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Abstract In recent years, unexpected outbreaks of infectious diseases caused by emerging and re-emerging
viruses have become more frequent, which is possibly due to environmental changes. These outbreaks result in the
loss of life and economic hardship. Vaccines and therapeutics should be developed for the prevention and
treatment of infectious diseases. In this review, we summarize and discuss the latest progress in the development of
small-molecule viral inhibitors against highly pathogenic coronaviruses, including severe acute respiratory
syndrome coronavirus and Middle East respiratory syndrome coronavirus, Ebola virus, and Zika virus. These
viruses can interfere with the specific steps of viral life cycle by blocking the binding between virus and host cells,
disrupting viral endocytosis, disturbing membrane fusion, and interrupting viral RNA replication and translation,
thereby demonstrating potent therapeutic effect against various emerging and re-emerging viruses. We also
discuss some general strategies for developing small-molecule viral inhibitors.
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Introduction

In recent years, increasing outbreaks of emerging and re-
emerging virus diseases have threatened human public
health and economic stability worldwide. These epidemics
are possibly caused by anthropogenic, social, and
behavioral changes [1].
In the late 2002 and early 2003, many patients with acute

respiratory disease symptoms in Guangdong Province of
China were infected with a new coronavirus called severe
acute respiratory syndrome coronavirus (SARS-CoV) [2].
This virus spread rapidly in over 27 countries and causes
over 8000 cases of SARS, which results in nearly 800
deaths (~10% case fatality rate). In 2012, another new
coronavirus, named Middle East respiratory syndrome
coronavirus (MERS-CoV), also spread throughout 27
countries, which results in 2029 confirmed cases and 704
deaths (~35% case fatality rate) [3–5]. In 2014–2016, the
latest outbreak of Ebola virus (EBOV) disease (EVD)

occurred in West Africa, with 28 646 EBOV-infected cases
and 11 323 EVD-related deaths (case fatality rate of
approximately 50%) [6]. Finally, starting from 2015, Zika
virus (ZIKV) initially causes a local outbreak in Brazil and
quickly spread to 84 countries and areas in Africa, the
United States, Asia, and the Pacific Rim [7]. ZIKV
infection can harm the human nervous system and male
reproductive system [8–10], and it may cause the
development of microcephaly in fetuses of ZIKV-infected
pregnant women [11–13].
With increasing globalization, many emerging and re-

emerging viral infectious diseases have been reported
worldwide, thereby highlighting the importance of devel-
oping effective vaccines and therapeutics for the preven-
tion and treatment of these infectious diseases.
Most antiviral drugs are small-molecule viral inhibitors

targeting various stages of the viral life cycle [14]. For
example, anti-HIV drugs inhibit viral infection by targeting
viral proteins functioning at different stages of HIV
replication, such as surface glycoprotein (GP), reverse
transcriptase, integrase, and protease. Small-molecule viral
inhibitors can be produced on a large scale and applied to
considerable populations with lower cost than that of
antibody-based drugs. Their high thermostability makes
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them easy to store and transport when used in tropical and
subtropical areas. These inhibitors can also be taken orally,
which is the most acceptable administration route for
small-molecule viral inhibitors.
This review summarizes the advances in research and

development of small-molecule viral inhibitors against
emerging and re-emerging viruses, including SARS-CoV,
MERS-CoV, EBOV, and ZIKV.

Research and development of small-
molecule viral inhibitors against emerging
and re-emerging viruses

Small-molecule viral inhibitors against SARS-CoVand
MERS-CoV

Both SARS-CoV and MERS-CoV belong to corona-
viruses, which are enveloped viruses consisting of
single-stranded positive RNA that encodes nonstructural
and structural proteins, including spike (S), envelope (E),
membrane, and nucleocapsid proteins [15].
SARS-CoV attaches to the target cell through binding

between the receptor-binding domain (RBD) in the S1
subunit of S protein and the cellular receptor angiotensin-
converting enzyme 2 (ACE2) on the target cell [16]. This

coronavirus enters the target cell mainly via the endosomal
pathway [17]. After endocytosis, S protein changes
conformation under acidic environment, which results in
the formation of a six-helix bundle (6-HB) fusion core
[18,19]. Afterward, the viral genome RNA is released
through the fusion pore into the cytoplasm for replication
[20]. Finally, the progeny virions are released by
exocytosis. MERS-CoV binds to the target cell via
interaction of its RBD with its cellular receptor, namely,
dipeptidyl peptidase 4 (hDPP4) [21], and subsequently
enters the cell mainly through plasma membrane fusion
[22]. The life cycles of SARS-CoV and MERS-CoV are
shown in Fig. 1.
A number of small-molecule viral inhibitors targeting

different stages of the coronavirus life cycle, including
both SARS-CoVand MERS-CoV, were reported [23]. The
first group of inhibitors consists of those with the ability to
block the attachment of the virus to host cells. The RBD in
the S1 subunit of S protein plays critical roles in the viral
entry stage based on its specific binding with host
receptors. Peptides, which overlap with either the SARS-
CoV RBD region (termed as S471-503 peptide) [24] or its
binding motifs of ACE2 (termed peptide P6), inhibit the
entry of SARS-CoV into Vero cells and that of pseudo-
typed virus into ACE2-expressing HeLa cells [25]. The
second group of inhibitors consists of those that can disrupt

Fig. 1 Schematic diagram of the life cycle of coronaviruses (SARS-CoV and MERS-CoV). Small-molecule viral inhibitors are classified into
specific groups according to their different mechanisms of action. ACE2, angiotensin-converting enzyme 2; hDPP4, human dipeptidyl peptidase 4.
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viral endocytosis. Chlorpromazine, an inhibitor of endo-
cytosis, was identified as a suppressor of MERS-CoV
infection at micromolar concentration through the screen-
ing of 348 approved compounds [26]. The third group of
inhibitors consists of those with the capacity to interrupt
membrane fusion. Tetra-O-galloyl-β-D-glucose blocks
SARS-CoV infection by binding with the S2 domain of
S protein, which suggests that it possibly hinders virus–cell
fusion [27]. The peptides overlapping the heptad repeat 2
(HR2) domain in S2 domain of S protein inhibit
coronavirus infection at a micromolar level through
interrupting the formation of a 6-HB. For instance, CP-1
blocks SARS-CoVentry into Vero E6 cells [28], and HR2P
inhibits MERS-CoV infection efficiently [18]. Intranasal
application of HR2P-M2, the analog of HR2P, but with
improved solubility and stability, could significantly
reduce the titers of MERS-CoV in the lung of Ad5-
hDPP4-transduced mice [29,30]. Peptide P9, which is
derived from mouse β-defensin-4, could enter into cells,
along with virions, to prevent endosomal acidification,
thereby obstructing the membrane fusion of SARS-CoV
and MERS-CoV [31]. ADS-J1 penetrates into the deep
pocket of HR1 to interfere with interactions between HR1
and HR2 of coronavirus by hydrophobic force and
consequently inhibit the entry of pseudotyped SARS-
CoV and MERS-CoV [32,33]. Given that cathepsin L
(CatL) facilitates the conformational changes of S protein
in endosomes with low pH, CatL inhibitors, such as
oxocarbazate and E-64-D, are effective in inhibiting
coronavirus infection [34–36]. The fourth group of
inhibitors includes those that can interrupt viral RNA
replication and translation. Small interfering RNA
(siRNA), which aims to silence the leader sequence of
SARS-CoV, reduces the mRNA abundance and conse-
quently suppresses viral replication in Vero E6 cells [37].
Furthermore, siSC2–5, which is siRNA duplexes directed
against both S protein-coding and the ORF1b region of
SARS-CoV, could reduce viral copies in the respiratory
tract and relieve the symptoms of SARS-CoV-infected
rhesus macaques [38]. Ribavirin, a nucleoside analog, can
suppress MERS-CoV infection in vitro [39]. SSYA10-001,
the helicase nsp13 inhibitor, blocks the replication of
SARS-CoV and MERS-CoV [40]. Some coronavirus
protease inhibitors, such as the compound 5c, can also
suppress viral replication [41,42]. The fifth group of
inhibitors includes those with undefined mechanism of
action. According to high-throughput screening of FDA
drug libraries, some clinically used drugs, including
estrogen receptor inhibitors (tamoxifen citrate and toremi-
fene citrate) and DNA metabolism inhibitor (gemcitabine
hydrochloride), display significant antiviral effects with
undefined mechanism [36]. Further studies on their
mechanisms of action against SARS-CoV and MERS-
CoV infection and potential repurposing using the

described approaches are warranted. Inhibitors of SARS-
CoV and MERS-CoV are shown in Table 1 and Fig. 1.

Small-molecule viral inhibitors against EBOV

EBOV is a negative-sense single-stranded enveloped RNA
virus with approximately 19 kb genome, which encodes
seven structural proteins, including two GPs, four virion
proteins (VPs), one nucleoprotein (NP), and one non-
structural protein, namely, RNA-dependent RNA poly-
merase (RdRp) (L protein) [43]. Similar to other
filoviruses, EBOV is a viral pathogen causing hemorrhagic
fever and other EVDs with high mortality [44]. The recent
epidemics of EVD in West Africa have claimed many
lives, thereby highlighting the importance of developing
anti-EBOV therapeutics.
The entry of EBOV into the host cell, which is the first

critical step in its life cycle, is initiated by the interaction
between viral surface protein (GP1) and receptors on the
host cell, such as T cell immunoglobulin and mucin
domain 1 (TIM-1). When this virus attaches to the cell
surface, it will be internalized into endosome with enclosed
acidic environment [45]. Within this acidic compartment,
GP1 binds to Niemann–Pick C1 (NPC1), which is cleaved
by the proteases CatL and CatB, and triggers membrane
fusion. Afterward, the viral RNA genome is released into
the cytoplasm of host cell for replication [46]. The host’s
metabolic pathway is utilized for viral replication and
transcription, where viral genome and NP, VP35, VP30,
and L protein participate [47–49]. Final processing of
assembly and budding allow newly infectious virions to
invade the neighboring cell. These life cycle steps are
attractive targets for the development of therapeutic agents
against EBOV infection (Fig. 2).
A number of small-molecule viral inhibitor-based anti-

EBOV drug candidates targeting different stages of the
viral life cycle are under preclinical and clinical develop-
ment [50,51]. First, inhibitors can disrupt viral endocy-
tosis. Macropinocytosis is the primary endocytic pathway
for internalizing EBOV, demanding equilibria of diverse
ions both inside and outside the cell. Amiloride and its
derivatives, such as 5-(N-ethyl-N-isopropyl) amiloride,
can disturb such balance to inhibit the entry of EBOV into
host cells [52,53]. Second, inhibitors can also disturb
membrane fusion. LJ001, a broad-spectrum antiviral
compound against enveloped viruses, restricts the entry
of EBOV by intercalating into viral membranes to disrupt
the critical step of membrane fusion [54]. Moreover,
modified anti-EBOV peptides (e.g., Tat-Ebo), which
consists of residues 610-633 of EBOV GP2 and the
arginine-rich sequence from HIV-1 Tat spaced by a Gly-
Ser-Gly linker, can accumulate in endosome and block 6-
HB formation [55]. Oxocarbazate, the inhibitor of CatL,
which is responsible for processing GP, blocks pseudo-
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typed EBOV from infecting 293T cells [35]. Some viral
inhibitors discovered through high-throughput screening,
such as compound 7, can bind to a hydrophobic pocket in
GP of EBOV [56]. Seventeen cationic amphiphilic drugs
identified from FDA-approved drug libraries show con-
siderably potent anti-EBOV activity by targeting NPC1
[57]. For example, bepridil and sertraline could block the
membrane fusion step and protect C57BL/6 mice against
EBOV infection [58]. Third, inhibitors can interrupt viral
RNA replication and translation. Favipiravir (T-705), a
broad-spectrum inhibitor of RNA polymerase, suppresses
EBOV replication in Vero E6 cells and protects type I
interferon receptor-deficient mice from EBOV infection
[59,60]. The adenosine analog BCX4430 could suppress
infections and confer protection in a rodent model against
EBOV and other filoviruses [61]. Atovaquone and
azacitidine, which disrupt the biosynthesis of pyrimidine,
and mycophenolate mofetil, which deletes the guanosine

triphosphate pool, could all inhibit EBOV infection
[58,62–64]. In addition, siRNA acts as a kind of inhibitor
that can hinder mRNA translation. AVI-6002, a mixture of
phosphorodiamidate morpholino oligomers (PMOs), and
TKM-Ebola interfere with VP24 and VP35 mRNA to
suppress infection [65,66]. Fourth, some inhibitors exhibit
undefined antiviral mechanisms. Strophanthin, which is
typically used for heart diseases, displays anti-EBOVeffect
in drug screens [58]. These anti-EBOV drugs acting on
different stages of viral life cycle are shown in Table 2 and
Fig. 2.

Small-molecule viral inhibitors against ZIKV

ZIKV, a mosquito-borne flavivirus, is a single-stranded
positive RNA virus with approximately 10 kb genome,
which contains an open reading frame that encodes three
structural proteins and seven nonstructural proteins [67].

Table 1 Small-molecule viral inhibitors against SARS-CoV and/or MERS-CoV
Virus Inhibitor Testing model Efficacy (IC50) Ref.

Inhibitors blocking the binding between virus and host cells

SARS-CoV Peptide S471-503 In vitro 41.6 µmol/L [24]

Peptide P6 In vitro 100 nmol/L [25]

Inhibitors disrupting endocytosis

SARS-CoV
MERS-CoV

Chlorpromazine In vitro 8.8 µmol/L; 4.9 µmol/L [26]

Inhibitors disturbing membrane fusion

SARS-CoV CP-1 In vitro 19 µmol/L [28]

Oxocarbazate In vitro 273 nmol/L [35]

Tetra-O-galloyl-β-D-glucose In vitro 4.5 µmol/L [27]

MERS-CoV HR2P In vitro:
293T cells
Vero cells
Calu-3 cells
HFL cells

　

0.8 mmol/L
0.6 mmol/L
0.6 mmol/L
13.9 mmol/L

[18]

HR2P-M2 In vitro 0.55 mmol/L [29,30]

In vivo Ad5-hDPP4-transduced
mouse

Decreasing viral titer in lung tissue

SARS-CoV
MERS-CoV

　

P9 In vitro 5 mg/mL [31]

ADS-J1 In vitro 0.6 and 3.89 mmol/L [32,33]

E-64-D In vitro 0.76 and 1.28 mmol/L [36]

Inhibitors interrupting viral RNA replication and translation

SARS-CoV siSC2-5 In vivo
NHPa

Reducing viral copies in
respiratory tract

[38]

Compound 5c In vitro 0.35 mmol/L [41,42]

MERS-CoV Ribavirin In vitro 9.99 mg/mL [39]

SARS-CoV
MERS-CoV

SSYA10-001 In vitro 7 mmol/L; 25 mmol/L [40]

Inhibitors with undefined mechanism

SRAS-CoV
MERS-CoV

Tamoxifen citrate In vitro 10.12 and 92.89 mmol/L [36]

Toremifene citrate In vitro 11.97 and 12.92 mmol/L

Gemcitabine hydrochloride In vitro 1.2 and 4.9 mmol/L

aNonhuman primate.
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After its isolation from a rhesus macaque, ZIKV is ignored
for a long time, until intermittent outbreaks occur in the
Pacific islands and the United States. The recent global
pandemic that began in Brazil has attracted extensive
attention from WHO due to its possible association with
neurological complications [8–13]. Despite the progress in
targeting the underlying molecular mechanisms of this
pathogen, no anti-ZIKV drug has been approved for
clinical use to date.
The first step of ZIKV’s life cycle is its attachment to the

host cell mediated by interaction between the virus and
specific receptor on the host cell, such as AXL and its
ligand Gas6 [68]. After internalization through clathrin-
dependent endocytosis, the virus undergoes uncoating,
which is induced by the special acidic environment of the
endosome, where the fusion between viral envelope and
the endosomal membrane is facilitated by the transforma-
tion of viral envelope proteins into a fusion-active state
[69]. Subsequently, the viral RNA genome is released into
the cytoplasm for replication. The replication complex is
formed by viral nonstructural proteins (NS3 and NS5) and
probably some host proteins; this complex also assists with
the synthesis of the viral genomic RNA [70,71]. The
capsid protein, a viral structural protein, combines with the
RNA genome to form the nucleocapsid core. Viral
assembly occurs in the endoplasmic reticulum where the
budding obtains a lipid envelope; the progeny virus is
finally released through the exocytotic pathway [69,72].
The life cycle of ZIKV is shown in Fig. 3.

Following the outbreak of ZIKV epidemic, a wide
variety of small-molecule viral inhibitors were reported.
The first category of inhibitors blocks the binding between
virus and host cells. We found that a peptide-based anti-
ZIKV inhibitor (Z2), derived from the stem region of E
protein, is highly effective in inhibiting ZIKV infection in
type I or type I/II interferon receptor-deficient mice; this
inhibitor also prevents the vertical transmission of ZIKV
from pregnant C57BL/6 mice to their fetuses through its
interaction with viral surface envelope (E) proteins to form
a membrane pore and disrupt the integrity of the viral
membrane [73]. ZINC33683341, a small-molecule inhi-
bitor with preferential binding affinity to ZIKV E protein,
can reduce virus titer at the noncytotoxic concentration of
100 μmol/L using an in vitro assay [74]. Curcumin inhibits
the infection of ZIKV and other enveloped viruses by
blocking interactions between virus and host cells [75].
The second category of inhibitors can disrupt the viral
endocytosis process. Nanchangmycin, a natural bacterial
product, inhibits ZIKV infection in vitro through blocking
clathrin-mediated endocytosis [76]. The third category of
inhibitors can disturb membrane fusion. Chloroquine and
niclosamide, anthelmintic medications that are effective
against cestodes, inhibit the acidification of endosome and
the low pH-dependent conformational changes of E protein
that is necessary for membrane fusion. Both chloroquine
and niclosamide can block ZIKV infection through in vitro
experiments [77,78]. Moreover, 25-hydroxycholesterol
can inhibit ZIKV infection in both in vitro and in vivo

Fig. 2 Schematic diagram of the life cycle of Ebola virus. Small-molecule viral inhibitors are classified into specific groups according to their
different mechanisms of action. TIM-1, T cell immunoglobulin and mucin domain 1; NPC1, Niemann–Pick C1.
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assays, especially protecting rhesus monkeys against
infection by reducing viremia duration and shortening
viral shedding [79]. The fourth category of inhibitors can
interrupt viral RNA replication and translation. NS2B and
NS3 form a viral protease complex that is essential for
ZIKV replication. Ten inhibitors of HCV NS3/NS4A can
inhibit ZIKV replication based on the structural similarity
between ZIKV NS2B/NS3 and HCV NS3/NS4A [80].
Furthermore, NS3 shows an NTP-dependent RNA helicase
domain at the C terminus for unwinding RNA, and NS5
contains domains of methyltransferase and RdRp to assist
the replication process, thereby providing attractive targets
for designing ZIKV therapies [81,82]. Sofosbuvir and
DMB213, inhibitors of ZIKV RdRp, suppress viral
replication in Huh7 cells [83]. Recently, temoporfin was
demonstrated to inhibit ZIKV infection both in vitro and in

vivo by disturbing polyprotein processing through block-
ing the interactions between NS2B and NS3 [84].
Additionally, the polymerase inhibitor 7-deaza-2´-C-
methyladenosine inhibits in vitro ZIKV replication effi-
ciently and relieves the viremia of infected AG129 mice
[85]. Another class of antiviral agents consists of nucleo-
side analogs that can terminate viral RNA synthesis. The
2´-C-methylated nucleosides and derivatives can inhibit
ZIKV replication in cellular assays in a dose-dependent
manner [86]. NITD008, an adenosine analog, also protects
mice from ZIKV infection [87]. To differentiate between
viral translation and RNA synthesis, ZIKV replicon
systems were established for the screening and character-
ization of viral replication inhibitors [88]. The fifth
category of inhibitors consists of those without defined
mechanism of action. To control ZIKV epidemics,

Table 2 Small-molecule viral inhibitors against Ebola virus
Inhibitor name Testing model Efficacy (IC50) Ref.

Inhibitors disrupting endocytosis

5-(N-ethyl-N-isopropyl) amiloride In vitro <50 mmol/L [53]

Inhibitors disturbing membrane fusion

LJ001 In vivo
BALB/c mouse

Protection rate: 80% [54]

Tat-Ebo In vitro <50 mmol/L [55]

Oxocarbazate In vitro 193 nmol/L [35]

Compound 7 In vitro 10 mmol/L [56]

Bepridil In vitro:
Vero E6 cells
HepG2 cells

　

5.08 mmol/L
3.21 mmol/L

[58]

In vivo
C57BL/6 mouse

Protection rate: 100%

Sertraline In vitro
Vero E6 cells
HepG2 cells

　

3.13 mmol/L
1.44 mmol/L

In vivo
C57BL/6 mouse

Protection rate: 70%

Inhibitors interrupting viral RNA replication and translation

BCX4430 In vitro 11.8 mmol/L [61]

Favipiravir In vitro 67 mmol/L [60]

In vivo IFNAR-/- C57BL/6 mouse Protection rate: 100%

Atovaquone In vitro
Vero E6 cells

　

0.44 mmol/L
[58,62–64]

Azacitidine In vitro:
Vero E6 cells
HepG2 cells

　

8.97 mmol/L
10.3 mmol/L

Mycophenolate mofetil In vitro
HepG2 cells

　

0.29 mmol/L

TKM-Ebola In vivo
NHP

Protection rate: 66% [66]

AVI-6002 In vivo
NHP

Protection rate: 60% [65]

Inhibitors with undefined mechanism

Strophanthin In vitro:
Vero E6 cells
HepG2 cells

　

0.035 mmol/L
0.021 mmol/L

[58]
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researchers carried out high-throughput screening of many
compounds for ZIKV therapies in multidimension,
including inhibitors of ZIKV infection in placental
trophoblast cells and neuroprotective agents [76]. Emrica-
san, an inhibitor of caspase-3 that is essential in the
pathogenicity of ZIKV, relieves the neural damage caused
by ZIKV [78]. A new mouse model recapitulates the
adulthood sequelae of congenital ZIKV infection, which
enables the screening and evaluation of small-molecule
drugs that repair the impaired nervous system of fetuses or
directly suppress viral replication to improve prognosis
[89,90]. Potential therapies according to life cycle are
shown in Table 3 and Fig. 3.

General strategies for developing
small-molecule viral inhibitors

We have reviewed relevant inhibitors against representa-
tive viruses in the context of viral life cycle. On the basis of
this summary, we can extrapolate some general strategies
that may guide further research and development of small-
molecule viral inhibitors.
Viral entry into host cell is the first stage for viral

infections. Hence, this stage is the most attractive target for
designing and developing inhibitors against various
viruses [90]. For all of the enveloped viruses with class I
fusion protein, such as HIV, SARS-CoV, MERS-CoV, and
EBOV, 6-HB formation is required to facilitate the fusion

between virus and cell membrane. Small molecules that
can block the formation of 6-HB are generally effective in
inhibiting the infection of such viruses [91]. Since the first
discovery of the potent HIV fusion inhibitory peptide SJ-
2176 and clinical application of T20 for treatment of HIV
infection [92,93], many viral fusion inhibitory peptides
that can block the formation of 6-HB, such as HR2P and
HR2P-M2 peptides against MERS-CoV and Tat-Ebo
peptide against EBOV [18,30,55], have been reported.
Recently, we developed a new tripartite model for
designing viral fusion inhibitory peptides with improved
efficacy to disturb the formation of 6-HB [94]. This model
can be adapted for designing viral inhibitors against other
enveloped viruses, including those that may emerge in the
future. Another general strategy is to suppress the viral
endocytosis pathway utilized by many enveloped viruses.
For example, we have reviewed small molecules that can
interfere with clathrin-mediated endocytosis and/or caveo-
lin-mediated endocytosis (e.g., chlorpromazine). We have
also reviewed the compounds that can prevent the
acidification of endosome and consequently inhibit the
activities of host proteases in endosome critical for
proteolysis and conformational change of viral envelope
proteins during fusion between virus and endosome
membrane. For example, chloroquine and CatL/CatB
inhibitors fall into this category; these inhibitors generally
suppress the infection of viruses internalized through
endocytosis. The inhibitors against common cellular
pathways utilized by different viruses can suppress virus

Fig. 3 Schematic diagram of the life cycle of Zika virus. Small-molecule viral inhibitors are classified into specific groups according to their
different mechanisms of action.
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infections with broad spectrum. However, they target host
proteins, instead of specific viral proteins, which may raise
the concern about side effects because of their nonspeci-
ficity. Therefore, further extensive in vitro experiments and
in vivo animal studies should be conducted to evaluate the
potential toxicity of drug candidates targeting host
proteins. In addition, small molecules, such as nucleoside
analogs (e.g., BCX4430, favipiravir, 2´-C-methylated
nucleoside, and NITD008), siRNAs (e.g., TKM-Ebola),
and PMOs (e.g., AVI-6002), can inhibit the activity of viral

RdRp or target viral RNA and interfere with viral RNA
replication, transcription, and translation. Consequently,
the RNA virus infection is suppressed. Finally, timely,
effective therapies are available for emerging and re-
emerging viruses through repurposing clinical small-
molecule drugs. Taking the recent ZIKV epidemic as an
example, both emricasan, a pan-caspase inhibitor, and
niclosamide, an anthelmintic drug, can protect against
ZIKV infection. These general strategies (Fig. 4) can be
adapted for the development of small-molecule viral

Table 3 Small-molecule viral inhibitors against Zika virus
Inhibitor name Testing model Efficacy (IC50) Ref.

Inhibitors blocking the binding between virus and host cells

Peptide Z2 In vitro:
BHK21 cells
Vero cells

　

1.75 mmol/L
3.69 mmol/L

[73]

In vivo:
A129 mouse
AG6 mouse

Protection rate: 75% and 67%

Curcumin In vitro 1.90 mmol/L [75]

Inhibitors disrupting endocytosis

Nanchangmycin In vitro:
Human HBMECs
Human U2OS Cells

　

0.4 mmol/L
0.1 mmol/L

[76]

Inhibitors disturbing membrane fusion

Chloroquine In vitro 50 mmol/L [77]

In vivo
Swiss mouse

Inhibiting ZIKV infection in mouse
neurospheres

Niclosamide In vitro 0.2 µmol/L [78]

25-Hydroxycholesterol In vitro 188 nmol/L [79]

In vivo:
A129 mouse
NHP

Reducing viremia and improving
survival

Reducing viremia

Inhibitors interrupting viral RNA replication and translation

Compounds 1-10 In vitro <50 µmol/L [80]

Sofosbuvir In vitro 8.3 µmol/L [83]

DMB213 In vitro 4.6 µmol/L

Temoporfin In vitro 0.024 µmol/L [84]

In vivo
BALB/C mouse
A129 mouse

Reducing viremia
Protection rate: 83%

7-Deaza-2´-C-methyladenosine In vivo
AG129 mouse

Delaying Zika diseases [85]

2´-C-methylated nucleosides In vitro 2.7–47.3 µmol/L [86]

NITD008 In vitro 137–241 nmol/L [87]

In vivo
A129 mouse

Protection rate: 50%

Inhibitors with undefined mechanism

Emricasan In vitro:
SNB-19 cells
Astrocyte cells
hNPC cells

　

0.87 µmol/L
4.11 µmol/L
3.88 µmol/L

[78]

Ex vivo
3D brain organoids

Showing neuroprotective activity for
hNPC cells
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inhibitors against emerging and re-emerging viruses that
may cause future pandemics.

Conclusions

Most viruses utilize host cellular components to satisfy
various physiological processes, including viral entry,
genomic replication, and the assembly and budding of
virions, thereby resulting in pathological damage to the
host. Therefore, any key stage through the life cycle could
be a potential target for developing small-molecule viral
inhibitors. Upon the emergence or re-emergence of viral
outbreak, researchers use high-throughput screening
approaches to determine rapidly effective small-molecule
viral inhibitors and pharmacological compounds for
clinical treatment. The research and development stages
of small molecules are relatively inexpensive. Small-
molecule viral inhibitors are also convenient for oral
administration. Generally, therapeutic small molecules are
superior to other antiviral therapies, such as antibodies.
Hence, their use is widespread in both developing and
developed countries. The antiviral activities of small-
molecule viral inhibitors are typically not as potent as those

of antibodies, and small molecules exhibit shorter half-life
in vivo than those of antibodies. Their relatively high
toxicity also restricts their use, especially in pregnant
women and neonates infected with ZIKV. To overcome
this problem, repurposing of approved clinically safe drugs
in pregnant women is an advisable alternative solution.
We have observed a consistent lag time between the

emergence or re-emergence of outbreaks and the develop-
ment of effective antiviral drugs. In addition, many large
pharmaceutical companies are reluctant to develop anti-
viral drugs against viruses with potential to cause short-
term epidemic because of their unpredictable market
values. This challenge may be addressed with the
development of broad-spectrum, cross-reactive drugs,
which may represent an important future trend.
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