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Abstract: Inflammasomes are an essential part of the innate immune system. They are necessary for
the development of a healthy immune response against infectious diseases. Inflammasome activation
leads to the secretion of pro-inflammatory cytokines such as IL-1β and IL-18, which stimulate the
adaptive immune system. Inflammasomes activators can be used as adjuvants to provide and
maintain the strength of the immune response. This review is focused on the mechanisms of action
and the effects of adjuvants on inflammasomes. The therapeutic and prophylaxis significance of
inflammasomes in infectious diseases is also discussed.
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1. Introduction

Vaccination is the most effective way to prevent infectious diseases [1]. There are several different
types of vaccines available, including live attenuated and inactivated vaccines, subunit and toxoid
vaccines, virus-like particle (VLP) based vaccines, as well as polysaccharide and polysaccharide
conjugate vaccines [2]. Vaccines containing live or whole killed pathogens can induce strong protective
immune responses without adjuvants. However, on rare occasions these vaccines can revert to a
virulent strain through back-mutation, compensatory mutations, recombination or reassortment [3].
This can cause disease and side effects as a result of immunization, which is not characteristic of
other vaccines [4]. In contrast, subunit, recombinant, polysaccharide, and conjugated vaccines are
generally safe, but they are less effective without adjuvants. Adjuvants can be an organic or non-organic
derivative [5]. Some of them are naturally occurring, for instance, mineral salts of aluminum or bacterial
components that are used in complete Freund’s adjuvant (CFA) [6]. In contrast, subunit vaccines have
limited immunogenicity, mostly because they lack natural adjuvants [7]. Therefore, currently, almost
every vaccine contains adjuvants, which enhance and prolong the immune response [8].

There are several adjuvants that have been approved for human application, including aluminum
salts, emulsions such as MF-59, and AS03 [9]. For most of these adjuvants, the mechanism of action
remains unclear [10]. Among adjuvants, aluminum salts are the most studied. It is believed that
aluminum salts might act as a matrix for antigen adsorption [11]. Adsorbed antigens appear to be more
stable, which is crucial for them to retain immunogenicity [12]. A similar mechanism of action was
suggested for incomplete Freund’s adjuvant (IFA), which can establish a depot at the site of injection for
slow antigen release [13]. Some adjuvants also act through activation of toll-like receptors‘ (TLRs) [14].
For example, CFA, monophosphoryl Lipid A (MPL), flagellin and adjuvants based on CpG are ligands
for TLR 2, 4, 5 and 9, respectively [15–18]. TLR agonists were shown to be effective adjuvants [19].
CFA appears to have the highest adjuvant activity compared to other adjuvants [20,21]. However, CFA
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has been shown to be associated with numerous side effects such as granulomas, ulcerative necrosis
and sterile abscesses at the injection site [22].

Most of these adjuvants are still undergoing clinical trials, while aluminum salts remain a gold
standard [23]. An ideal adjuvant should meet specific requirements such as safety, bio-degradability,
and long-term stability. Most of the approved adjuvants do not fully comply with these criteria [9].
Therefore, the search for and development of new adjuvants is urgently needed to improve vaccines.
The discovery of inflammasome structure and function initiated a new age in the development of vaccines
and adjuvants. It has been demonstrated that inflammasomes, which can recognize damage-associated
molecular patterns (DAMPs), are also involved in the mechanisms of adjuvant action [24].

2. Innate Immunity

The immune response can be divided into innate and adaptive [25]. For innate immunity, all receptors
expressed by cells are encoded in the genome and passed to the next generation, unlike receptors
of the adaptive immune system, which are formed as a result of V(D)J rearrangement and somatic
hypermutation [26]. The innate immune system is characterized by its capacity to recognize a wide range
of pathogens including viruses, fungi, and bacteria through the number of pattern recognition receptors
(PRRs) [18]. PRRs recognize conservative microbial signals, the so-called pathogen-associated molecular
patterns (PAMPs) [27]. The activated innate immune system elicits an inflammatory response followed by
production of cytokines and chemokines to attract immune cells to the place of infection and create an
adaptive immune response [28]. PRRs include TLRs, RIG-1-like receptors (RLRs) and pattern recognizing
NOD-like receptors (NLRs) [27]. NLRs are the key sensors in the innate immune response and are one of
the main inflammasome components involved in sensing pathogens [29].

3. Inflammasomes

Inflammasomes represent a group of cytosolic multiprotein complexes composed of a sensor
protein belonging to the NLR or Pyrin and HIN domain families (PYHIN), a caspase-1 effector and an
adaptor protein ASC [30]. The structure of inflammasome is shown in Figure 1.
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(CARD). 

Inflammasomes are expressed in various cells, including granulocytes, Т- and В-cells, 
monocytes, hepatocytes, neurons, microglia, and Langerhans cells [31–33]. The functions of 
inflammasomes include sensing the pathogen and launching a subsequent innate immune response 
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Figure 1. The structure of the inflammasome. (a) NOD-like receptor protein 3 (NLRP3) inflammasome,
(b) NLR-family CARD domain-containing protein 4 (NLRC4) inflammasome, (c) Absent in melanoma
2 (AIM2) inflammasome. The inflammasome structure is composed of functional units such as a
leucine-rich repeat (LRR) C-terminal or DNA-binding domain (HIN200), a nucleotide binding domain
(NBD), a pyrin domain (PYD), and a caspase recruitment domain (CARD).

Inflammasomes are expressed in various cells, including granulocytes, Т-and B-cells, monocytes,
hepatocytes, neurons, microglia, and Langerhans cells [31–33]. The functions of inflammasomes include
sensing the pathogen and launching a subsequent innate immune response [34,35]. Inflammasomes
are formed when PAMP and DAMP are sensed in the cytoplasm [36]. This induces conformational
changes in the pre-assembled NLRP3-inactive inflammasome [37]. Finally, activated inflammasome
proteolytically cleaves pro-caspase 1, releasing the active caspase 1 [38]. Next, the caspase-1 digests
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pro-interleukin-1-beta (IL-1β) and pro-interleukin-18 (IL-18) to their active forms, which are secreted by
a cell [39,40]. These interleukins are involved in establishing the inflammation and immune response
that protect against microorganisms.

IL-18 can activate lymphocytes [41,42]. Also, it can increase Т-and B-cell proliferation, enhance
the activity of natural killers (NKs), stimulate secretion of interferon-gamma (IFNγ), tumor necrosis
factor-alpha (TNFα), interleukin-1 (IL-1) and interleukin-2 (IL-2) [43,44]. IL-18 induced release of
TNFα and IL-1 appears to depend on inflammasome activation [45]. Another inflammasome product,
IL-1β, seems to stimulate the proliferation of Т-cells [46–48]. Also, IL-1β may increase the number of
CD103+CD69+ tissue-resident memory Т-cells (TRM) and dendritic cells [49]. It appears that IL-18
and IL-1β, which are products of activated inflammasomes, have a similar effect on leukocytes, that
is, they stimulate proliferation and promote immune competence [50–52]. Moreover, some cytokines
can be administered as adjuvants. IL-6, IL-1 and IL-12 promote either Th2- or Th1-type responses,
thereby enhancing systemic immunity to co-administered antigens. IL-18 enhances the effects of
IL-12 in inducing an antigen-specific Th1 type CD4+ T cell response as well as high titers of IgG
antibodies [53,54].

4. Adjuvants as Inflammasome Activators

Most adjuvants have similar mechanisms of inflammasome activation, including lysosome
degradation and cathepsine release and formation of reactive oxygen species, which subsequently lead
to IL-1β and IL-18 secretion (Figures 2 and 3).
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4.1. Aluminum Adjuvants

Aluminum-containing adjuvants were first used in human vaccines in 1932 [55]. Then, they were
applied in numerous studies, where their efficiency as adjuvants was confirmed. Currently, aluminum
adjuvants such as aluminium potassium sulphate, aluminium hydroxide, aluminium phosphate,
and amorphous aluminium hydroxyphosphate sulfate are considered to be the gold standard for
newly developing adjuvants [56]. Interestingly, the most commonly used adjuvants, such as aluminum
salts, are capable of activation of NLRP3 inflammasome [57]. It has been shown that aluminum
hydroxide-based adjuvants can stimulate secretion of pro-inflammatory cytokines IL-1β and IL-18 by
activating NLRP3 inflammasome [58,59]. A mechanism of inflammasome activation was explained by
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the lysosome damage induced by aluminum hydroxide, which triggers the release of cathepsin. Free
cathepsin B can initiate the inflammasome assembly, which activates caspase-1 and releases active
cytokines [60,61]. Initial activation of a nuclear transcription factor (NF-κB) via lipopolysaccharide
(LPS) appears to be required for NLRP3 activation by aluminum hydroxide [62]. Also, aluminum
hydroxide can increase the uric acid levels at the site of vaccination, which could promote pro-IL-1b
and pro-IL-18 conversion into their active forms by activated NLRP3 inflammasome [63].
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4.2. Chitosan

Natural substances have also been shown to possess adjuvant activity. For example, chitosan,
a highly biodegradable chitin derivative can enhance both humoral and cell-mediated immune
response, which is equipotent to IFA and superior to aluminum hydroxide [64]. Chitosan can enter
the cell by phagocytosis and activate NLRP3 inflammasome [65]. Beuter et al. have demonstrated
that the mechanism of inflammasome activation is associated with potassium ion efflux and lysosome
destabilization, as well as the formation of reactive oxygen species (ROS) [66]. Also, chitosan, used as
an influenza vaccine adjuvant, was shown to increase the production of IL-2, IL-4, IL-6, TNF, IL-17A,
and IL-10. Increased IFNγ production and IgG titers indicate the enhancement of the cell-mediated
and humoral immune responses by chitosan adjuvant [67].

4.3. Saponins

Saponins isolated from the soapwort plant are also known to enhance an immune response [68].
Kensil et al. were the first to isolate saponin fractions from the soapwort plant with various degrees of
adjuvant properties [69]. Adjuvants based on the QS-21 portion of saponin had low toxicity combined
with excellent adjuvant effects. They were used in more than 100 human clinical trials [70,71] where
they demonstrated the ability to induce humoral and cell-mediated immune response against a wide
range of antigens [72]. Also, the QS-21 fraction was superior to aluminum salts because they induced a
Th1-type immune response, which is essential for controlling intracellular pathogens [73].

The mechanism of the QS-21 adjuvant activity is being investigated. Recent studies have confirmed
that QS-21 activates NLPR3 inflammasome [74]. An arrangement of NLPR3 inflammasome activation
by QS-21 was linked to lysosome destabilization and cathepsin B release [75]. Interestingly, QS-21 can
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correctly activate NLRP3 inflammasome in CD169+ macrophages localized in lymph nodes [76] and
increase serum levels of IL-2 and IFNγ [77].

4.4. Synthetic Cation Polymeric Adjuvants

Progress in organic synthesis methods has contributed to the generation of artificial molecules
with adjuvant activity. One of these is synthetic cation polymeric adjuvants containing biodegradable
particles, which form nanoparticles [78]. Nanoparticles based on poly-d,l-lactide-co-glycolide, cationic
lipids possess adjuvant properties that could be mediated by activation of the NLRP3 inflammasome [79].
The mechanism of inflammasome activation appears to be related to lysosome disruption and cathepsin
B release as well as ROS formation [80].

These nanoparticle adjuvants were tested in animal models where they increased IgG titer and
the level of TNF-α, INFγ, IL-17A, and IL-1β cytokines [81,82].

4.5. Cholera Toxin B

Cell wall components, some endotoxins, as well as nucleic acids are also capable of inflammasome
activation. Therefore, they might have potential utility in adjuvant applications [83]. Cholera toxin,
a protein of Vibrio cholerae, consists of six subunits, including one toxin A and five toxin B [84]. Cholera
toxin B is a non-toxic protein with proven adjuvant efficacy, especially for mucosal vaccines [85,86].
It can also bind to GM1 ganglioside receptor and enter the cell, thereby activating NLRP3 and other
inflammasomes [87]. The mechanism of activation appears to be related to the cholera toxin B
enhancement of the small Rho GTPases (RhoA) activity via protein kinase A [88]. As a result, a pyrin
receptor interacts with modified RhoA and triggers inflammasome self-assembly [89]. The efficacy of
cholera toxin B as an adjuvant was demonstrated in a mouse model [90]. This adjuvant was able to
increase the circulating IgG titers as well as mucosal IgA levels. Cholera toxin B also enhanced Т-cell
proliferation and increased IL-17A and IFNγ production [91].

4.6. Flagellin

Flagellin, which forms the hollow filaments in bacterial flagellum, represents bacterial
pathogenicity and virulence factor [92]. Several studies have demonstrated flagellin adjuvant
activity in the mucosal vaccination [93–95]. Like LPS, it is a natural TLR agonist and can also
trigger inflammasome assembly [96–98]. However, in contrast to LPS, flagellin induces formation of
both NLRP3 and NLRC4 inflammasomes [99,100]. The efficacy of the flagellin as an adjuvant was
demonstrated in experiments with mice and primates in a flu model [101,102]. Flagellin was shown to
induce the production of various pro-inflammatory cytokines such as IL-6, IL-8, and CXCL2, which can
facilitate a productive immune response [103–105]. It has been demonstrated that flagellin activates
inflammasomes through TLR5 or NLRC4 receptors [106]. According to Dos Reis et al., the NLRP3
receptor function is not absolutely required for the flagellin adjuvant activity. For example, it was
demonstrated that flagellin can stimulate the assembly of another inflammasome, NLRC4 in cells
with defective NLRP3 receptors [100]. While flagellin activates NLRC4 inflammasome directly via
the NAIP5-receptor, the formation of NLRP3 inflammasome appears to be indirectly regulated via
cathepsin B by destabilizing lysosomes [107,108].

4.7. Nucleic Acids

Nucleic acids are traditionally accepted as a genetic vaccine; however, they can potentially be used
as adjuvants. Viral single and double-stranded RNAs are recognized by the intracellular receptor RIG-1
(retinoic acid-inducible gene I), which can subsequently activate NLRP3 inflammasome [109]. Therefore,
RNA appears to be useful as both a genetic vaccine epitope and an adjuvant [110]. These adjuvants
have been shown to cause low toxicity and adverse effects [111]. Also, non-translational RNA can
enhance an immune response [112]. For example, Doener et al. demonstrated that both cell-based and



Pathogens 2020, 9, 252 6 of 12

humoral immune responses were significantly increased in healthy volunteers who received a licensed
rabies vaccine containing non-translational RNA adjuvant, CV8102 [113].

Double-stranded DNA could be detected by the AIM2 inflammasome [114], triggering
inflammasome assembly and increasing IL-1β and IL-18 secretion [115,116]. Therefore, plasmids which
are utilized as genetic vaccines can activate AIM2 inflammasome and enhance cell-based and humoral
immune responses, even if they do not code pathogenic proteins [117,118].

5. Conclusions

Inflammation is an important component of the immune response, as it plays a role in stimulating
leukocyte proliferation and differentiation, releases regulatory cytokines and activates non-specific
immunity [119]. Inflammation could be regulated by many pathways, including inflammasomes [120].
As inflammasome senses PAMPs and DAMPs, it starts forming multiprotein complexes, and releasing
active caspase 1, which, in turn, cleaves IL-1β and IL-18 [36]. Both cytokines play essential roles
in establishing and maintaining inflammation [39,43,44,46,48–52]. Also, these cytokines directly
stimulate immune cells like T- and B-lymphocytes and dendritic cells [41,42,47]. Inflammation-caused
leukocyte activation and migration to the site of infection contributes to antigen recognition and
presentation [121].

Therefore, activation of inflammasomes as part of immune recognition during vaccination
could help facilitate antigen recognition and presentation. Inflammasomes could be targeted by
adjuvants [122]. As adjuvants help to induce a strong and long-lasting immune response, targeting
inflammasomes could be a potential mechanism of their action. Adjuvants are widely utilized in
vaccines and their effect can directly depend on their capacity to activate the inflammasome. In this
review we summarized information on adjuvants currently used for vaccination and their effect on
inflammasome activation. Several adjuvants, aluminum salts, MF-59, and AS03 have been shown to
activate inflammasome as part of their mechanism of action. It appears that inflammasome activation
facilitates the development of a strong and long-lasting immune response [34,35]. This was shown
for aluminum salts, MF-59, and AS03 adjuvants, which are currently used as part of influenza, polio,
hepatitis A and B vaccines [123–127]. Using inflammasomes as a target for adjuvants mimics the innate
immune response to an infectious agent and increases the effectiveness of the vaccine. Therefore,
targeting molecular mechanisms involved in inflammasome activation could be beneficial for the
development of new approaches for adjuvant‘ design and to further advance the development of
effective vaccine formulations.
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