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Abstract

Single-cell multi-omics assays offer unprecedented opportunities to explore epigenetic reg-

ulation at cellular level. However, high levels of technical noise and data sparsity frequently

lead to a lack of statistical power in correlative analyses, identifying very few, if any, signifi-

cant associations between different molecular layers. Here we propose SCRaPL, a novel

computational tool that increases power by carefully modelling noise in the experimental

systems. We show on real and simulated multi-omics single-cell data sets that SCRaPL

achieves higher sensitivity and better robustness in identifying correlations, while maintain-

ing a similar level of false positives as standard analyses based on Pearson and Spearman

correlation.

Author summary

Single-cell multi-omics assays offer unprecedented opportunities to explore epigenetic

regulation at cellular level. However, high levels of noise frequently hide genomics regions

with strong epigenetic regulation or produce misleading results. By carefully addressing

this common problem SCRaPL aims become a useful tool in the hands of practitioners

seeking to understand the role of particular genomic regions in the epigenetic landscape.

Using different single cell multi-omics datasets, we have demonstrated that SCRaPL can

increase detection rates up to five times compared to standard practices. This can improve

performance of tools used for post experimental analysis, but more importantly it can

indicate currently unknown genomic regions worth to further investigate.

This is a PLOS Computational BiologyMethods paper.
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Introduction

High throughput single cell assays based on next generation sequencing are revolutionising

our understanding of biology, with profound implications both fundamental and translational

[1]. Single cell technologies avoid the confounding factors emerging from averaging over

potentially heterogeneous cell populations [2], providing a global map of biological cell-to-cell

variability at the molecular level [3].

While single-cell transcriptomic technologies are rapidly reaching maturity, more recent

platforms have emerged that enable simultaneous large scale measurements of multiple molec-

ular layers within the same cell. Multi-omics assays can now capture DNA methylation and

gene expression [4, 5], gene expression and copy-number variations [5], DNA accessibility

and gene expression [6, 7], and chromatin accessibility along with DNA methylation and gene

expression [8] for the same cell. Such platforms have enormous potential to elucidate the

mechanisms of epigenetic regulation in unprecedented detail.

Despite the huge potential for breakthroughs, technical limitations in multi-omics technol-

ogies create formidable statistical challenges in the interpretations of their results. Single-cell

sequencing technologies are notoriously affected by high noise levels, including very strong

data sparsity. Such problems are amplified in multi-omics studies, where multiple independent

sources of noise might affect the joint distribution of the measurements. Additionally, chal-

lenges with normalization strategies, batch effects or other latent variables related to cellular

processes might further prevent biological components to emerge clearly from data [9]. As a

result, direct adoption of classical statistical tools to assess associations between different

molecular layers (e.g. Pearson or Spearman correlation) routinely leads to underpowered anal-

yses, which are only able to identify a handful of significant associations [4, 8, 10].

In this paper, we argue that proper treatment of noise is essential in order to robustly

retrieve significant statistical associations. To do so, we introduce SCRaPL (Single Cell Regula-

tory Pattern Learning), a Bayesian hierarchical model to infer associations between different

omics components. The Bayesian hierarchical framework, which has already been extensively

used in single-omics single-cell analyses (e.g. [11, 12]), explicitly and transparently decom-

poses noise in the data, enabling efficient extraction of biological signals from technical noise.

We demonstrate on both synthetic and real data sets that SCRaPL is both highly accurate and

sensitive, identifying much larger numbers of statistically significant associations than stan-

dard correlation analyses while retaining a good control on false positives.

Results

SCRaPL: Single Cell Regulatory Pattern Learning

SCRaPL is a tool for exploratory analysis of high-throughput, single cell data, which aims to

establish more robust associations between different molecular layers. The example we will

focus on here is relating the expression of a specific gene with its epigenetic state, measured

either by DNA methylation or chromatin accessibility, however different types of associations

might be considered, by introducing alternative noise models within our framework.

Our starting point is the observation that correlations, while invaluable tools to generate

hypotheses, are critically sensitive to noise. In particular, it is well known that adding uncorre-

lated noise to correlated random variables reduces the estimates of correlation, thus weakening

statistical power in any analysis. To obviate this problem, SCRaPL introduces a hierarchical

model, schematically described in Fig 1.

Briefly, for each cell i, the SCRaPL model associates observed values Yij = (Yij1, Yij2)0 for

each feature j (e.g., gene/ promoter pair) with a bivariate Gaussian vector (denoted as Xij =
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(Xij1, Xij2)0) with unknown latent mean μj and correlation matrix Sj. The latter is parameter-

ized such that ρj captures the feature-specific underlying correlation across both molecular lay-

ers. The latent variables Xij are then passed through a suitable nonlinear link function to

generate the expected value of the observation. The observation noise model, as well as the

nonlinear link function, are tailored to the type of assay being analysed (and can also be

designed in a data-driven fashion by using model selection techniques). In particular, we use a

zero inflated Poisson noise model for RNA expression and binomial noise models for DNA

methylation or chromatin accessibility; full details are given in the model description subsec-

tion, Eqs (1)–(4),Methods section. SCRaPL then uses Bayesian inference to reconstruct the

latent mean values and correlation ρj from independent observations over many cells. A prob-

abilistic decision rule together with Bayesian multiple testing correction methods [Expected

False Discovery Rate, EFDF; [13]] can be deployed to quantify association strength and associ-

ate statistical significance to the reported correlations.

Benchmarking SCRaPL using synthetic data

To assess the estimation performance of SCRaPL, we experimented on synthetic datasets con-

sisting of 300 simulated features (pairs of gene expression and promoter methylation values).

The experiments were varied to cover a number of different scenarios: numbers of cells; cover-

age levels; fraction of zeros in expression data (zero inflation, ZI); as well as different latent

mean and covariance structures. A detailed description of the various simulation scenarios, is

provided in Table 1 and S3 Text.

Here, we primarily focus on estimation accuracy for the feature-specific latent correlation

ρj but also summarize results for other parameters to get the complete view. Violin plots sum-

marizing the difference of SCRaPL’s posterior from generating parameters as a function of

cells can be found in Fig 2. Results for other model parameters are displayed in S3 Text (See

A-I Figs in S3 Text).

We start by considering a situation of perfect model specification (experiments 1–3 in S3

Text), in order to assess the identifiability of our model and to document the degradation of

correlation estimates obtained with classical methods. In this case, we observe that all methods

provide estimates of correlation with zero-mean expected error, with an accuracy which

increases with the number of cells in the data set. However, particularly for relatively low num-

bers of cells, the accuracy of the estimates was considerably higher for SCRaPL than for the

Fig 1. Schematic and graphical representations of SCRaPL. Here, we assume observed data consists of RNA

expression and DNA methylation. 1A Schematic representation of the SCRaPL model. 1B SCRaPL’s graphical model,

depicting the statistical dependencies between observed genomic data (Yij1 is RNA expression; Yij2 is DNA

methylation), their associated latent variables (Xij1, Xij2) and feature-specific model parameters (μj, Sj). The additional

parameter πj is specific to the noise model that is assigned to RNA expression data and captures zero inflation. Full

details are given in the model description section inMethods.

https://doi.org/10.1371/journal.pcbi.1010163.g001
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classical Pearson and Spearman methods. Fig 2A shows a comparison of the three methods as

we vary the number of cases, with a ZI level fixed to 20% (a benign setting similar to what

encountered in high-depth plate-based technologies). SCRaPL outperforms both Spearman

and Pearson by a large margin for all numbers of cells considered. Even in the most favourable

case of 1600 cells (an unreasonably large number of cells for plate-based technologies), Pearson

and Spearman systematically underestimate the (absolute value) of the correlation, while

SCRaPL returns an accurate estimation for all true correlation values, as shown in the scatter-

plot in Fig 2B. So, while overall all methods are unbiased in their estimates, Spearman and

Pearson systematically underestimate the absolute value of the correlation, potentially leading

to lesser power (see next section). As expected, the performance for all methods degrades with

increasing levels of ZI (see S3 Text). However, we did not observe significant differences for

SCRaPL correlation estimates across different levels of coverage (see S3 Text).

To probe the importance of prior specification, we generated data where the underlying

correlation values ρj were in an area with low prior mass (experiments 4, 5 and 6 in S3 Text).

In this case, we did observe some bias in our estimates (see Figs D-F in S3 Text), particularly

Table 1. Summary of synthetic data experiments. In all cases, latent means and standard deviations were set as μj1 =

4, μj2 = 1, σj1 = 3 and σj2 = 2. Unless otherwise stated, our simulations were based on: I = 60 cells, J = 300 features, 20%

ZI rate on average for the expression data (πj = 0.20) and an average methylation coverage (nij) equal to 275 (sampled

from a Uniform distribution with range [50, 500]) across cells and genes. When varying the number of cells, we use I 2
{5, 10, 25, 50, 100, 200, 400, 800, 1600}. When varying expression ZI, we use πj 2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8}. When

varying methylation coverage, we sample nij from Uniform distributions with ranges given by [5, 10], [10, 20], [20, 50],

[50, 250] and [500, 1000]. Full details are provided in S3 Text.

Experiment Description

1 Correlations ρj sampled from a Beta(15, 15) distribution, varying number of cells.

2 Correlations ρj sampled from a Beta(15, 15) distribution, varying expression ZI.

3 Correlations ρj sampled from a Beta(15, 15) distribution, varying methylation coverage.

4 Correlations ρj sampled from a U[−0.8, −0.6] distribution, varying number of cells.

5 Correlations ρj sampled from a U[−0.8, −0.6] distribution, varying expression ZI.

6 Correlations ρj sampled from a U[−0.8, −0.6] distribution, varying methylation coverage.

7 As experiment 1, but latent expression means sampled from scVI.

8 As experiment 2, but latent expression means sampled from scVI.

9 As experiment 3, but latent expression means sampled from scVI.

https://doi.org/10.1371/journal.pcbi.1010163.t001

Fig 2. Plots summarizing differences in correlation estimation between SCRaPL, Spearman in Experiment 1 with

synthetic data. (2A) Estimated correlation difference from true correlation as a function of cells for SCRaPL,

Spearman and Pearson. (2B) Estimated correlation as a function of true correlation for SCRaPL, Spearman and

Pearson in synthetic datasets with 300 genes and 1600 cells. Each dot represents a gene and is color-coded based

inference approach.

https://doi.org/10.1371/journal.pcbi.1010163.g002
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when the number of cells is low. Similarly, performance diminishes with increasing ZI levels

and stays relatively intact across different coverage levels.

As a final test of more severe model mismatch, we evaluated predictive performance in a

scenario where we retained the same noise model, but replaced the latent multivariate Gauss-

ian distribution by expression rates inferred using a variational auto-encoder [scVI; [14]] that

was trained on the scRNAseq data from [15] (see S3 Text, experiments 7–9). Despite the

model mismatch, we observed good estimation performance for ρj across a range of simulation

parameters (see Figs G-I in S3 Text).

SCRaPL improves the power to identify associations between molecular

layers in mouse embryonic stem and brain cells

We next consider two single cell multi-omics datasets generated by scNMT-seq [8] and the

10x Genomics Multiome ATAC plus Gene Expression platform. Samples correspond to

mouse embryonics stem cells (mESC) and brain cells (fresh cortex, hippocampus, and ventric-

ular zone) (mEBC) at various developmental stages (embryonic days 4.5, 5.5, 6.5,7.5 for mESC

and 18 for mEBC), which comprise the exit from pluripotency and primary germ layer [15]

and the end of retinal ganglion cell generation [16].

In mESC cells we are investigating correlations between methylation for protein coding

promoters within ±2.5kbps from Transcription Start Site (TSS) and expression. The mEBC

data set consists instead of accessibility (measured by ATAC seq) and expression data. In that

case we quantify the associations between expression and accessibility of enhancers lying in a

region of 12.5kbps form the gene (an analysis of associations between expression and pro-

moter accessibility for mESC cells is shown in S3 Text). Importantly, the two data sets were

obtained using technologies with widely differing technical characteristics: the plate-based

scNMT platform returns good coverage levels (and hence low ZI) for a limited number of

cells, while the 10x platform assays many more cells but with lower coverage and higher drop-

out rates. After quality control, the resulting data sets contained 9480 features (gene promot-

ers) and 679 mESCs and 4249 features (enhancers) and 4052 mEBCs respectively (Methods).

To compare the power of different methods to detect associations between molecular layers,

we considered, alongside SCRaPL, the classical Spearman and Pearson correlation tests (Meth-

ods). The latter in particular has been widely used for single cell multi-omics data (e.g. [4, 8]);

neither method takes into account noise in producing estimates of correlation. Molecular layer

associations were retrieved as significant by controlling EFDR and FDR to 10%, respectively.

Fig 3 shows the summary results of these analyses. On the ESC data set, SCRaPL retrieves

approximately 2.5 times more associations compared to both Pearson and Spearman testing,

retrieving 217 (SCRaPL) versus 68(Pearson)/85(Spearman) (Fig 3C and Table A in S4 Text)

associations. Fig 3A shows Bayesian Volcano plots, demonstrating how SCRaPL captures

many more associations than frequentist alternatives. The overwhelming majorities of the

associations recovered by frequentist methods are also captured by SCRaPL (Pearson and

Spearman tend to be in very good agreement on this data set), which captures many more

associations. We also looked at accessibility-expression pairs but due to weak signal no signifi-

cant features were found by any of the methods. Later, we will investigate the biological signifi-

cance of these results, showing how the greater statistical power of SCRaPL does in fact afford

greater insights in the underlying biology.

Fig 3B and 3D show the analogous results for the analysis of EBC data. Here the picture is

completely different: while SCRaPL still detects many more associations than Pearson, Spear-

man testing collapses and can only detect one significant associations. This points to a statisti-

cal vulnerability of Spearman testing when applied to data with high zero inflation in both

PLOS COMPUTATIONAL BIOLOGY SCRaPL
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molecular layers. More precisely, the large number of zeros present in both expression and

accessibility mEBC data creates a large set of ranking ties, creating an intrinsic mathematical

problem for Spearman correlation. That is reflected in the 4180, 816 and 1 detected associa-

tions for SCRaPL, Pearson and Spearman (Fig 3D and Table B in S4 Text). Unsurprisingly,

both SCRaPL and, to a lesser extent, Pearson testing identify as significant a greater fraction of

association pairs between accessibility and expression, as expected from the basic biology of

gene expression. In particular, the overwhelming majority of correlations between proximal

enhancers accessibility and gene expression were deemed to be significant by SCRaPL, reflect-

ing the importance of proximal enhancers in the regulation of gene expression.

While the ability of SCRaPL to detect larger numbers of associations is certainly an encour-

aging feature, it is essential to characterize whether this is due to greater power, or simply to a

greater vulnerability to false positives. However, determining empirically the false positive rate

is challenging as access to ground truth correlation values for each feature is impossible.

To address these issues, we proceed pragmatically by constructing negative control data sets

in which observations of methylation and expression values for a particular feature in different

cells are randomly permuted. This will destroy any correlation structure between the two

quantities, so that features detected as significant in negative control data can be considered as

false positives. Here, we constructed 5 negative control datasets. For all negative controls,

SCRaPL and Pearson/Spearman testing only detected a handful of associations, consistently

less than for the original data (see Tables A-B in S4 Text). These results suggest that all meth-

ods control for false positives, reinforcing the significance of the associations retrieved.

Fig 3. Summary of experiments on real data. Figures summarizing most important points from synthetic and real

data experiments. (3A, 3B) Bayesian volcano plots for mESC and mEBC data respectively. Scatter plot of posterior

probability under the null hypothesis (in log scale) as a function of posterior median correlation. Each dot represents a

feature and is marked with different color depending the method that labels it as a significant association. (3C, 3D)

Venn diagrams summarizing detection rates for SCRaPL, Pearson and Spearman in mESC and mEBC data. By

accounting for different sources of noise it detects a large set of features identified by frequentist alternatives. SCRaPL

also uncovers a additional large set that would be impossible for frequentist methods to identify in a robust way.

https://doi.org/10.1371/journal.pcbi.1010163.g003
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In summary, these results demonstrate that SCRaPL displays significantly increased statisti-

cal power in detecting associations between different molecular layers for both main types of

multi-omics technological platforms. Intriguingly, both SCRaPL and Pearson testing appear to

be largely insensitive to the type of technology, with SCRaPL identifying between 2.5 and 5

times more associations. Instead, Spearman testing reveals an intrinsic weakness in dealing

with high sparsity data, making it potentially unsuitable as a tool for 10x multi-omics data

analysis.

SCRaPL associations are influenced by data sparsity and are robust to

outliers

Fig 3A–3D (and Figs A-C in S6 Text) show clearly that, while most Pearson/ Spearman associ-

ations are also detected by SCRaPL, there are still some discrepancies. It is therefore natural to

wonder to what extent the signals detected by the alternative methods are different, and what

factors influence the different outcomes, in particular the much greater detection power

obtained by SCRaPL.

From the modeling perspective, there are two major differences: first, SCRaPL considers

noise models which capture overdispersion and take into account coverage in the epigenomic

data. This should make SCRaPL associations less vulnerable to outlier values (eg. genes with

low average expression with one or two high readings) or to epigenomic measurements with

low coverage. Secondly, SCRaPL includes zero inflation in its accessibility/expression model,

and can therefore attribute to that component some measurements of zero expression should

the evidence dictate so. In the rest of this section, we present some empirical evidence that

indeed supports the presence of these benefits in our real data analysis.

We consider the set of associations which are called as significant by at least one method,

and split it into 3 categories: agreement between predictions, association labeling as significant

by SCRaPL, but not by Pearson/Spearman testing, and vice-versa. We then analyze these three

sets attempting to detect common patterns, discussing some examples to substantiate our

findings.

Features for which Pearson/Spearman testing and SCRaPL agree tend to have high coverage

and small number of zeros in case of expression (or accessibility in 10X). An example feature

called as significant by SCRaPL and Pearson is in Fig 4A.

To gain more insight on the factors driving SCRaPL inferences it is interesting to focus on

associations, whose significance differs between the two methods. An example of an associa-

tion detected by Pearson/Spearman testing but not SCRaPL is shown in Fig 4B. As we can see,

we have a large fraction of zero expression values with very low methylation coverage. As a

result, SCRaPL, while placing most of the posterior mass over negative correlation values, can-

not confidently exclude the possibility of no correlation. This example perfectly illustrates that

divergences between SCRaPL and Pearson/Spearman testing are often driven not by expected

values, but by the fact that SCRaPL additionally performs uncertainty quantification on its

results.

An example of an association deemed significant by SCRaPL, but not by Pearson/Spearman

testing, is shown in Fig 4C. In this case, we tend to have medium to high expression and good

coverage. However, Pearson/Spearman correlation remain below detection levels due to a

number of observations with zero expression. This is an example where SCRaPL can be partic-

ularly beneficial, since the noise model can better capture potential effect of zero inflation.

To provide a more quantitative, global explanation of the differences between SCRaPL and

Pearson, we regress the absolute difference in inferred correlation against methylation cover-

age and percentage of zero counts for each feature across all cells. The resulting regressions,
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shown in Fig 4D, demonstrate a weak but consistent effect of both forms on noise, confirming

that differences between the two methods are more prominent in noisier situations where

methylation coverage is low or sparsity is high. This analysis is also confirmed for Pearson and

Spearman in both mESC and mEBC data in A Fig of S11 Text.

SCRaPL identifies biologically meaningful epigenetic regulation in early

mouse gastrulation

To provide further biological support to SCRaPL associations, we perform our own explor-

atory analysis in early gastrulation phases using SCRaPL significant findings.

We start by choosing early pluripotency and germ cell markers where methylation’s strong

repressive role is widely investigated (e.g. [15, 17, 18]). Developmental pluripotency markers

(ie. Dppa2,Dppa4,Dppa5a) exhibit strong regulatory patterns with the generally high expres-

sion levels in days 4.5 and 5.5 being gradually suppressed as cells diversity to progenitors of

major organs. Methylation’s strong silencing role was also found in Dnmt3l, a catalytically

inactive DNA methyltransferase that cooperates with Dnmt3a and Dnmt3b to methylate DNA

[19]. In addition, our analysis identified a series of genes with strong regulatory action vital to

embryonic development Atp6v0d1 [20], to spermatogenesis/placenta-supported development

Tex19.1 [21] and others with unknown roles like Zfp981 and Trap1a.

To complete the exploratory analysis, we look at Gene Set Enrichment Analysis (GSEA)

using DAVID [22] to establish links with biological phenomena observed in early embryogen-

esis and gene promoter methylation. To identify the processes we allow a minimum of 7 genes,

a p-values up to 0.3 and sort them based on their enrichment score. As a result we have identi-

fied a total of fifteen developmental and house-keeping processes (see Fig A in S7 Text). The

Fig 4. SCRaPL’s behavior compared to Pearson/Spearman correlation in micro and macro scale. In all figures

apart from 4D the scatter plot depicts raw data for chosen features color-coded by CpG coverage, and normalized

expression plotted in the log(1 + x) scale. The violin plots depict the posterior correlation densities estimated by

SCRaPL for the raw data in their left hand side. (4A) Example where both SCRaPL and Pearson/Spearman identify the

feature’s association as significant. (4B) Example were only Pearson/Spearman identifies the feature’s association

significant. (4C) Example were only SCRaPL identifies the feature’s association significant. (4D) Scatter plots to

demonstrate the negative/positive relationship between alternative correlation estimates and CpG coverage/% zeros in

expression respectively. (�r j and ρprs in Fig 4D are posterior mean and Pearson correlation for feature j.).

https://doi.org/10.1371/journal.pcbi.1010163.g004

PLOS COMPUTATIONAL BIOLOGY SCRaPL

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010163 June 21, 2022 8 / 18

https://doi.org/10.1371/journal.pcbi.1010163.g004
https://doi.org/10.1371/journal.pcbi.1010163


highest enrichment scores are encountered for angiogenesis and in utero embryonic develop-

ment with 2.6 and 2.1 respectively. For house-keeping processes we get proteolysis, ion trans-

port and negative regulation of transcription with enrichment scores 2.2,1.9 and 1.7

respectively. Using the same filtering parameters in DAVID with the set of genes detected by

Pearson we would recover a single process, regulation of transcription with enrichment score

1.5. Spearman testing detects a larger number of associations than Pearson on the ESC data

set, and consequently has increased power in detecting enriched processes. In this case the

number of recovered processes increases to 7, which consist however of primarily house-keep-

ing processes (see Fig B in S7 Text).

This analysis confirms the biological plausibility of the identified SCRaPL associations. It

should be emphasised that the enrichment analysis has only been possible due to the larger

number of associations identified by SCRaPL: GSEA analyses require considerable numbers of

genes to identify any significant enrichment. This underlines the fact that technical variability

not only erodes correlation but significantly under-powers downstream exploratory analysis

in multi-omics data. Hence by modelling data generative processes we can increase substan-

tially the scope of downstream interpretative analyses of single-cell multi-omics data.

Using SCRaPL as a data denoising tool

The detection of associations between layers is only one of the many possible analyses which

can be performed on multi-omics data sets. A substantial line of research has recently emerged

around the topic of data integration, which aims to combine data from multiple layers mea-

sured in different cells obtained from the same biological system. The goal of such analyses is

to enhance our understanding of cellular identity and function [23]. Popular platforms like

Seurat [24] implement data integration via a dimensionality reduction approach based on

Canonical Correlation Analysis (CCA), a technique based on Singular Value Decomposition

of empirical correlation matrices [25]. Despite its proven capabilities, CCA is not designed to

handle count data. We therefore wondered whether SCRaPL’s likelihoods tailored on specific

data formats could under certain cases provide a valuable addition to the integration pipeline.

Specifically, here we use SCRaPL as a denoising tool, and perform data integration at the level

of the latent variables, rather than the raw data. In this subsection we follow the vignettes pro-

vided by Seurat’s authors [26] and compare the results with and without SCRaPL’s denoising.

We note that this analysis is only a proof of concept as SCRaPL uses multi-omics data collected

in the same cells as input and therefore such integration is not required.

For comparison between SCRaPL denoised and raw data we looked at peripheral blood

mononuclear cells (PBMC) data [27]. This dataset contains expression and accessibility for

12000 PBMCs gathered from a healthy 25 year old donor, see Methods for details on data pre-

processing.

To perform data integration, we remove cell specific noise by sampling latent space accessi-

bility/expression from the respective posterior distributions obtained from SCRaPL. In cases

of peaks mapped to multiple genes, readings were averaged. These data were integrated by

Seurat [24], ignoring TF-IDF(Seurat’s accessibility data preprocessing) and scRNA normaliza-

tion (aimed at expression data) steps. Standard performance monitoring plots like label trans-

fer between single cell expression and accessibility data as well as integration plots are

presented in Fig 5. In general epigenomic and transcriptomic layers have integrated well for

both raw and SCRaPL preprocessed data as suggested from Fig 5C and 5D. This picture

remains consistent across multiple other trials (see Fig A in S12 Text). The integration metrics

found in Fig 5A and 5D show a comparable performance between SCRaPL preprocessing and

raw data. This is in stark contrast with the results of the preceding sections, which
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demonstrated a consistent superiority of SCRaPL in detecting associations at the level of indi-

vidual features. The reason for this is probably to be found in the dimensionality reduction

performed by Seurat: canonical components found by CCA are obtained via an averaging pro-

cess which already does an excellent job at filtering out noise, much in the way that robust

principal components can often be extracted also from noisy data.

Discussion

Single cell multi-omics sequencing technologies are rapidly becoming an important tool to

understand epigenetic regulation for individual cells in complex biological processes, such as

early embryo development. However, analysis of such data still presents a major bottleneck,

due to the high-dimensionality, sparsity and heterogeneous noise affecting them. In this paper,

we argued that the introduction of noise-aware approaches is fundamental in developing the

field of single-cell multi-omics. We introduced SCRaPL, a Bayesian approach to perform per-

haps the most basic and common multi-omics analysis, the discovery of correlative associa-

tions between different data modalities. By employing dedicated noise models in a latent-

Gaussian framework, SCRaPL achieves more powerful and more robust results than simple

analyses based on Pearson correlation, which is by far the most widespread tool currently

used.

Our analyses were based on existing annotation, where the expression of a given gene was

correlated with epigenetic data from a nearby genomic region (promoters or nearby enhanc-

ers). This appears to be a reasonable demonstration of the tool, although it clearly limits the

scope for discovery of interesting biological processes such as distal regulation. It should be

pointed out that SCRaPL could also be used to test associations between unannotated regions

along the lines explored in e.g. [12], [28].

The Bayesian hierarchical framework employed by SCRaPL also offers a template for the

application of more complex analysis techniques (such as clustering, dimensionality reduction

and network inference) to multi-omics data. In many analyses, we expect that consistent han-

dling of noise will be valuable, although it should be pointed out that some downstream analy-

ses already perform noise filtering implicitly. This was demonstrated in our comparison with

the CCA approach implemented in Seurat [24], which effectively averages out noise during

dimensionality reduction, yielding very similar results to SCRaPL. As with most Bayesian

methods, SCRaPL does suffer from a higher computational burden, particularly when

Fig 5. Cell label transfer from expression to accessibility data for raw 5A and SCRaPL 5B preprocessed data.

Visualization of sc-RNA and scATAC data on the same plot for raw 5C and SCRaPL 5D preprocessed data.

https://doi.org/10.1371/journal.pcbi.1010163.g005
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compared with extremely simple analyses, such as Pearson correlation. Extension of noise-

aware Bayesian methods to different single-cell multi-omics analyses may therefore require

the adoption and evaluation of more efficient computational inference techniques, such as var-

iational inference [29].

Materials and methods

A Bayesian hierarchical framework for noisy single cell multi-omics data

SCRaPL implements a Bayesian hierarchical approach that is tailored to the data generated by

single cell multi-omic assays. Here, we assume that matched data is available for two molecular

phenotypes, but our formulation is flexible and can in principle be expanded to include addi-

tional layers. A graphical representation for the model implemented in SCRaPL is provided in

Fig 1. The distribution of a latent vector Xij is used to capture the association across molecular

layers. For each cell i (2{1, . . . I}) and feature j (2{1, . . . J}), the latter is given by

Xij ¼

Xij1

Xij2

0

@

1

Ajμj;Σj �
ind Nðμj;ΣjÞ; ð1Þ

where

μj ¼
mj1

mj2

0

@

1

A and Σj ¼
s2
j1 rjsj1sj2

rjsj1sj2 s2
j2

0

@

1

A: ð2Þ

In this formulation, we assume independence across all features, which will be analyzed

separately (this enables trivial parallelization across features). Different noise models are then

assigned to each molecular layer based on the properties of the associated data. There are two

different likelihoods that we use depending the types of cells we use. For count data (i.e. gene

expression in mESC/mEBC and chromatin accessibility in mEBC) we use a zero-inflated Pois-

son noise and for the rest (i.e. DNAm and accessibility in mESC) we use a Binomial distribu-

tion. Specific noise models for each of the data types considered here are described below.

RNA expression noise model. Let Yij1 be a random variable representing the number of

raw read-counts observed for each cell i and feature j. Conditional on the value of the latent

variable Xij1, we use an exponential link function and assume that

P Yij1 ¼ yij1jXij1 ¼ xij1; si; pj
� �

¼

1 � pj

� � ðsiexij1Þ
yij1 expð� siexij1Þ
yij1!

if yij1 > 0;

pj þ ð1 � pjÞ exp ð� sie
xij1Þ if yij1 ¼ 0:

8
>><

>>:

ð3Þ

The latter corresponds to a zero-inflated Poisson (ZIP) model with an exponential link, where

si (> 0) is a cell-specific scaling factor that accounts for global differences across cells (e.g. due

to sequencing depth) and πj (2[0, 1]) represents a zero-inflation parameter (if πj = 0, Eq (3)

reduces to a Poisson model). The exponential link function leads to a zero-inflated Poisson-

lognormal model, whose variations have been previously used for single cell RNA sequencing

(scRNAseq) data [30, 31]. In practice, we infer scaling factors si using scran [32] and use them

as known model offsets.

The need for a zero-inflation component is a matter of debate for scRNA-seq data [33] and

may depend on the experimental protocol used to generate the data. See Comparing between
alternative models later in this section for a quantitative approach to evaluate the need for

zero-inflation in specific datasets.
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DNAm noise model. For each cell i and feature j, let nij be the number of CpG sites within

a pre-specified genomic region (e.g. gene promoter) for which DNAm reads were obtained.

These capture differences in coverage across cells and features. The conditional model for the

number of methylated CpG sites Yij2 is then assumed to follow a binomial distribution such

that

P Yij2 ¼ yij2jXij2 ¼ xij2; nij
� �

¼
nij
yij2

 !

ðFðxij2ÞÞ
yij2ð1 � Fðxij2ÞÞ

nij � yij2 ; ð4Þ

where F(�) denotes a probit link function.

Chromatin accessibility noise model. The choice of noise model depends on the format

of the input data. If the data consists of the number of features Yij2 in a genomic region [e.g. as

in [34]], our modelling approach analysis follow the one described for RNA expression data. If

the data consists of open peaks within a genomic region (e.g. as for the 10X scATAC seq proto-

col), the same binomial noise model used for DNA methylation data can be applied.

Parameter interpretation. To aid the interpretation of each model parameter, mean and

variance expressions are derived for the noise models introduced above after integrating out

the distribution of the latent vector Xij (see S8 Text). In both cases, μj1 and μj2 control the over-

all RNA expression and DNAm values for the population of cells under study. Moreover, σj1
and σj2 capture the excess of variability (overdispersion) that is observed with respect to the

baseline noise model. Finally, ρj captures the latent correlation between molecular layers.

Prior specification

A popular prior choice for covariance matrices is the inverse Wishart distribution. However,

this has been shown to bias correlation coefficients depending whether marginal variances are

small or large [35]. Instead, [36] used a separation strategy to decouple correlation from mar-

ginal variances. Our prior specification for Sj is based on the parametrization introduced in

Eq (2), with independent priors assigned to all feature-specific parameters. Our prior specifica-

tion is given by

pj �
ind Betaðaj; bjÞ; ð5Þ

μj�
iid Nðm;HÞ; ð6Þ

sj1; sj2 �
iid Inv-Gammaðc1; c2Þ; ð7Þ

rj �
iid Beta½� 1;1�ðd1; d2Þ: ð8Þ

In Eq (8), the prior for ρj corresponds to a four-parameter Beta distribution, whose support

has been scaled to be [−1, 1]. In order to avoid systematically favoring positive or negative cor-

relations, we centered the prior at 0 by setting d1 = d2. Then we tuned these prior hyper-

parameters on negative control data (see S2 Text), eventually choosing Beta(15, 15) as it helped

to suppress false positive detection rates. More information about this provided in S5 Text. For

the remaining hyper-parameter values, default values were set as aj = 2, bj = 8 to encourage low

zero inflation. Moreover, we set c1 = 2.5, c2 = 4.5 but keeping the parameters within a reason-

able range will also work, μj = (4, 0)0 for mESC data, μj = (4, 3)0 for mEBC data, H was set to be

a 2 × 2 identity matrix.
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Implementation

As the posterior distribution associated to the model above does not have a closed analytical

form, inference is implemented using No-U-Turn Sampler [37], a state of the art variation of

Hamiltonian Monte Carlo [38].

For all the analyses shown in this article, we obtained 5000 samples from this algorithm and

discarded the first 3000 iterations (burn-in) before estimating model parameters. Parameters

were optimized during burn-in to an acceptance ratio of 0.65. Convergence is monitored

using the Gelman-Rubin criterion [39].

A probabilistic rule to detect statistically significant associations across

layers

SCRaPL identifies features with statistically significant correlation across multi-omics layers

(e.g. RNA expression and promoter DNAm) based on the posterior distribution of feature-

specific latent correlation parameters ρj. Our decision rule depends on whether the posterior

mass for |ρj| is concentrated around high values. As in [40], this is quantified by the following

tail posterior probabilities

pjðgÞ ¼ Pðjrjj � gÞ; ð9Þ

where γ (> 0) denotes a minimum correlation threshold. If pj(γ) is greater than a probability

threshold α, a statistically significant correlation is reported for feature j.
Suitable values for γ and α could be chosen using different approaches. In principle, γ can

be fixed a priori by the user. Instead, we adopt a data-driven approach based on the distribu-

tion of feature-specific posterior estimates obtained for |ρj| using negative control datasets (see

S4 Text). Such distribution can be used to quantify the strength of correlation estimates that

can be expected by chance for a given sample size and sequencing depth. As a default choice,

we select γ to match the 90% quantile of the distribution described above. For a fixed value of

γ, a grid search is used to select α according to a target EFDR. The latter is defined as

EFDRa ¼

PJ
j¼1
ð1 � pjðgÞÞ I ðpjðgÞ � aÞ
PJ

j¼1
I ðpjðgÞ � aÞ

; ð10Þ

where IðAÞ ¼ 1 if A is true, 0 otherwise. Our default target EFDR is equal to 10%.

Current approach based on Pearson/Spearman correlation

To date, single cell multi-omics analyses have primarily used the Pearson/Spearman correla-

tion coefficient r to quantify associations between different types of molecular data [e.g. [4, 8]].

These estimates are directly derived from the observed data and do not assume a specific noise

model. As the input for this calculation, gene expression data is typically normalised [e.g.

using scran; [32]] and subsequently log-transformed after adding a pseudocount, while

DNAm is normalised by coverage [note that the addition of a pseudocount is arbitrary and has

been shown to distort variance estimates; [31]].

Based on these estimates, statistically significant correlations are selected by contrasting the

hypothesesH0: krk � u andH1: krk � u, for some threshold u. To control the False Discovery

Rate (FDR) across features, the Benjamini-Hochberg correction [41] is typically used.
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Comparing between alternative models

SCRaPL is a noise-aware approach with error models crafted to address challenges related to

various multi-omics data. Our likelihood of choice for count data such as gene expression and

accessibility in 10X data has been Poisson distribution. Since there is a debate surrounding the

extend to which zero-inflation is required [33], we take an unbiased stance and use posterior

model samples to perform model selection using Deviance Information Criterion [DIC; [42]].

DIC is a method for assessing goodness of fit while penalizing large effective numbers of param-

eters between alternative models, with lower DIC values indicating more preferable models.

To assess the need of zero-inflation in SCRaPL, we fit the zero-inflated and the standard

Poisson in the methylation/expression the mESC data and accessibility/expression of mEBC

data. For the large majority of features in the mESC and mEBC, DIC favors zero inflation as it

is indicated from Fig 6.

Single cell multi-omic datasets

We applied SCRaPL in the context of two single cell multiomic datasets. First, we consider the

mESC dataset generated by [15] using the scNMT-seq protocol [8]. For these data, our analysis

focuses on the correlation between gene expression and DNAm. We also experimented with

chromatin accessibility and gene expression pair with not much success due to sparsity in

accessibility data. Our second case study considers mEBC data generated using the 10X Geno-

mics Multiome ATAC plus gene expression platform. Quality control steps applied to both

datasets are described in S1 Text.

To aggregate DNAm data from different mESC and link open DNA chromatin from mESC

to nearby genes we follow a window based approach. Reads are mapped using the GRCm38

mouse genome (accession number GSE56879). For more information, the reader is directed to

S1 Text. When looking at methylation/gene expression of promoter regions in mESC data, a

window of ±2.5kbp was used. For chromatin accessibility/gene expression in the same dataset

the window was ±0.25kbp. Similarly, for accessibility and expression in the mECB data we map

enhancers to genes at most ±12.5 kbp away. To control how our window choices affect results,

we experimented with multiple window sizes, noticing minimal impact on the results.

Subsequently, a quality control step was applied to both datasets. For mESC data we

removed features with zero variance in each modality and for which the percentage of expres-

sion zeros was above 80%. This resulted in a dataset with 9480 features and 679 cells. Similarly,

Fig 6. DIC difference between model with and without inflation for mESC and mEBC data. The more negative the

difference, the stronger the evidence in favor of the model with zero inflation on the gene expression component and

vice versa. As a visual reference, zero is marked with dashed red line.

https://doi.org/10.1371/journal.pcbi.1010163.g006
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for mEBC data we removed features with more than 80% of zeroes in accessibility or expres-

sion, leading to a dataset with 4249 features and 4052 cells.

The data denoising analysis was done using peripheral blood mononuclear cells (PBMCs).

For illustration purposes, we downsampled the dataset to 3000 cells by keeping only the ones

with the highest sum across peaks. Then peaks and genes were reduced from 180000 to 30000

and from 36000 to 10000 respectively, based on their variability. Then the to 60k features in

association magnitude were used by SCRaPL.

Supporting information

S1 Text. Data preprocessing. Here we discuss the preprocessing and quality control steps

taken in mESC and bESC datasets. This includes aggregating raw epigenetic data from multi-

ple cells, normalizing single cell transcriptomic data, integrating epigenomic and trascriptomic

layers and removing low quality data.

(PDF)

S2 Text. Creating negative control datasets. In this section we describe step by step the gen-

eration of negative control data, explaining our address to problems like missing coverage.

(PDF)

S3 Text. Synthetic data. We include an extensive analysis of synthetic data experiments used

to develop SCRaPL. In particular, we include three sets of experiments that investigate

SCRaPL’s performance as a function of cells, zero-inflation and coverage. The first set is per-

formed on data sampled form the model, the second on data sampled from the model and the

correlation from a U[−0.8, −0.6], and the third partly sampled from a deep generative model

and partly from the model.

(PDF)

S4 Text. Negative control experiments. In this section we lay the detection rate comparisons

between SCRaPL and Pearson for methylation/expression of mESC, accessibility/expression of

mESC and accessibility/expression of bESC.

(PDF)

S5 Text. Choosing between correlation priors. In this section we present a data driven

approach for choosing prior hyper-parameters.

(PDF)

S6 Text. Extended comparisons between SCRaPL,Pearson and Spearman predictions. In

this section a more extended comparison between SCRaPL, Pearson and SPearman predic-

tions is provided.

(PDF)

S7 Text. Gene set enrichment analysis. The complete gene set enrichment analysis using

DAVID is provided.

(PDF)

S8 Text. Connecting SCRaPL error model to likelihoods currently employed by practition-

ers. We demonstrate that SCRaPL’s expression likelihood serves as valid alternative as it exhib-

its the over-dispersion property that practitioners seek.

(PDF)

S9 Text. Null hypothesis testing. We give a thorough description of the hypothesis testing

done to identify regions with strong regulatory action.

(PDF)
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