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ABSTRACT
Enterohemorrhagic Escherichia coli O157:H7 is a food-borne pathogen transmitted via the fecal-oral
route, and can cause bloody diarrhea and hemolytic uremic syndrome (HUS) in the human host.
Although a range of colonization factors, Shiga toxins and a type III secretion system (T3SS) all
contribute to disease development, the locus of enterocyte effacement (LEE) encoded T3SS is
responsible for the formation of lesions in the intestinal tract. While a variety of chemical cues in the
host environment are known to up-regulate LEE expression, we recently demonstrated that
changes in physical forces at the site of attachment are required for localized, full induction of the
system and thus spatial regulation of virulence in the intestinal tract. Here, we discuss our findings
in the light of other recent studies describing mechanosensing of the host and force-dependent
induction of virulence mechanisms. We discuss potential mechanisms of mechanosensing and
mechanotransduction, and the level of conservation across bacterial species.
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Escherichia coli O157:H7 (enterohemorrhagic E. coli,
or EHEC) is a food-borne pathogen and can cause
bloody diarrhea and sometimes hemolytic uremic syn-
drome (HUS) in humans. While the diarrhea is usu-
ally self-limiting and resolves over the course of
several days, HUS is a severe complication which can
lead to lasting kidney damage, and is associated with
high morbidity and mortality.1 EHEC is taken up via
the fecal-oral route and, once inside the human host,
it colonizes the large intestine and initiates a virulence
program leading to the above described pathophysiol-
ogy. EHEC’s virulence arsenal includes adhesins, a
type 3 secretion system (T3SS), and Shiga toxins,
which all contribute to disease.2-4 The action of the
T3SS, which is encoded by a pathogenicity island
termed locus of enterocyte effacement (LEE), is
responsible for the formation of characteristic attach-
ing and effacing lesions in the intestine, and contrib-
utes to disease severity.5,6 The formation of A/E
lesions roughly corresponds to the formation of actin
protrusions, termed pedestals, in tissue culture models
of infection, and this has allowed a more thorough

investigation of this phenotype. The LEE-encoded
T3SS translocates effector proteins into the host cell
cytoplasm, where they modulate host cellular signaling
to facilitate host colonization, immune modulation,
and bacterial persistence.7 Most notably, their actions
result in cytoskeletal rearrangements, pedestal forma-
tion, and stable anchoring of the bacterium to the
host cell, although their effects are more wide-ranging
and effector repertoire and activities are still subject to
ongoing studies.

The LEE pathogenicity island is a large region
encompassing more than 40 open reading frames,
organized into 5 major transcriptional units (LEE1-5),
and has been horizontally acquired. Its expression
underlies global, H-NS mediated silencing outside the
host, where its costly-to-produce gene products are
not beneficial for survival.8 Once inside the host,
EHEC senses the change in environment through a
change in temperature and a range of chemical cues,
and gradually adjusts its expression profile as it passes
through the GI tract, in a way that poises the organism
to colonize the large intestine, where it specifically
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initiates expression of LEE in a highly site-specific
manner. Over the years, many groups have added to
our knowledge about the nature of different environ-
mental signals that contribute to LEE induction, and
about the genetic elements integrating them. Many of
these studies were done in other A/E-pathogens, most
notably enteropathogenic E. coli (EPEC), which also
encode the LEE and are similarly, although not identi-
cally, regulated as the EHEC LEE.9 All known activa-
tion processes proceed via LEE-encoded regulator
(Ler), the first product encoded by LEE1 and the mas-
ter regulator for the entire LEE (Fig. 1). Ler acts as an
antirepressor that counteracts H-NS mediated silenc-
ing by displacing H-NS from a nucleoprotein complex
around the promoter regions within the LEE.8 Expres-
sion of Ler, in turn, is regulated by a number of
upstream activators, which may differ in their nature
between different strains and include BipA, PchABC,
IHF, and QseA, among others. Arguably the most
important of these activators is the global regulator of
Ler (GrlA), which unlike other regulators, is directly
encoded within the LEE. GrlA is a MerR like tran-
scription activator, which acts by locally unwinding
the DNA and optimizing the spacing between the Ler
promoter ¡10 and ¡35 elements.10 GrlA is expressed
from a transcriptional unit together with GrlR, which
is able to bind to and inhibit GrlA, and this is thought
to be an important regulatory mechanism of GrlA
activity.11,12 A number of environmental cues which

trigger activation of Ler have been identified, including
human body temperature, low oxygen, neutral pH,
and the presence of bicarbonate and quorum sensing
autoinducers, among others. 13-16 While these mecha-
nisms point toward a gradual enhancement in LEE
expression directly after passage through the acidic
stomach and further, upon contact with bicarbonate
upon entry into the small intestine. Additional studies
suggest a further level of fine-tuning in LEE expression
through the sensing of human hormones17, and
through the site specific composition of the intestinal
microbiota. Bacteroides thetaiotamicron (B. theta), a
commensal of the lower GI tract, provides cues for
LEE induction by generating fucose through cleavage
from mucins in the large intestine.18

Our recent studies of LEE induction in a tissue cul-
ture infection model add a further layer of complexity
to this existing picture. We show, by using enzymatic
and fluorescent reporters of Ler induction, that LEE
expression, albeit weakly induced upon contact with
known environmental cues (such as glucose present in
the host medium, and elevated temperature of 37�C),
is only fully induced upon direct physical contact with
the host cell surface.19 This induction of Ler proceeds
via the action of GrlA. However, our results change
the perspective on the role GrlR plays in repressing
GrlA mediated LEE activation. Since it was previously
shown that GrlR forms a tight complex with GrlA12,
thereby preventing its access to the Ler promoter, it

Figure 1. Activation of locus of enterocyte effacement (LEE) genes in enterohemorrhagic E. coli O157:H7. Outside the host, LEE genes
are silenced by the global repressor H-NS. Once inside the host, different environmental stimuli and transcription factors partially acti-
vate LEE genes through induction of Ler expression (Ler antagonizes H-NS repression). Mechanosensation causes complete activation of
LEE genes through the full induction of Ler in a GrlA - dependent manner. Transcriptional activators and repressors are shown by
pointed and blunt arrows, respectively. Figure adapted from Kendall et al.28
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was assumed that GrlR was sufficient to repress GrlA,
and that any mechanism activating GrlA would pro-
ceed by disrupting the inhibitory GrlRA complex. Our
results however demonstrate that, while GrlR is inhib-
itory to GrlA activity, free GrlA is not fully functional
in activating LEE expression per-se, but requires fur-
ther cues (i.e., host cell contact), to fully activate LEE.
The mechanism behind the transition in GrlA to
become fully functional is unclear, and a number of
scenarios are conceivable. Host cell contact could
either lead to recruitment of another, yet unknown,
factor which could increase GrlA’s affinity for the Ler
promoter. Alternatively, it could result in biochemical
and/or structural changes in GrlA which could facili-
tate its promoter binding. Further, contact sensing
could result in a change in GrlA subcellular localiza-
tion, which could facilitate its access to the promoter.
Further experiments to test these scenarios are cur-
rently underway. We further show, using a range of
pure substrates, that this induction does not require a
specific ligand-receptor interaction, but instead is
dependent on strong attachment to a surface.
Attached cells are even further induced by application
of shear forces, as demonstrated through cells immo-
bilized in microfluidic flow cells and exposed to
increasing amounts of laminar fluid flow. The level of
promoter induction scales both with strength of adhe-
sion and the applied shear force. In EHEC bound to
host cells, the induction level saturates at shear forces
of approximately 1 dyne/cm2, which is within the
physiological range of shear force likely prevalent in
the intestine. Although this is challenging to evaluate
experimentally, hydrodynamic calculations of shear
forces in the intestinal tract estimate the fluid shear on
the luminal surface at approximately 5 dynes/cm2,
and between 2-3 dynes/cm2 between microvili.20

Our experiments indicate that EHEC directly
senses physical force and can integrate information
about different types of forces (here, surface adhesion
and shear force) to achieve gene regulation. While
chemical cues partially induce the LEE and poise the
bacterium for binding by low-level expression of fac-
tors necessary for strong attachment, mechanosensing
triggers full induction of LEE expression directly at
the site of infection. These findings raise many further,
exciting questions about the way EHEC and other bac-
teria can perceive not only their chemical, but also
their mechanical environment. The first question per-
tains to the nature of forces bacteria can sense. While

our experiments demonstrate EHEC’s ability to sense
both adhesion and shear forces (which act perpendic-
ular and parallel to the cell wall, respectively), there
are many other forces bacteria are exposed to and
could potentially perceive as environmental cues.
Most notably, EHEC has to transition from the gut
lumen and through the mucus layers, to reach the
intestinal epithelial surface. This transition is
accompanied by a marked change in viscosity. This
will impact flagellar load, as well as cause an
increase in shear force. Flagella have been impli-
cated as mechanosensors across different bacterial
species, usually in the context of inanimate surface
sensing. Bacillus subtilis, for example, uses inhibi-
tion of flagellar rotation as a cue for surface contact,
and induces biofilm formation in response.21 In B.
subtilis, this response in gene expression is mediated
via the DegS-DegU 2-component system, but how
exactly the mechanical trigger activates this system
has yet to be determined. While in B. subtilis, sur-
face sensing appears to promote a global switch in
gene expression toward a sessile life-style, mechano-
sensing via polar flagella have also been linked to the
induction of virulence-specific genes. Vibrio parahae-
molyticus, a sea-food borne pathogen which possesses
a dual flagellar system, a decrease in flagellar rotation
triggers the synthesis of lateral flagella necessary for
surface motility, as well as expression of genes
required for colonization and pathogenesis in the
host.22,23 Interestingly, albeit a similar role in mecha-
nosensing for purported for the V. cholerae flagellum,
this was subsequently disproved.24

Recent work on Pseudomonas aeruginosa has
revealed an alternative mode of surface sensing and
mechano-induction of a virulence program in
response to host cell contact. Attachment of P. aerugi-
nosa to the amoebic model host Dictyostelium discoi-
deum or to mouse macrophages was shown to
increase cytotoxicity toward host cells, compared to
planktonic bacteria.25 Further work by the same group
showed that in P. aeruginosa, mechanoperception is
mediated by type IV pili, and their changed ability to
extend and retract following surface attachment.26 In
P. aeruginosa, pilus retraction under physical tension
upon surface attachment is thought to lead to a struc-
tural change in PilA pilus subunits, which facilitates
an interaction with and activation of the transmem-
brane protein PilJ. PilJ activates the chemosensory
complex ChpA-PilI, which then stimulates the
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adenylate cyclase CyaB and leads to cAMP produc-
tion. cAMP activates the cAMP binding transcription
factor Vfr, thereby increasing the transcription of vir-
ulence genes.26 These studies provide first mechanistic
insights into how mechanosensing and mechanotrans-
duction can be linked, although many details remain
to be investigated. Although it is attractive to speculate
mechanotransduction pathways are conserved across
species, this is unlikely in the case of P. aeruginosa
and E. coli. While P. aeruginosa PilJ bears high
sequence identity with E. coli methyl-accepting che-
motaxis proteins (MCPs), it has no direct homolog in
E. coli. This suggests the mechanotransduction path-
ways linking force perception at the cell surface and
gene regulation in the cytoplasm, are not strictly con-
served between these 2 organisms. However, E. coli
also has type IV pili 27 and it is conceivable that they
may act as mechanosensors, as may other appendages,
such as flagella.

In conclusion, our and other groups’ recent work
has highlighted a role for mechanosensing in the
induction of virulence-specific programmes in a range
of bacterial pathogens. While technical advances over
the past years, such as the commercialization of con-
trolled flow systems, and their experimental combina-
tion with high-content imaging, has made it possible
to investigate the effect of defined physical forces on
gene expression, this has brought forward many
important questions, which remain to be addressed.
How are several different forces integrated to impact
gene expression? What is the nature of bacterial
mechanosensors and mechanotransduction pathways,
and to what extent are they conserved across species?
Addressing these questions in future studies will fur-
ther extend this exciting area of research, but may also
highlight new targets in our search for novel treat-
ments against bacterial infections.
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