
REVIEW

Innate immune surveillance of the circulation:

A review on the removal of circulating virions

from the bloodstream

Stephanie E. Ander1, Frances S. Li1, Kathryn S. Carpentier2, Thomas E. MorrisonID
1*

1 Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado,

United States of America, 2 Department of Natural Sciences, Greensboro College, Greensboro, North

Carolina, United States of America

* Thomas.Morrison@CUAnschutz.edu

Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Many viruses utilize the lymphohematogenous route for dissemination; however, they may

not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate

defense system that surveys circulating blood, recognizing and capturing viral particles.

Examination of the literature shows that the bulk of viral clearance is mediated by the liver;

however, the precise mechanism(s) mediating viral vascular clearance vary between

viruses and, in many cases, remains poorly defined. Herein, we summarize what is known

regarding the recognition and capture of virions from the circulation prior to the generation of

a specific antibody response. We also discuss the consequences of viral capture on viral

pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications

beyond viral pathogenesis, including effects on arbovirus ecology and the application of

virus-vectored gene therapies.

Author summary

Limiting the amount of virus freely circulating in the bloodstream can be important for

controlling viral pathogenesis and transmission. However, despite early advances, this

field of study has become overlooked and understudied. Innate immune cells in the liver

and spleen constantly survey and remove from circulation viral particles without the aid

of virus-specific antibody. The details of these host–virus interactions, and the conse-

quences thereof, remain unknown for many viruses. Yet, understanding this phenomenon

has implications not only on bettering our understanding of disease progress, but also on

arbovirus ecology and the development of effective virus-vectored gene therapies.

Introduction

It has been established for over a century that foreign particles introduced intravenously (i.v.)

into vertebrates are rapidly removed from circulation [1]. In 1904, Ribbert reported lithium

carmine solution injected i.v. “vitally stained” a specific subset of cells [1]. Through careful

analysis of tissues following i.v. dye inoculation, Aschoff defined cells able to sequester vital
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dyes from the blood as the “reticuloendothelial system” (RES) [1]. Today, the RES is under-

stood to be composed of macrophages, circulating monocytes, and endothelial cells that

remove from circulation particulates like cellular debris, immune complexes, and microbes.

The role of specific populations, cell surface receptors, and humoral components in microbial

vascular clearance can be elucidated using drugs for selective cellular depletion [2], genetic

and conditional knockouts (KO) in mouse models [3,4], and advanced live imaging techniques

[5,6].

Since initial studies in the late 19th century, there have been great leaps in our understand-

ing of microbial vascular clearance. However, most mechanistic studies focus on clearance of

blood-borne bacteria, and limited mechanistic reports exist on viral vascular clearance. Herein,

we introduce key cell types of the liver and spleen demonstrated to mediate the bulk capture of

circulating virions prior to generation of a specific antibody response and summarize known

host and viral mechanisms orchestrating clearance of specific viruses from mammalian circu-

lation. We also discuss consequences of vascular clearance on viral pathogenesis and additional

implications of these studies on both arbovirus ecology and virus-vectored gene therapies.

The blood-filtering organs

Beginning in the late 1950s, the importance of circulating blood in promoting viral dissemina-

tion garnered scientific interest in the role of host innate immune defenses against viremia.

One of the first papers to describe the RES as an innate defense against circulating virions was

published in 1959 using ectromelia virus (ECTV; mousepox) [7]. Applying techniques previ-

ously developed to study vascular clearance of inert particles, Mims found i.v. inoculated

ECTV was rapidly removed from circulation and colocalized with cells lining the liver sinu-

soids, likely Kupffer cells (KCs) or liver sinusoidal endothelial cells (LSECs) [7] (see Poxviruses

section). Since this initial study, multiple and diverse viruses have been examined. In general,

while clearance rates vary, virion removal is often rapid and mediated predominantly by the

liver, although there is also evidence of spleen involvement (Table 1). As an aside, it should be

noted that these studies on viral capture from the bloodstream assume vascular dissemination

occurs via free viral particles. However, hematogenous spread of some viruses, such as cyto-

megalovirus, primarily occurs in a cell-associated manner—which adds another layer of com-

plexity [8].

Liver

The liver plays a critical role in immune surveillance and has evolved a number of features that

promote efficient removal of foreign or unwanted molecules from the blood. Every minute,

1,500 mL flows through the human liver [74]. Blood is supplied from both the hepatic artery

and the portal vein, exposing the liver to systemic and gut-derived microbes. In the liver,

blood percolates through the honeycomb-like structure of the liver sinusoids [6,75]. Within

the narrow sinusoids (5 to 10 μm in diameter in rodents [76–78]), blood flow rate is reduced

[79], maximizing contact between blood contents and liver cells to allow recognition and

removal of unwanted particles [75]. Lining the sinusoids are LSECs, which form a selective

barrier between blood and hepatocytes. Attached to the luminal surface of LSECs are KCs, the

tissue-resident macrophage of the liver (Fig 1). Both LSECs and KCs express a diverse array of

pathogen recognition receptors (PRRs) at their surface to detect and remove unwanted patho-

gens from circulation (Table 2).

Unique to liver sinusoids, the liver endothelial lining is highly porous as it lacks a basement

membrane, and LSECs are highly fenestrated [94–96]. The fenestrae (50 to 150 nm in diame-

ter) are generally grouped together to form sieve plates that limit access of blood-borne
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Table 1. Host mechanisms of viral clearance.

Organ Cell type Host mediator Virus

Liver KCs Natural antibodies Gene therapy vector: AdV [9–11]

CRIg Gene therapy vector: AdV [12]

Complement Gene therapy vector: AdV [10,12]

SRs Gene therapy vector: AdV [10,13,14]

SR-A1 (MSR1) Gene therapy vector: AdV [15,16]

SR-A6 (MARCO) Arbovirus: CHIKV, RRV, and ONNV [17]

SR-F1 (SREC-I) Gene therapy vector: AdV [15,16]

Platelets Gene therapy vector: AdV [18]

GAGs Gene therapy vector: AAV [19]

ND Blood-borne virus: HIV [20]

Arbovirus: SFV [21], small-plaque variants of VEEV [22], and VSV [23]

Gene therapy vector: AdV [24,25]

Other: CPXV [26], DHBV [27], ECTV [28], LCMV [29], NDV [30], BKPyV [31], JCPyV [31],

and RABV [32]

LSECs SR-A1 (MSR1) Gene therapy vector: AdV [15,16]

SR-F1 (SREC-I) Gene therapy vector: AdV [15,16]

GAGs Gene therapy vector: AAV [19,33]

ND Blood-borne virus: HIV [20]

Other: DHBV [27, 34], BKPyV [31], and JCPyV [31]

Hepatocytes Coagulation

factors

Gene therapy vector: AdV [10,33,35–37]

ND Natural antibodies Gene therapy vector: AdV [38]

Complement Gene therapy vector: AdV [38]

SRs Gene therapy vector: MV [39]

GAGs Arbovirus: MVEV [40], SINV [41], and VEEV [42]

ND Blood-borne virus: SIV [43, 44]

Arbovirus: LGTV [45], MVEV [7], RVFV [46], VSV [30], and YFV [47]

Gene therapy vector: AdV [48]

Other: DHBV [34], ECTV [7,49], IFV [7,50], LCMV [29], and PV [7], RV [51]

Spleen Marginal zone, MZMs, and

MMMs

ND Arbovirus: VSV [23,52,53]

Gene therapy vector: AdV [48,54–57]

Other: DHBV [27], BKPyV [31], JCPyV [31], HSV [58], and RABV [32,59]

Red pulp and red pulp

macrophages

ND Arbovirus: VSV [23]

Gene therapy vector: AdV [48,54]

Other: BKPyV [31] and RABV [32,59]

Macrophages ND Other: LCMV [29]

ND Natural antibodies Arbovirus: VSV [60]

Other: LCMV [60] and VACV [60]

GAGs Arbovirus: VEEV [42]

ND Blood-borne virus: SIV [43]

Arbovirus: LGTV [45] and YFV [47]

Gene therapy vector: AdV [48]

Other: ECTV [49] and RV [51]

Kidney Endothelial cells ND Other: BKPyV [31] and JCPyV [31]

NAU : Pleasenotethatasperstyle; italicsshouldnotbeusedforemphasis:D ND Other: LCMV [60]

Lung ND ND Blood-borne virus: SIV [43]

Arbovirus: LGTV [45]

Other: RV [51,61]

Lymph

node

ND ND Blood-borne virus: SIV [43]

(Continued)
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particulates to the space of Disse and the underlying hepatocytes. LSECs have high clathrin-

mediated endocytic capacity. Most often associated with pinocytosis of particles smaller than

200 nm [96–101], LSECs also are capable of phagocytosing larger latex beads following

impairment of KC function [102].

Table 1. (Continued)

Organ Cell type Host mediator Virus

ND Macrophages ND Arbovirus: YFV [62]

Other: JUNV [63] and VACV [64]

Platelets Glycophorin A Other: HAV [65]

ND Complement Arbovirus: SINV [66] and WNV [67]

Gene therapy vector: AdV [68]

MBL Arbovirus: DENV [67] and WNV [67]

SR Gene therapy vector: AAV [69]

GAGs Arbovirus: JEV [40], EMCV [70], SINV [71], VEEV [42,72], and WEEV [73]

AAU : TheabbreviationlistofTable1hasbeenupdated:Pleaseverifythatallentriesarecorrect:AV, adeno-associated virus; AdV, adenovirus; BKPyV, BK polyoma virus; CHIKV, chikungunya virus; CPXV, cowpox virus; DENV, dengue virus; DHBV, duck

hepatitis B virus; ECTV, ectromelia virus/mousepox; EMCV, encephalomyocarditis virus; GAG, glycosaminoglycan; HAV, hepatitis A virus; HIV, human

immunodeficiency virus; HSV, herpes simplex virus; IFV, influenza virus; JCPyV, JC polyoma virus; JEV, Japanese encephalitis virus; JUNV, Junin virus; KC, Kupffer

cell; LCMV, lymphocytic choriomeningitis virus; LGTV, Langat virus; LSEC, liver sinusoidal endothelial cell; MBL, mannose-binding lectin; MMM, marginal zone

metallophilic macrophage; MV, measles virus; MVEV, Murray Valley encephalitis virus; MZM, marginal zone macrophage; ND, not determined; NDV, Newcastle

disease virus; ONNV, o’nyong’nyong virus; PV, poliovirus; RABV, rabies virus; RRV, Ross River virus; RV, reovirus; RVFV, Rift Valley fever virus; SFV, Semliki Forest

virus; SINV, Sindbis virus; sIV, Simian immunodeficiency virus; SR, scavenger receptor; VACV, vaccinia virus; VEEV, Venezuelan equine encephalitis virus; VSV,

vesicular stomatitis virus; WEEV, Western equine encephalitis virus; WNV, West Nile virus; YFV, yellow fever virus.

https://doi.org/10.1371/journal.ppat.1010474.t001

Fig 1. The liver sinusoid. There are 2 key cell types located in the liver sinusoid that have been shown to contribute to

viral vascular clearance. Although in vitro studies suggest that LSECs, which form the liver endothelium, interact with

certain viruses (e.g., AdV), KCs, which are the liver’s main tissue-resident macrophages, are responsible for clearing

diverse circulating viruses (e.g., CHIKV and AdV) in vivo. In addition, KCs are important in controlling pathogenesis

of viruses like LCMV. This figure was created with BioRender.com. AAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 3:Pleaseverifythatallentriesarecorrect:dV, adenovirus; CHIKV, chikungunya virus;

HA, hepatic artery; IFN, interferon; KC, Kupffer cell; LCMV, lymphocytic choriomeningitis virus; LSEC, liver

sinusoidal endothelial cell; PRR, pathogen recognition receptor; PV, portal vein; VACV, vaccinia virus.

https://doi.org/10.1371/journal.ppat.1010474.g001
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KCs, positioned within the sinusoidal lumen, constitute the body’s largest population of tis-

sue-resident macrophages and have multiple processes that extend into different sinusoids,

which increases their surveillance area [103]. KCs are a self-renewing population [104–106],

although circulating monocytes are capable of renewing the KC niche following selective KC

depletion [3,107–109]. Capture of circulating viruses and other pathogens by KCs is generally

considered to be mediated by phagocytosis. In vitro, direct comparison of endocytic activities

of KC to that of splenic and peritoneal macrophages showed KCs to outcompete uptake of dex-

tran and Escherichia coli, and in vivo, KCs supersede even splenic macrophages in the removal

of dextran from circulation [110]. KCs also interact with other innate immune cells to defend

against pathogens. Specifically, KCs can serve as a docking site for neutrophils to eliminate the

bacteria trapped at the KC extracellular surface [111,112].

Spleen

The spleen is another major contributor to removal of microbes in the bloodstream, as demon-

strated in a study comparing contributions of splenic mass and blood flow on the clearance of

Streptococcus pneumoniae in a rabbit model [113]. In contrast to sham- or hemi-splenecto-

mized rabbits, those that underwent procedures to reduce splenic blood flow exhibited

impaired rates of bacterial clearance, and completely splenectomized animals were unable to

reduce the bacterial burden in the bloodstream [113].

Table 2. Documented surface-expressed pattern recognition receptors of LSECs and KCs.

LSECs (approximately 50% of nonparenchymal cells in liver) [80–88]

Mus musculus Homo sapiens
SR SR-A1 (MSR1), SR-B1 (SCARB1), SR-B1.1

(SCARB2), SR-B2 (CD36), SR-E1 (OLR1),

SR-E3 (CD206), SR-F1 (SREC-I), SR-G

(CXCL16), SR-H1 (STAB1), and SR-H2

(STAB2)

SR-A1 (MSR1), SR-E1 (OLR1), SR-E3

(CD206), SR-F1 (SREC-I), SR-H1 (STAB1),

and SR-H2 (STAB2)

C-type lectins

receptor

Mannose receptor (CD206/SR-E3), LSECTIN

(CLEC4G), DNGR-1 (CLEC9A), and L-SIGN

(CLEC4M)

Mannose receptor (CD206/SR-E3), LSECTIN

(CLEC4G), and L-SIGN (CLEC4M)

Toll-like

receptor

TLR1-2 and TLR4 TLR4

Fc receptor FcγRIIB and FcγRn FcγRIIB

KCs (approximately 20% of nonparenchymal cells in liver) [80–82,84,85,88–93]

M. musculus H. sapiens
SR SR-A1 (MSR1), SR-A6 (MARCO), SR-B1

(SCARB1), SR-B1.1 (SCARB2), SR-B2 (CD36),

SR-E2 (CLEC7A), SR-D1 (CD68), SR-G

(CXCL16), SR-H2 (STAB2), SR-I1 (CD163),

and SR-L (LRP1)

SR-A1 (MSR1), SR-A6 (MARCO), SR-B1

(SCARB1), SR-B1.1 (SCARB2), SR-B2

(CD36), SR-E1 (OLR1), SR-E2 (CLEC7A),

SR-E3 (CD206), SR-D1 (CD68), SR-G

(CXCL16), SR-I1 (CD163), and SR-L (LRP1)

C-type lectins

receptor

Mannose receptor (CD206/SR-E3), CLEC4F,

CLEC7A (SR-E2), CLEC6A, DCIR (CLEC4A2),

and LSECTIN (CLEC4G)

Mannose receptor (CD206/SR-E3), CLEC7A

(SR-E2), DC-SIGN (CD209), LSECTIN

(CLEC4G), and CLEC6A

Toll-like

receptor

TLR1-2 and TLR4-6 TLR2 and TLR4

Fc receptor FcγRI, FcεRII, FcγRIII, FcγRIV, and FcγRn FcαRI, FcγRIIA, FcγRIIB, and FcγRIII

Complement

receptor

CR3 (ITGAM), CRIg (VSIG4), C3aR, and C5aR CR1 (CD35), CR3 (ITGAM), CR4 (ITGAX,

ITGB2), CRIg (VSIG4), C3aR, and C5aR

KAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutTable2:Pleaseverifythatallentriesarecorrect:C, Kupffer cell; LSEC, liver sinusoidal endothelial cell; SR, scavenger receptor.

https://doi.org/10.1371/journal.ppat.1010474.t002
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In the spleen, macrophages mediate clearance of circulating particulates. The spleen has 3

major macrophage populations: red pulp macrophages, marginal zone macrophages (MZM),

and marginal zone metallophilic macrophages (MMM). As arterial blood travels through the

spleen, vessels passing through the white pulp open to form sinusoids within the marginal

zone; blood then percolates through the marginal zone into the red pulp’s venous sinuses (Fig

2). MZM and MMM appear to be the main workhorses mediating clearance of blood-borne

microbes [27,54,55,114,115], although red pulp macrophages also phagocytose bacteria

[116,117] and deparasitize red blood cells of Plasmodium [118].

While there are examples of virus capture by splenic macrophages in the literature (such as

adenovirus [AdV], discussed below), the spleen is typically dispensable or plays a minimal role

in the clearance of virions from circulation. For example, splenectomized mice exhibit no

defect in vascular clearance kinetics of chikungunya virus (CHIKV) [17], and examinations of

viral biodistributions postclearance generally find the liver absorbs the bulk of the inoculum

[5,7,17,25,30,31,42,51,119]. Yet, splenic capture of circulating microbes may have an important

role in initializing an effective immune response necessary for the resolution of a natural infec-

tion [55,114].

Blood-borne pathogens

Some of the most well-studied blood-borne viruses are human immunodeficiency virus

(HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). For these viruses, viremia levels

are indicators of disease progression during chronic viral infections, which is characterized by

a viremia set point that is constant for years [120]. This constancy is likely due to continuous

Fig 2. Macrophages of the spleen. Splenic macrophages also participate in the capture of circulating virus particles.

There are 3 major splenic macrophage populations (MMM, MZM, and RpM), and they localize to distinct regions of

the spleen. These macrophage subsets can be identified by their localization and the indicated key cellular markers.

While the mechanisms by which specific splenic macrophage populations mediate viral clearance are not well

understood, they are critical in activating immune responses to circulating viruses. This figure was created with

BioRender.com. MMM, marginal zone metallophilic macrophage; MZM, marginal zone macrophage; RpM, red pulp

macrophage.

https://doi.org/10.1371/journal.ppat.1010474.g002
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removal of viral particles from circulation to establish an equilibrium, as viral load would oth-

erwise be expected to steadily increase over time [120]. The magnitude of this set point associ-

ates with disease progression [120–122]. For example, AIDS patients with high-viral set points

tend to have a more rapid disease progression than those with low-viral set points [121,122].

Understanding host mechanisms mediating removal of these human-specific viruses from

circulation is challenging. The most common method to estimate viral clearance rates uses

antiviral therapy to halt virus production then measures plasma virion half-life [120]. Another

technique is plasma apheresis, wherein plasma is removed from a patient and fluids returned

at similar rates to maintain blood volume [120]. Viral plasma loads are compared before, dur-

ing, and after apheresis. If the clearance rate due to apheresis is smaller than the calculated nat-

ural clearance rate, there will be little impact on plasma viral concentrations [120]. Using

animal models, viral vascular clearance can also be examined following i.v. inoculation.

HIV/SIV

In animal models, simian immunodeficiency virus (SIV) and HIV-1 viral particles are rapidly

removed from circulation. Following i.v. inoculation into naive and SIV-infected rhesus

macaques, newly inoculated SIV particles were quickly cleared from the plasma at an estimated

half-life of 1.3 to 4.6 minutes [43,44]. Inoculated virus was not found in the blood’s cellular

compartment, nor was it degraded when incubated in blood ex vivo, suggesting active removal

of virions from circulation [43]. Another rhesus macaque study also identified rapid removal

of HIV particles from circulation with half-lives of 13 to 26 minutes in naive animals [123]. A

very small percentage of inoculated virus could be detected in the primate spleen, lungs, and

lymph nodes [43,44]; however, the bulk of viral clearance from circulation was mediated by

the liver [20,43,44]. In mice, inoculation of HIV-like particles resulted in clearance of 97% of

the inoculum by 10 minutes [20], and HIV structural proteins env and gag were observed to

associate with LSECs (approximately 88%) and KCs (approximately 12%) [20]. Studies in SIV

macaque models suggest that captured virions are rapidly degraded, as only 30% of infused

S35-labeled virus was detected at 1 hour postinoculation (hpi) [44], and no viral RNA was

detected in tissues at later time points [43,123].

Human patient data also support a short half-life of circulating HIV particles, ranging from

28 minutes to no greater than 6 hours depending on methods used [124,125]. Correlating with

animal data, HIV antigen and mRNA can also be detected in patient livers, particularly within

KCs and to some degree within hepatocytes [126,127]. In vitro, both KC and LSEC primary

cultures are capable of permissive HIV infection [128–130]. However, while liver samples of

HIV-infected individuals (and SIV-infected macaques) have shown KCs stain positive for HIV

antigen and nucleic acids, it remains uncertain whether KCs are able to support productive

HIV/SIV replication in vivo [126,127,131–133]. In addition, host factors on KCs and LSECs

responsible for mediating HIV-1 removal from circulation have yet to be identified.

HBV

Initial estimates of HBV half-life in the circulation ranged from 1 to 3 days [134–138]. These

estimates were calculated following antiviral treatment to arrest HBV replication. However,

more recent studies have attempted to account for the delayed release of HBV virions assem-

bled prior to the start of drug intervention. The first such study calculated a revised HBV half-

life of 3.8 hours in a chimpanzee model [139]. A subsequent study comparing chronic disease

patients categorized into low- and high-viremic groups estimated median half-lives of 2.5 min-

utes and 46 minutes, respectively [140], suggesting that clearance rates may be affected by viral

load or underlying host factors. Interestingly, such distinction in clearance rates between low-
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and high-viremic patients was not observed in an immunodeficient mouse model (HBV half-

life of 3 hours) [140]. It has been suggested liver hepatocyte expression of sodium taurocholate

cotransporting polypeptide both mediates HBV removal from circulation and establishes liver

infection [141].

HCV

HCV is rapidly cleared from circulation with a half-life of a few hours in the blood, as calcu-

lated from antiviral therapy [142,143], plasma apheresis [124,144], and liver transplantation

studies [145]. Liver transplantation studies indicate the liver is not only involved in HCV repli-

cation but also viral clearance from circulation, as immediately postprocedure liver transplant

recipients exhibit significantly enhanced rates of viral clearance [145]. However, mechanisms

mediating this clearance are unknown and could be due to infection of new hepatocytes, cap-

ture by reticuloendothelial cells of the donor liver, or a combination thereof.

Arboviruses

Arboviruses are arthropod-borne viruses maintained in nature through transmission cycles

involving hematophagous arthropod vectors and vertebrate hosts [146]. Viremia is an impor-

tant determinant of arbovirus transmission efficiency, reservoir competency, and disease

severity. Critical for arbovirus transmission, vertebrate hosts must produce a viremia of suffi-

ciently high magnitude and duration to support infection of the arthropod vector from a

blood meal. Beyond transmission, increased levels of viremia have also been shown to correlate

with more severe disease outcomes for several arboviruses [147–152]. However, our under-

standing of arboviral viremia control is limited.

CHIKV, RRV, and ONNV

In mice, vascular clearance of arthritogenic alphaviruses CHIKV, Ross River virus (RRV), and

o’nyong’nyong virus (ONNV) depends on the presence of scavenger receptor (SR) MARCO

(SR-A6) (Fig 3) [17]. In wild-type (WT) mice, these viruses are efficiently cleared from circula-

tion in less than 1 hour following i.v. inoculation [17]. Meanwhile, MARCO-deficient mice fail

to remove i.v. inoculated virus, and following subcutaneous (s.c.) inoculation, they exhibit

enhanced viral dissemination and worse disease outcomes [17].

MARCO-mediated clearance is specifically dependent on the presence of a particular lysine

residue in the viral E2 glycoprotein. For CHIKV and ONNV, that critical lysine residue is at

position E2-200 (K200), and for RRV, it is at position E2-251 (K251) [17]. Interestingly, substi-

tution of any other residue, including another positive-charged residue, at these sites produces

virions resistant to murine vascular clearance [17]. This lysine-specific vascular clearance phe-

notype suggests that the virion’s MARCO binding site may be sterically restrained. Alterna-

tively, ONNV and CHIKV E2-K200 and RRV E2-K251 may be posttranslationally modified,

as many possible lysine modifications exist [153], and SRs were first identified based on the

capacity to recognize molecules such as low-density lipoprotein (LDL) with specific modifica-

tions on lysines including acetylation and oxidation [154].

VEEV

Serum clearance studies with Venezuelan equine encephalitis virus (VEEV) have suggested

correlations between virion–glycosaminoglycan (GAG) interactions and clearance from circu-

lation. Specifically, VEEV strains that exhibit high affinity for GAGs in vitro are more swiftly

removed from circulation than strains with reduced GAG-binding properties [42]. For

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010474 May 5, 2022 8 / 25

https://doi.org/10.1371/journal.ppat.1010474


example, mutations in VEEV that enhance virion–GAG interactions correlated with more

rapid vascular clearance following i.v. inoculation of mice, with clearance mediated by the

liver, spleen, lung, and kidney [42]. A similar finding was observed in a nonhuman primate

model, wherein VEEV vaccine strain TC-83 (distinguished by a point mutation in the viral E2

glycoprotein that enhances GAG-binding in vitro [42,155]) was rapidly removed from circula-

tion, while its virulent progenitor strain, TrD, was resistant [72]. Studies with other viruses

also correlate the presence of virion GAG-binding mutations with rapid vascular clearance

(alphaviruses: Sindbis virus (SINV) [41,71], Western equine encephalitis virus [73], Eastern

equine encephalitis virus [156]; flaviviruses: Japanese encephalitis virus [40], Murray Valley

encephalitis virus [40]; and picornavirus: Mengo virus [70]). Following clearance, these GAG-

binding viruses are often liver localized [22,40,42,71], which is known to have high amounts of

heparan sulfate (a class of GAGs) [157] and to mediate vascular clearance of heparan sulfate-

binding proteins in vivo [158–161]. Given the GAG-binding properties of these viruses

described above are also associated with attenuation in vivo [42,162–164], GAG-mediated vas-

cular clearance is commonly hypothesized to control viremia and thus ultimately limit disease

development [165].

Fig 3. Mechanisms of viral capture. The liver appears to be the main mediator of viral vascular clearance. However,

the specific mechanisms of removing virions from the circulation is distinct and virus-specific. The removal of AdV

particles is mainly performed by KCs; however, some of the receptors shown to interact with AdV can also be

expressed by LSECs (SR-F1 and SR-A1). In addition to SRs (SR-F1, SR-A1, and SR-A6), nAb, and CRIg also promote

clearance of AdV from the bloodstream. For arthritogenic alphaviruses (CHIKV, RRV, and ONNV), clearance is

mediated specifically by SR-A6 (MARCO) and KCs. However, particles that have a single point mutation to replace a

lysine residue on the E2 glycoprotein (K200X for CHIKV and ONNV; K251X for RRV) evade capture. For the

flaviviruses DENV and WNV, the type of virion glycosylation present affects clearance mediated by MBL. Specifically,

MBL binds the high-mannose glycosylated virus particles, but not virions decorated with complex glycosylation.

However, MBL is not the only mediator of DENV and WNV clearance, and it is clear another, as-yet-unknown

mechanism also exists. This figure was created with BioRender.com. AdV, adenovirus; CHIKV, chikungunya virus;

DENV, dengue virus; KC, Kupffer cell; LSEC, liver sinusoidal endothelial cell; MBL, mannose-binding lectin; nAb,

natural antibodies; ONNV, o’nyong’nyong virus; RRV, Ross River virus; WNV, West Nile virus.

https://doi.org/10.1371/journal.ppat.1010474.g003
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SINV

Studies with SINV have identified a role for host-specific posttranslational modifications in

determining viral clearance kinetics from the serum. Specifically, the absence of sialic acid on

the SINV virion is associated with enhanced complement C3 activation in vitro and comple-

ment-mediated enhancement of vascular clearance in vivo [166]. Comparison of mosquito-

and mammalian cell–derived virus detected more sialic acid associated with the latter [166];

insect cells generally do not sialylate glycans, unlike mammalian cells [167]. Removal of sialic

acid from mammalian cell–derived virus by neuraminidase treatment resulted in enhanced

complement C3 activation in vitro, comparable to mosquito cell–derived virus [166].

DENV and WNV

Investigations on vascular clearance of dengue (DENV) and West Nile (WNV) virus particles

from circulation have implicated a role for mannose-binding lectin (MBL) (Fig 3). In vivo, MBL

contributes to swift vascular clearance of DENV (<0.5 hpi), as MBL-A/C-deficient mice cleared

DENV particles less efficiently compared with WT mice [67]. In vitro, murine MBL binds to

DENV and WNV via terminal mannose N-linked glycans and activates the MBL-complement

pathway to neutralize virus [67]. In addition, in vitro human MBL can neutralize all 4 DENV

serotypes independent of complement [168]. Whether MBL-mediated activation of the comple-

ment pathway is necessary for its role in vascular clearance remains to be investigated. Moreover,

the absence of MBL delayed, but did not abolish, the vascular clearance of DENV, suggesting that

additional pathways also contribute to the clearance of DENV particles from murine circulation.

The ability of MBL to bind WNV is influenced by viral glycosylation [67]. MBL binds

strongly to mosquito cell–derived WNV, but not mammalian cell–derived WNV [67]. This

was associated with cell type–specific N-linked glycan chains [67], as mosquito cells produced

viral particles with truncated, high-mannose N-linked glycan chains, while mammalian cells

are capable of further processing these N-linked glycans into more complex chains [167].

Inhibiting formation of complex N-linked glycosylation during WNV propagation in mam-

malian cells yielded progeny virions with exposed high-mannose sugars. These virions were

more susceptible to MBL deposition, and this effect of MBL recognition of WNV N-linked gly-

cosylation was supported by in vivo vascular clearance experiments [67].

VSV

The first report on the serum clearance of vesicular stomatitis virus (VSV) found it to be rapidly

removed from circulation over a 5-minute period, and at 20 minutes pi, most of the infectious

virus recovered was in the liver [30]—later shown to colocalize with KCs [23]. AAU : ThesentenceAlthoughamorerecentstudyanalyzing:::isincomplete:Pleaseupdateandcorrect:lthough a more

recent study analyzing VSV biodistribution at 2 hpi found more infectious virus in the spleen

rather than the liver [60]; where virus colocalized with red pulp macrophages and MMMs

[23,53]. Regarding splenic capture, VSV removal from circulation was heavily dependent on the

presence of IgM natural antibodies, wherein splenic uptake was reduced by 2 to 3.5 logs at 1 hpi

in antibody-deficient mice, but liver uptake was unaffected [60]. Furthermore, reconstitution

of μMT mice (deficient in functional B cells and thus also natural antibody) with a single dose

of normal mouse serum 30 minutes prior to i.v. inoculation of a lethal dose of VSV permitted

75% to 80% survival by 60 dpi (0% survival of nonreconstituted mice by 10 dpi) [60].

Gene therapy vectors

Gene therapy delivery by viral vectors is an attractive method due to viruses’ ability to evade

immunosurveillance and deliver nucleic acids to specific cell types. Because viral vectors can
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be administrated i.v., clearance of these vectors can influence efficacy, side effects, and half-life

of the gene therapy.

AdV

The most extensively studied virus on the topic of viral vascular clearance is human AdV 5.

For the purposes of this review, we highlight only those details of AdV vascular clearance that

complement and generate a more comprehensive description of the virus–host interactions

mediating removal of viral particles from circulation in general. For more information on

AdV vascular clearance and the innate immune response, please see the detailed reviews by

Allen and Byrnes [169] and Atasheva and colleagues [170].

Following i.v. inoculation, AdV is rapidly removed from circulation [171–173] and primar-

ily distributed to the liver in both mice and nonhuman primates [9,48,171,172,174], although

splenic macrophages in the marginal zone and red pulp have also been shown to be involved

[48,56,57]. In mice, greater than 96% of circulating virus is cleared by the liver within 10 min-

utes post-i.v. inoculation [173]. An in vivo imaging study of near-infrared–labeled AdV parti-

cles revealed virus particles accumulated within the liver as soon as 11 seconds post-i.v.

inoculation and saturation of the liver-localized signal occurred by 3 minutes postinoculation

[5]. Within the liver, AdV specifically localizes to KCs [9,12,48,174–176]. However, there is

also evidence of AdV uptake by LSECs [172], and mouse strain differences can affect whether

the bulk of AdV uptake is performed by KCs or LSECs [11]. With regard to the latter, it is

likely allelic differences play a role in determining which cell types mediate viral vascular clear-

ance. Data in the same study implied mouse strain-dependent differences may also result in

differential degrees of splenic involvement, wherein clearance in BALB/c mice is dominated

by the spleen and C57BL/6, the liver [11].

It has been suggested that SRs expressed on KCs are responsible for capturing circulating

AdV, specifically SR-A1 (MSR-1) [15,16,177], SR-F1 (SREC-I) [15,16], and SR-A6 (MARCO)

(Fig 3) [178]. Supporting a role for SRs, pretreatment of mice with SR inhibitors (poly[I], poly

[G], and/or dextran sulfate) reduced KC-AdV association by 80% to 90% and, subsequently,

promoted greater liver transfection [10,14–16].

Natural antibodies and complement also promote uptake of AdV particles by KCs (Fig 3).

RAG1 KO mice, which are unable to produce natural antibodies due to nonfunctional B cells,

exhibit a 75% decrease in KC viral burden, but serum clearance can be partially rescued by pre-

injection of WT naive mouse serum [10]. Natural antibodies bind AdV in vitro [10,179], and

several other studies offer supporting in vivo evidence in RAG KO mice, as their hepatocytes

are more highly transduced upon AdV i.v. inoculation (implying poor uptake by KCs)

[9,11,179]. As for complement, C3 is activated in vivo following i.v. inoculation of AdV [68].

In vitro studies with AdV found C3 and C4 directly bind virions [10] and inhibit viral replica-

tion postinternalization [180,181]. Furthermore, CRIg expression by KCs contributes to AdV

vascular clearance. CRIg-deficient mice clear AdV from circulation less efficiently, and data

suggest reduced uptake of viral particles by CRIg-deficient KCs [12]. Other hematogenous

host factors can also promote AdV resistance to KC-capture. For example, binding of coagula-

tion factors to AdV promotes hepatocyte transduction [10,33,35–37,175] and thus, by exten-

sion, escape from KC entrapment.

In addition to host determinants of clearance, several studies examined virion features

affecting clearance and biodistribution of circulating AdV. A single-point mutation in the

virion fiber protein (Y477A), known to ablate binding to the AdV entry receptor CAR (cox-

sackie and AdV receptor), delayed viral clearance from the bloodstream following i.v. inocula-

tion [182]. Meanwhile, a different fiber mutation also known to disrupt CAR-binding
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(S408E-P409A) found no impact on viral capture by KCs [183]. These data suggest 2 mecha-

nisms to remove AdV from circulation: KCs acting independent of CAR and a non-KC cell

population dependent on CAR. Virion features that specifically affect KC uptake are the fiber

and hexon proteins. Chimeric AdV with different serotype knob-domains of fiber (Ad35 and

Ad9) resulted in varying degrees of KC association [184]. This is supported by in vitro data

wherein pretreatment of primary KC with knob protein decreases AdV uptake [177]. Hexon

protein also appears to mediate KC interactions, specifically through the hypervariable regions

(HVRs). Chimeric Ad5 expressing the HVR of Ad6 results in 10-fold enhanced hepatocyte

transduction and reduced KC loss (implying better KC evasion; see KC response section)

[185]. Similarly, modification of the hexon HVR to enhance virion PEGylation caused 10- to

40-fold enhancement of hepatocyte transduction [13]. This enhancement is thought to be due

to KC evasion, as pretreating mice to deplete KC did not produce any additive effects [13].

MV vector

Clearance of measles virus (MV)-like particles from murine circulation is rapid, with a half-life

of 1 minute and undetectable plasma virus levels by 30 minutes pi [39]. These clearance kinet-

ics were measured in the absence of natural antibodies using severe combined immunodefi-

ciency (SCID) mice, and clearance of MV-like particles appears to be primarily mediated by

CD68+ macrophages of the liver and spleen. Because pretreatment with SR inhibitors (poly[I],

poly[G], and dextran sulfate) reduced, but did not eliminate, viral uptake by the liver and

spleen, a SR seems to be partially responsible for MV clearance. However, it is evident a sec-

ond, poly[I]-insensitive mechanism of clearance exists [39].

Poxviruses

A series of studies by Mims in 1959 analyzed the serum clearance of mousepox virus [7,49]. By

2 to 3 minutes post-i.v. inoculation, 90% of the inoculated mousepox virus was removed from

circulation, and analysis of virus burdens in the tissues at 5 minutes pi found 95% of the inocu-

lated virus was present in the liver, while the spleen accounted for only 4% [7]. The amount of

infectious virus detected in the liver declined over time, suggesting viral particles were

destroyed. Microscopic examination identified virus was captured by liver littoral cells (KCs

and LSECs) but not hepatocytes [7]. Despite the rapid viral clearance from circulation, Mims

noted a small fraction of inoculated virus persisted in the bloodstream. This residual virus

associated with platelets, and when reinoculated into a naive mouse, remained relatively resis-

tant to vascular clearance [7].

Building on this earlier work, a 2017 study on dissemination of vaccinia virus (VACV)

found i.v. inoculation of low viral doses (100 and 1,000 plaque-forming units [PAU : PleasenotethatPFUhasbeendefinedasplaque � formingunitinthesentenceBuildingonthisearlierwork::::Pleasecheckandcorrectifnecessary:FU]) unable to

effectively disseminate to murine ovaries [64]. However, depletion of phagocytic cells via clo-

dronate permitted viral dissemination [64], suggesting that macrophages mediate the capture

of VACV from circulation. In contrast, depletion of dendritic cells (DCs) in CD11c-DTR

transgenic mice did not alter VACV dissemination [64]. In congruence, an earlier observation

described that pretreatment of mice with thorotrast (which impedes phagocytic activity) also

inhibited VACV vascular clearance [21]. However, the fate of VACV following vascular clear-

ance appears to be tissue dependent. Hepatic capture results in viral destruction, as VACV

antigen was only detected at early time points post-i.v. inoculation and became undetectable

after 1 hpi [21]. In contrast, splenic uptake of VACV by MZMs [64] and MMMs [186] results

in productive infection.

Natural antibodies have been proposed to promote splenic uptake of VACV, as μMT mice

(deficient in functional B cells) exhibited both decreased serum clearance of the virus and
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decreased titer of virus in the spleen [60]. However, the liver may compensate for decreased

splenic uptake as absence of natural antibodies was also associated with a modest increase in

liver viral titer [60].

Fate of viral capture

In general, rapid viral vascular clearance is associated with reduced viral pathogenesis, as seen

in animal studies specifically impairing or depleting RES phagocytes via pharmaceuticals (e.g.,

thorotrast and clodronate-loaded liposomes). For example, s.c. inoculation of Semliki Forest

virus (mimicking the natural route of inoculation for this arbovirus) into thorotrast-treated

mice produced accelerated and heightened viremia compared with untreated controls [21].

Similarly, RES impairment enhanced herpes simplex virus 2 mortality [187] and promoted

LCMV replication and viremia development [29] in murine models. Interestingly, while clo-

dronate-treated, LCMV-infected mice were able to mount an initial virus-specific cytotoxic T

lymphocyte (CTL) response, these T cells soon exhibited an exhausted T-cell phenotype as

measured by an in vitro killing assay [188]. Similarly, a study of LCMV infection in op/op mice

(that naturally lack MZMs but retain KCs [189,190]) also found disease development associ-

ated with exhausted CTLs or an immunopathologic CTL response [53].

Another method to investigate the impact of vascular clearance on disease severity is the

utilization of specific viral mutants with altered clearance kinetics. One such mutation in the

capsid of the hepatitis A virus (HAV) promoted faster serum clearance than WT virus due to

its stronger affinity for glycophorin A expressed on erythrocytes [65]. Competition experi-

ments, where differing amounts of WT and mutant HAV were co-inoculated i.v., showed that

the mutant was specifically removed from circulation at a faster rate than WT virus [65]. This

more rapid clearance correlated with less productive liver infection [65]. Similarly, a single-

point mutation in the E2 glycoprotein of CHIKV, RRV, and ONNV made virions completely

resistance to vascular clearance [17]. Following s.c. inoculation, this point mutation enhanced

CHIKV dissemination, viremia, and subsequent disease severity [17,191]. From these studies,

it is evident the RES is an important modulator of viral pathogenesis.

KC and liver-mediated T-cell response

Following uptake of circulating viral particles, KCs restrict viral gene expression and replica-

tion in a manner dependent on signaling through the type-I interferon receptor (IFNAR).

Upon VACV vascular clearance, viral replication was controlled by KC IFNAR signaling and

promoted host survival [192]. Despite lack of detectable type I interferon (IFN-I) in the serum

[193], a local, hepatic IFN-I response controlled viral replication [192]. Likewise, KC IFNAR

signaling controlled LCMV infection [29] and was associated with a rapid influx of inflamma-

tory monocytes to the liver [194]. In vitro, KCs isolated from human liver specimens phagocy-

tize and degrade purified DENV-1 particles [195], producing antiviral cytokines, including

IFN-α, interleukin (IAU : PleasenotethatILhasbeendefinedasinterleukininthesentenceInvitro;KCsisolatedfromhuman::::Pleasecheckandcorrectifnecessary:L)-6, and tumor necrosis factor alpha (TNFα), in response to DENV-1

uptake.

However, KC–virus interactions may also result in KC death. For example, while most AdV

particles captured by the liver are degraded [173,196], as evidenced by poor or failed transduc-

tion of KCs and LSECs [9,197,198], this control of viral infection also comes at a cost for the

KC. Membrane disruption by the AdV capsid protein decreases the KC population size

[25,183,199]. Consequently, this mutual destruction of KC and AdV could provide a window

of opportunity for a secondary infection to disseminate unchecked until KC compartment

repopulation.
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Capture of circulating virions by the liver can affect development of an antiviral T-cell

response (for a review on liver immunosurveillance, please see [200]). LSECs are suggested to

activate T cells against circulating antigen; however, their priming of naive T cells typically

produces tolerant or regulatory T-cell responses [200 201]. While KCs are generally skewed to

promote a tolerogenic T-cell response [202], they can also induce an antiviral T-cell response

analogous to that observed in the secondary lymphoid organs [203,204]. Specifically, KC-tar-

geted uptake of virus has been shown to produce robust, effective CTL responses [203,205],

even in the absence of hepatic DCs [203].

Splenic macrophage response

While splenic macrophages do not appear to play a dominant role in the physical removal of

circulating virions (as there are no reports of splenectomized animals failing to clear virus

from circulation), their participation does impact the immunological responses to infection.

For example, murine MZMs and MMMs are potent producers of IFN-I in response to i.v.

inoculation of UV-inactivated herpes simplex virus 1 [58,115], while no IFN-producing cells

were detected in the liver [58]. Likewise, AdV capture by marginal zone, MARCO+ macro-

phages elicited an inflammatory response [55]. Specifically, these MZMs recruited neutrophils

to the spleen marginal zone leading to destruction of virus-associated macrophages [55].

Meanwhile, several studies with AdV [56,57] and VSV [23,52] have demonstrated a role for

MMMs in promoting the development of strong B and T-cell responses. During infection,

MMMs capture circulating virions but, unlike KCs and other splenic macrophage subpopula-

tions, permit viral replication as a means of amplifying viral antigen for delivery to DC. Viral

replication is supported by both the nonresponsiveness of MMMs to IFN-I due to expression

of ubiquitin-specific peptidase 18 (USP18, a negative regulator of IFNAR signaling) [23] as

well as the effects of TNF secreted by CD11b+/CD11c−/Ly6C+/Ly6G+ cells [52]. MMM-ampli-

fied viral antigen can then be cross-presented by DCs to prime CTLs [23,52,56, 57], eliciting a

biased response to major histocompatibility complex (MAU : PleasenotethatMHChasbeendefinedasmajorhistocompatibilitycomplexinthesentenceMMM � amplifiedviralantigencanthenbe::::Pleasecheckandcorrectifnecessary:HC)-I–binding peptides [57]. In the

absence of DCs, an adaptive immune response is still elicited, albeit to a lower degree [57].

Conclusions

The literature contains a vast variety of papers on the kinetics of viral vascular clearance and

subsequent biodistribution. If susceptible to vascular clearance, most virions are rapidly

cleared from circulation by the liver, with some splenic participation (Table 1). The mecha-

nisms orchestrating clearance vary between viruses, and in some cases, the RES may utilize

multiple, redundant avenues to capture a virion, as seen with DENV [67] and MV [39]. Inter-

estingly, host mechanisms of viral vascular clearance may supersede viral interactions with

receptors identified in vitro, as shown with AdV. For example, different AdV serotypes may

use the same receptor in vitro, yet exhibit different biodistributions following i.v. inoculation

[119].

While the literature describes a clear role for the RES-mediated removal of viral particles

from circulation and importance in controlling viral pathogenesis, only a handful of studies

have delved deeper to examine immunological responses elicited in specific RES cell popula-

tions following viral vascular clearance and the fate of captured virions

[23,52,53,56,57,186,205].

Furthermore, it is unclear how aging or illness that disrupts integrity of the RES system

(e.g., liver or spleen diseases) affects clearance of circulating viruses, although some studies

observed impaired bacterial clearance in patients suffering liver cirrhosis [206, 207]. Elucidat-

ing virus–host interactions and downstream consequences (and in different physiological
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conditions) will enhance our understanding of the application of virus-vectored gene thera-

pies, the impact of vascular clearance (or failure thereof) on viral pathogenesis and disease

severity, and even the ecology of arthropod-borne viruses.

References
1. Yona S, Gordon S. From the reticuloendothelial to mononuclear phagocyte system—The unac-

counted years. Front Immunol. 2015; 6(JUL):1–7. https://doi.org/10.3389/fimmu.2015.00328 PMID:

26191061

2. Van RN, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation

of liposomes and applications. J Immunol Methods. 1994; 174(1–2):83–93. https://doi.org/10.1016/

0022-1759(94)90012-4 PMID: 8083541

3. Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, et al. Bone marrow-derived

monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016; 7:1–10.

https://doi.org/10.1038/ncomms10321 PMID: 26813785

4. Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C, et al. Role for Spi-C in the develop-

ment of red pulp macrophages and splenic iron homeostasis. Nature. 2009 Jan; 457(7227):318–21.

https://doi.org/10.1038/nature07472 PMID: 19037245

5. Hofherr SE, Adams KE, Chen CY, May S, Weaver EA, Barry MA. Real-time dynamic imaging of virus

distribution In Vivo. PLoS ONE. 2011; 6(2):1–8. https://doi.org/10.1371/journal.pone.0017076 PMID:

21347236

6. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013 Oct; 14(10):996–1006.

https://doi.org/10.1038/ni.2691 PMID: 24048121

7. Mims CA. The response of mice to large intravenous injections of ectromelia virus. I. The fate of

injected virus. Br J Exp Pathol. 1959; 40:533–43. PMID: 14422711

8. Britt W. Virus entry into host, establishment of infection, spread in host, mechanisms of tissue damage.

In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editors. Human

Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge; 2007. PMID: 21348097

9. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, et al. Sequestration of adenoviral vector

by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 2001; 3(1):28–

35. https://doi.org/10.1006/mthe.2000.0227 PMID: 11162308

10. Xu Z, Tian J, Smith JS, Byrnes AP. Clearance of Adenovirus by Kupffer Cells Is Mediated by Scaven-

ger Receptors, Natural Antibodies, and Complement. J Virol. 2008; 82(23):11705–13. https://doi.org/

10.1128/JVI.01320-08 PMID: 18815305

11. Snoeys J, Mertens G, Lievens J, van Berkel T, Collen D, Biessen EAL, et al. Lipid emulsions potently

increase transgene expression in hepatocytes after adenoviral transfer. Mol Ther. 2006; 13(1):98–

107. https://doi.org/10.1016/j.ymthe.2005.06.477 PMID: 16112619

12. He JQ, Katschke KJ Jr, Gribling P, Suto E, Lee WP, Diehl L, et al. CRIg mediates early Kupffer cell

responses to adenovirus. J Leukoc Biol. 2013; 93:301–6. https://doi.org/10.1189/jlb.0612311 PMID:

23225913

13. Khare R, Reddy VS, Nemerow GR, Barry MA. Identification of Adenovirus Serotype 5 Hexon Regions

That Interact with Scavenger Receptors. J Virol. 2012; 86(4):2293–301. https://doi.org/10.1128/JVI.

05760-11 PMID: 22156515

14. Haisma HJ, Kamps JAAM, Kamps GK, Plantinga JA, Rots MG, Bellu AR. Polyinosinic acid enhances

delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol.

2008; 89(5):1097–105. https://doi.org/10.1099/vir.0.83495-0 PMID: 18420786

15. Piccolo P, Vetrini F, Mithbaokar P, Grove NC, Bertin T, Palmer D, et al. SR-A and SREC-I are Kupffer

and Endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther. 2013; 21(4):767–74.

https://doi.org/10.1038/mt.2012.287 PMID: 23358188

16. Piccolo P, Annunziata P, Mithbaokar P, Brunetti-Pierri N. SR-A and SREC-I binding peptides increase

HDAd-mediated liver transduction. Gene Ther. 2014; 21(11):950–7. https://doi.org/10.1038/gt.2014.

71 PMID: 25119377

17. Carpentier KS, Davenport BJ, Haist KC, McCarthy MK, May NA, Robison A, et al. Discrete viral E2

lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses.

Elife. 2019 Oct 9; 8:e49163. https://doi.org/10.7554/eLife.49163 PMID: 31596239

18. Stone D, Liu Y, Shayakhmetov D, Li Z-Y, Ni S, Lieber A. Adenovirus-Platelet Interaction in Blood

Causes Virus Sequestration to the Reticuloendothelial System of the Liver. J Virol. 2007; 81(9):4866–

71. https://doi.org/10.1128/JVI.02819-06 PMID: 17301138

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010474 May 5, 2022 15 / 25

https://doi.org/10.3389/fimmu.2015.00328
http://www.ncbi.nlm.nih.gov/pubmed/26191061
https://doi.org/10.1016/0022-1759%2894%2990012-4
https://doi.org/10.1016/0022-1759%2894%2990012-4
http://www.ncbi.nlm.nih.gov/pubmed/8083541
https://doi.org/10.1038/ncomms10321
http://www.ncbi.nlm.nih.gov/pubmed/26813785
https://doi.org/10.1038/nature07472
http://www.ncbi.nlm.nih.gov/pubmed/19037245
https://doi.org/10.1371/journal.pone.0017076
http://www.ncbi.nlm.nih.gov/pubmed/21347236
https://doi.org/10.1038/ni.2691
http://www.ncbi.nlm.nih.gov/pubmed/24048121
http://www.ncbi.nlm.nih.gov/pubmed/14422711
http://www.ncbi.nlm.nih.gov/pubmed/21348097
https://doi.org/10.1006/mthe.2000.0227
http://www.ncbi.nlm.nih.gov/pubmed/11162308
https://doi.org/10.1128/JVI.01320-08
https://doi.org/10.1128/JVI.01320-08
http://www.ncbi.nlm.nih.gov/pubmed/18815305
https://doi.org/10.1016/j.ymthe.2005.06.477
http://www.ncbi.nlm.nih.gov/pubmed/16112619
https://doi.org/10.1189/jlb.0612311
http://www.ncbi.nlm.nih.gov/pubmed/23225913
https://doi.org/10.1128/JVI.05760-11
https://doi.org/10.1128/JVI.05760-11
http://www.ncbi.nlm.nih.gov/pubmed/22156515
https://doi.org/10.1099/vir.0.83495-0
http://www.ncbi.nlm.nih.gov/pubmed/18420786
https://doi.org/10.1038/mt.2012.287
http://www.ncbi.nlm.nih.gov/pubmed/23358188
https://doi.org/10.1038/gt.2014.71
https://doi.org/10.1038/gt.2014.71
http://www.ncbi.nlm.nih.gov/pubmed/25119377
https://doi.org/10.7554/eLife.49163
http://www.ncbi.nlm.nih.gov/pubmed/31596239
https://doi.org/10.1128/JVI.02819-06
http://www.ncbi.nlm.nih.gov/pubmed/17301138
https://doi.org/10.1371/journal.ppat.1010474


19. Shen S, Bryant KD, Sun J, Brown SM, Troupes A, Pulicherla N, et al. Glycan Binding Avidity Deter-

mines the Systemic Fate of Adeno-Associated Virus Type 9. J Virol. 2012; 86(19):10408–17. https://

doi.org/10.1128/JVI.01155-12 PMID: 22787229

20. Mates JM, Yao Z, Cheplowitz AM, Suer O, Phillips GS, Kwiek JJ, et al. Mouse liver sinusoidal endothe-

lium eliminates HIV-like particles from blood at a rate of 100 million per minute by a second-order

kinetic process. Front Immunol. 2017; 8(JAN):1–9.

21. Mims CA. Aspects of the pathogenesis of virus diseases. Bacteriol Rev. 1964 Mar; 28(1):30–71.

https://doi.org/10.1128/br.28.1.30-71.1964 PMID: 14127970

22. Jahrling PB, Gorelkin L. Selective clearance of a benign clone of Venezuelan equine encephalitis virus

from hamster plasma by hepatic reticuloendothelial cells. J Infect Dis. 1975; 132(6):667–76. https://

doi.org/10.1093/infdis/132.6.667 PMID: 1202111

23. Honke N, Shaabani N, Cadeddu G, Sorg UR, Zhang DE, Trilling M, et al. Enforced viral replication acti-

vates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol. 2012; 13

(1):51–7.

24. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, et al. The role of Kupffer cell activation

and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J

Virol. 1997; 71(11):8798–807. https://doi.org/10.1128/JVI.71.11.8798-8807.1997 PMID: 9343240

25. Manickan E, Smith JS, Tian J, Eggerman TL, Lozier JN, Muller J, et al. Rapid Kupffer cell death after

intravenous injection of adenovirus vectors. Mol Ther. 2006; 13(1):108–17. https://doi.org/10.1016/j.

ymthe.2005.08.007 PMID: 16198149

26. Mims CA. The response of mice to the intravenous injection of cowpox virus. Br J Exp Pathol. 1968; 49

(1):24–32. PMID: 5689130

27. Tohidi-Esfahani R, Vickery K, Cossart Y. The early host innate immune response to duck hepatitis B

virus infection. J Gen Virol. 2010; 91(2):509–20. https://doi.org/10.1099/vir.0.015529-0 PMID:

19846670

28. Roberts JA. Histopathogenesis of mousepox: III. Ectromelia virulence Br J Exp Pathol. 1963 Oct; 44

(5):465–72. PMID: 14066120

29. Lang PA, Recher M, Honke N, Scheu S, Borkens S, Gailus N, et al. Tissue macrophages suppress

viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice.

Hepatology. 2010; 52(1):25–32. https://doi.org/10.1002/hep.23640 PMID: 20578253

30. Brunner K, Hurez D, McCluskey R, Benacerraf B. Blood clearance of P-32 Labeled Vesicular Stomati-

tis and Newcastle Disease Viruses by the Reticuloendothelial System in Mice. J Immunol. 1960;

85:99–105. PMID: 13805345

31. Simon-Santamaria J, Rinaldo CH, Kardas P, Li R, Malovic I, Elvevold K, et al. Efficient uptake of

blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal

Vasa recta. PLoS ONE. 2014; 9(11):e111762. https://doi.org/10.1371/journal.pone.0111762 PMID:

25375646

32. Claassen IJ, Osterhaus AD, Claassen E. Antigen detection in vivo after immunization with different

presentation forms of rabies virus antigen: involvement of marginal metallophilic macrophages in the

uptake of immune-stimulating complexes. Eur J Immunol. 1995 May; 25(5):1446–52. https://doi.org/

10.1002/eji.1830250547 PMID: 7774649

33. Zaiss AK, Foley EM, Lawrence R, Schneider LS, Hoveida H, Secrest P, et al. Hepatocyte heparan sul-

fate is required for adeno-associated virus 2 but dispensable for adenovirus 5 liver transduction in

vivo. J Virol. 2016; 90(1):412–20. https://doi.org/10.1128/JVI.01939-15 PMID: 26491162

34. Breiner KM, Schaller H, Knolle PA. Endothelial cell-mediated uptake of a hepatitis B virus: A new con-

cept of liver targeting of hepatotropic microorganisms. Hepatology. 2001; 34(4 I):803–8. https://doi.

org/10.1053/jhep.2001.27810 PMID: 11584379

35. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L, et al. Multiple vita-

min K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes.

Blood. 2006; 108(8):2554–61. https://doi.org/10.1182/blood-2006-04-008532 PMID: 16788098

36. Waddington SN, Parker AL, Havenga M, Nicklin SA, Buckley SMK, McVey JH, et al. Targeting of ade-

novirus serotype 5 (Ad5) and 5/47 pseudotyped vectors in vivo: fundamental involvement of coagula-

tion factors and redundancy of CAR binding by Ad5. J Virol. 2007 Sep 1; 81(17):9568–71. https://doi.

org/10.1128/JVI.00663-07 PMID: 17553882

37. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, et al. Adenovirus serotype 5

hexon mediates liver gene transfer. Cell. 2008; 132(3):397–409. https://doi.org/10.1016/j.cell.2008.01.

016 PMID: 18267072

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010474 May 5, 2022 16 / 25

https://doi.org/10.1128/JVI.01155-12
https://doi.org/10.1128/JVI.01155-12
http://www.ncbi.nlm.nih.gov/pubmed/22787229
https://doi.org/10.1128/br.28.1.30-71.1964
http://www.ncbi.nlm.nih.gov/pubmed/14127970
https://doi.org/10.1093/infdis/132.6.667
https://doi.org/10.1093/infdis/132.6.667
http://www.ncbi.nlm.nih.gov/pubmed/1202111
https://doi.org/10.1128/JVI.71.11.8798-8807.1997
http://www.ncbi.nlm.nih.gov/pubmed/9343240
https://doi.org/10.1016/j.ymthe.2005.08.007
https://doi.org/10.1016/j.ymthe.2005.08.007
http://www.ncbi.nlm.nih.gov/pubmed/16198149
http://www.ncbi.nlm.nih.gov/pubmed/5689130
https://doi.org/10.1099/vir.0.015529-0
http://www.ncbi.nlm.nih.gov/pubmed/19846670
http://www.ncbi.nlm.nih.gov/pubmed/14066120
https://doi.org/10.1002/hep.23640
http://www.ncbi.nlm.nih.gov/pubmed/20578253
http://www.ncbi.nlm.nih.gov/pubmed/13805345
https://doi.org/10.1371/journal.pone.0111762
http://www.ncbi.nlm.nih.gov/pubmed/25375646
https://doi.org/10.1002/eji.1830250547
https://doi.org/10.1002/eji.1830250547
http://www.ncbi.nlm.nih.gov/pubmed/7774649
https://doi.org/10.1128/JVI.01939-15
http://www.ncbi.nlm.nih.gov/pubmed/26491162
https://doi.org/10.1053/jhep.2001.27810
https://doi.org/10.1053/jhep.2001.27810
http://www.ncbi.nlm.nih.gov/pubmed/11584379
https://doi.org/10.1182/blood-2006-04-008532
http://www.ncbi.nlm.nih.gov/pubmed/16788098
https://doi.org/10.1128/JVI.00663-07
https://doi.org/10.1128/JVI.00663-07
http://www.ncbi.nlm.nih.gov/pubmed/17553882
https://doi.org/10.1016/j.cell.2008.01.016
https://doi.org/10.1016/j.cell.2008.01.016
http://www.ncbi.nlm.nih.gov/pubmed/18267072
https://doi.org/10.1371/journal.ppat.1010474


38. Xu Z, Qiu Q, Tian J, Smith JS, Conenello GM, Morita T, et al. Coagulation factor X shields adenovirus

type 5 from attack by natural antibodies and complement. Nat Med. 2013; 19(4):452–7. https://doi.org/

10.1038/nm.3107 PMID: 23524342

39. Liu YP, Tong C, Dispenzieri A, Federspiel MJ, Russell SJ, Peng KW. Polyinosinic acid decreases

sequestration and improves systemic therapy of measles virus. Cancer Gene Ther. 2012; 19(3):202–

11. https://doi.org/10.1038/cgt.2011.82 PMID: 22116376

40. Lee E, Lobigs M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japa-

nese encephalitis virus and Murray Valley encephalitis virus. J Virol. 2002; 76(10):4901–11. https://

doi.org/10.1128/jvi.76.10.4901-4911.2002 PMID: 11967307

41. Postic B, Schleupner C, Armstrong J, Ho M. Two variants of sindbis virus which differ in interferon

induction and serum clearance. I. The phenomenon. J Infect. 1969; 120(3):339–47. https://doi.org/10.

1093/infdis/120.3.339 PMID: 5822615

42. Bernard KA, Klimstra WB, Johnston RE. Mutations in the E2 glycoprotein of Venezuelan equine

encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of

mice. Virology. 2000; 276(1):93–103. https://doi.org/10.1006/viro.2000.0546 PMID: 11021998

43. Zhang L, Dailey PJ, He T, Gettie A, Bonhoeffer S, Perelson AS, et al. Rapid clearance of simian immu-

nodeficiency virus particles from plasma of rhesus macaques. J Virol. 1999; 73(1):855–60. https://doi.

org/10.1128/JVI.73.1.855-860.1999 PMID: 9847402

44. Zhang L, Dailey PJ, Gettie A, Blanchard J, Ho DD. The liver is a major organ for clearing simian immu-

nodeficiency virus in rhesus monkeys. J Virol. 2002; 76(10):5271–3. https://doi.org/10.1128/jvi.76.10.

5271-5273.2002 PMID: 11967341

45. Nathanson N, Harrington B, McLean A. Experimental infection of monkeys with Langat virus II. Turn-

over of circulating virus. Review Rev Med Virol. 2000; 10(4):207–15. https://doi.org/10.1002/1099-

1654(200007/08)10:4<207::aid-rmv267>3.0.co;2-t PMID: 10891869

46. MIMS CA. Rift Valley Fever virus in mice. II. Adsorption and multiplication of virus. Br J Exp Pathol.

1956; 37(2):110–9. PMID: 13315886

47. Zisman B, Wheelock EF. Role of macrophages and antibody in resistance of mice against yellow fever

virus. J Immunol. 1971; 107:236–43. PMID: 4326399

48. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R, et al. Activation of innate immunity in non-

human primates following intraportal administration of adenoviral vectors. Mol Ther. 2001; 3(5):708–

22. https://doi.org/10.1006/mthe.2001.0330 PMID: 11356076

49. Mims CA. The response of mice to large intravenous injections of ectromelia virus. II. The growth of

virus in the liver. Br J Exp Pathol. 1959; 40:543–50. PMID: 14422712

50. Mims CA. An analysis of the toxicity for mice of influenza virus. II. Intravenous toxicity. Br J Exp Pathol.

1960 Dec; 41(6):593–8. PMID: 13771018

51. Verdin EM, Maratos-Flier E, Kahn CR, Sodoyez J-C, Sodoyez-Goffaux F, de Vos C, et al. Visualization

of viral clearance in the living animal. Science. 1987; 236(4800):439–42. https://doi.org/10.1126/

science.3031817 PMID: 3031817

52. Shinde P V, Xu HC, Maney SK, Kloetgen A, Namineni S, Zhuang Y, et al. Tumor Necrosis Factor-

Mediated Survival of CD169(+) Cells Promotes Immune Activation during Vesicular Stomatitis Virus

Infection. J Virol. 2018 Feb; 92(3). https://doi.org/10.1128/JVI.01637-17 PMID: 29142134

53. Oehen S, Odermatt B, Karrer U, Hengartner H, Zinkernagel R, López-Macı́as C. Marginal zone macro-
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