it can be concluded that all the above-mentioned texture analysis results are predictors of irregularity
within endometriomas, possibly due to the reflection of some of the histological features of these
lesions in their MRI imaging appearance.

The Sum Average (SumAverg) parameter measures the average sum of gray levels [35]. All six
selected variations of this parameter showed lower values for endometriomas than for HCs (probably
because the premiums contained more blood products that produced a higher T2 shortening), but the
differentiation between the two groups was not statistically significant. Additionally, previous studies
evaluating the role of this parameter in medical imaging analysis observed that it possesses low
diagnostic value [36]. The first-order histogram is one of the most common statistical methods for
image feature computation. The histogram does not consider the spatial relations between the pixels,
reflecting only the value of their intensity [37]. Several such histogram parameters are represented
by the percentiles. The percentile number (n) is the point at which n% of the pixel values that form
the histogram are found to the left [38,39]. This implies that 90% and 99% of the pixels within images
were distributed under lower values for HCs, but again the differences were not statistically significant.
The Run Length Non-Uniformity (RLNonUni) measures the non-uniformity of the grey levels or the
length of the homogeneous runs [40]. This parameter recorded higher values for endometriomas than
for HCs, probably due to the variable content of the premiums. The correlation (Correlat) parameter
measures image linearity, its values increasing when an image contains linear structures [41]. Again,
this parameter recorded higher values for endometriomas, but the difference between the two groups
was not statistically significant (p = 0.4).

It is important to evaluate every piece of information found in the standard MRI sequences,
rather than adding more sequences or even contrast enhancement. We successfully demonstrated
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that, by applying TA on a standard T2 FR-FSE HR sequence, endometriomas could be accurately
discriminated from hemorrhagic cysts. If it could be further validated, this technique could reduce the
MRI acquisition time and overall examination cost and avoid unnecessary contrast administration,
which would be truly beneficial to patients.

It is well documented that endometriomas’ content changes with their evolution over time.
Thus, old lesions contain a much larger amount of bilirubin and ferritin, a higher overall density,
and especially a higher collagen content than early lesions. With collagen accumulation and fibrosis
production, the endometriomas become lighter in color and resistant to hormonal treatment [42].
Normally, only microscopic evaluation can make a clear differentiation between the endometriomas
of different evolutionary stages [43]. Thus, it is possible that, in the future, TA could provide a
non-invasive characterization of the cystic content, and through this make an accurate prediction about
the response rates of hormonal treatments. Although this was not the objective of the present study,
our results encourage future research that aims to differentiate between evolutionary stages and the
treatment response of these lesions based on TA parameters.

It was previously documented that endometriomas’ fluid content has the characteristics of a
non-Newtonian liquid, with inhomogeneous viscosity within the same lesion [42]. Additionally,
because blood products may be dispersed, it was justified to integrate the whole lesion in a 3D
ROI. Because all the examinations were performed on the same device and using the same protocol,
the resulting images have a high degree of homogeneity, thus being able to counteract the variations in
textural measurements produced by the use of multiple scanners or different examination protocols [22].
If validated on larger studies, this approach can be beneficial to patients with undetermined TVUS
who are referred to MRI for an extensive evaluation of a hemorrhagic ovarian lesion.

Our study had several limitations. First, due to its retrospective design it could have had
selection bias, but it remains debatable whether the inclusion of both pathologically confirmed and
unconfirmed lesions could be regarded as a pitfall. The diagnosis of endometriomas and functional
hemorrhagic cysts is also based on clinical and paraclinical criteria, and an important part of these
lesions is treated conservative [44]. Moreover, a previously published paper that evaluated the utility
of the “T2 shading” sign [3] stated that the choice of including only histologically proven lesions
produced a “greater selection bias”, decreasing the specificity of the reported findings. Second, being
a retrospective study may have selection and verification bias regarding the selected patients and
gynecological follow-up, which mainly depend on the status of the institution and referral hospital.
Third, the number of subjects was relatively low, and the overall number of endometriomas exceeded
almost two times the number of HCs. Another limitation may be regarded as the lack of reproducibility
(including inter-and intra-observer differences) investigation, although previous research following
the same method stated that, due to the semi-automatic ROI positioning, this assessment is not
necessary [45]. The fact that two researchers (C.S.M. and A.M.M.) were aware of the final diagnosis
can also be viewed as a limitation. However, this approach was necessary because at the time of
the MRI examinations several patients had multiple lesions, and it was desired to include only the
ones that were pathologically or at least clinically documented. After this stage, these investigators
(C.S.M. and A.M.M.) did not intervene in any way in interpreting the images, reporting the results,
or conducting the statistical analysis. Additionally, the MaZda software used in this article can
be regarded as outdated, since the official version had not received improvements in more than
10 years. However, in this study, we used a newly developed Beta version of this software released
in 2016 (available online: https://data.mendeley.com/datasets/dkxyrzwpzs/1) [46]. Although more
modern dedicated TA software is free and commercially available, MaZda steel represents a valid TA
method, since it provides one of the largest numbers of feature customization, selection, extraction,
and processing methods. Additionally, it offers an intuitive interface and, thus, the possibility of
being used by non-image processing specialists, such as regular physicians. The MaZda software
also enables the use of several classifiers. In this paper, we preferably applied a more conventional
approach to the statistical processing of the parameters due to the fact that several of these classifiers

https://data.mendeley.com/datasets/dkxyrzwpzs/1
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(such as the artificial neural networks) require a large amount of data for an adequate classification
procedure. However, this change in statistical processing may have affected our results. To build
a robust predictive model through multivariate analysis, the feature subset should contain mostly
uncorrelated parameters [47]. Therefore, our selection method involving Fisher coefficients highlights
parameters that, besides having a high discriminatory potential, are also well correlated with each
other [25]. This may have affected the overall performance of our combined prediction model, partially
altering its diagnostic value. Moreover, there are several technical factors that could have influenced
our texture analysis model. Firstly, the use of a high-resolution sequence was shown to improve the
texture discrimination [48]. Secondly, the study was conducted in a single institution, thus reducing
the differences in texture features extracted from MRI images from different centers [49]. As mentioned
before, the variations in textural features were also reduced by using examinations provided by a
single scanner and performed by the same protocol [22]. Thus, it is less likely that the same high
performance in discriminating the two groups of lesions could be achieved by the use of multiple
protocols or multiple scanners.

5. Conclusions

The quantitative evaluation of MRI images through whole-lesion texture analysis has the potential
to outperform classic diagnostic signs of endometriomas. Moreover, texture analysis offers a quantitative
description of these lesions, which could avoid diagnostic errors due to the subjective interpretation of
medical images. As the first study investigating the textural properties of ovarian hemorrhagic lesions,
the results are promising and open the way for many future types of research.
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